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Abstract
It is well known that for every bounded operator A in L(H), there exists a compact
operator K in K (H) such that the Weyl spectrum σW (A) of the operator A coincides
with the spectrum σ (A + K ) of the perturbed operator A. In this work, we show the
extension of this relation by the use of Kato’s decomposition to the set of
semi-Fredholm operators.
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1 Introduction
In  Schechter demonstrated in [] this result that for every bounded operator A in
L(H), there exists a compact operator K in K(H) such that the Weyl spectrum σW (A) of
the operator A coincides with the spectrum σ (A + K) of the perturbed operator A for a
compact perturbation of Fredholm operators of index zero. In  Stampfli showed in
[] that the minimum of this perturbation is achieved for a certain compact operator. This
work is intended to extend this result to semi-Fredholm operators of any index using the
decomposition of Kato, an extension already done by Apostol in [] and Herrero in [].

Let H be a complex, separable, infinite dimensional Hilbert space, and let L(H) denote
the algebra of all linear bounded operators on H , C(H) the set of linear operators A with
domain D(A) dense in H and range R(A) contained in H and a graph G(A) closed in H ×H .
K(H) is the set of compact elements of L(H).

For A ∈ C(H), we let σ (A), ρ(A), and N(A) denote the spectrum, the resolvent set, and
the null space of A, respectively. The nullity α(A) of A is defined as the dimension of N(A)
and the deficiency β(A) of A is defined as the codimension of R(A) in H .

σW (A) will denote the Weyl spectrum. Recall that the Weyl spectrum is the union of
the essential spectrum σe(A) and all bounded components of C/σe(A) associated with a
nonzero Fredholm index. In other words, the Weyl spectrum of A is the set

σW (A) = σ (A)\�(A),

where �(A) designates the set of all scalars μ ∈C such that R(A – μI) is closed and both
dim N(A – μI) and dim N(A∗ – μI) are finite such that the index ind(A – μI) of (A – μI) is
null where

ind(A – μI) = dim N(A – μI) – dim N
(
A∗ – μI

)
.
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Note that it was shown in [] that for every bounded operator A in L(H), there exists a
compact operator K in K(H) such that

σW (A) = σ (A + K).

Proposition  (See []) For A ∈ C(H) we get
() R(A) is a closed subspace in H if and only if c(A) > ,
() c(A) = c(A∗),

where A∗ is the adjoint of A and c(A) is given by

c(A) = inf
u∈D(A)∩N(A)⊥

‖Au‖
‖u‖ . (.)

Definition  The operator A ∈ C(H) is called a semi-Fredholm operator, denoted A ∈
SF(H), if the following conditions are satisfied:

() R(A) is a closed subspace in H ,
() min ind(A) = {dim N(A), dim N(A∗)} < ∞.

Theorem  (See []) Let A ∈ SF(H), there is a direct decomposition H = M ⊕ N such that
() M and N are invariant by A,
() A/M is regular,
() N ⊆ D(A), dim N < ∞, and A/N is nilpotent.

This decomposition is known as the decomposition of Kato []. Operators admit-
ting such decomposition were characterized in  by Labrousse in [] and are called
quasi-Fredholm operators, also generalized by Mbekhta to the operators called pseudo-
Fredholm [].

Definition  Let A ∈ C(H); the complex set ρe(A) of the operator A given by

ρe(A) =
{
μ ∈ C, (A – μI) ∈ SF(H)

}
,

will be called the essential resolvent (resp. σe(A) = C\ρe(A)) and it will stand for the essen-
tial spectrum of the operator A.

For A ∈ C(H), we define the set

Me(A) =
{
μ ∈C such that (A – μI) is invertible on the left or on the right

}
.

Lemma  If (A – μI) ∈ SF(A) such that

min
{
dim N(A – μI), dim

(
A∗ – μI

)}
= ,

then μ ∈ Me(A).

Definition  Let A ∈ C(H), the complex point μ ∈C is called a regular point of A, denoted
reg(A), if the following conditions are satisfied:
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() R(A – μI) is a closed subspace in H ,
() N[(A – μI)n] ⊆ R(A – μI), ∀n ∈N.

Remark  The set reg(A) of regular points of A is open in C.

Theorem  (See []) A ∈ SF(H) if and only if A∗ ∈ SF(H) and ind(A) = – ind(A∗).

Theorem  (See []) For any A ∈ L(H) ∩ SF(H) and B ∈ L(H) such that (A – B) ∈ K(H)
we get B ∈ SF(H) and ind(A) = ind(B).

Theorem  (See []) ind(A – μI) is constant on each connected component of ρe(A).

Definition  Let A, B ∈ C(H); we denote by PG(A) the orthogonal projection of H × H on
G(A). We set

δ(A, B) =
∥
∥(I – PA)PB

∥
∥ (.)

and

g(A, B) = ‖PG(A) – PG(B)‖. (.)

Remark  g(A, B) defines a metric on C(H).

Proposition  (See []) Let M, N be two closed subspaces of H with dim N < ∞. Then if
δ(M, N) <  we have dim M ≤ dim N .

Definition  Let A ∈ L(H). A is called quasi-nilpotent and will be noted A ∈ QN(H) if
and only if limn→∞ ‖An‖ 

n = .

Proposition  (See []) Let A ∈ L(H), then A ∈ QN(H) if and only if σ (A) = .

Definition  A ∈ L(H) is called a Riesz operator if and only if σe(A) = .

Theorem  (See []) Let A ∈ L(H), that is, K ∈ K(H) such that

σW (A) =
⋂

K∈K (H)

σ (A + K).

In  Stampfli demonstrated in [] that there is an operator K ∈ K(H) such that

σW (A) = σ (A + K).

Passing to the complement in the expression σW (A) = σ (A + K) = σ (A) ∩ [�(A)]c we
obtain ρ(A) ∪�(A) = ρ(A + K). Hence ρ(A) ⊆ �(A); then the result of Stampfli is equiv-
alent to �(A) = ρ(A + K).

2 Main results
Theorem  Let A ∈ L(H), there exists a compact operator K ∈ K(H) such that

ρe(A) = Me(A + K).
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2.1 Correction of the operator A
.. First correction
This correction involves the construction of a compact perturbation K such that if A ∈
L(H) and B = (A + K) ∈ L(H) then

ρe(A) ∩ reg(A + K) ⊆ Me(A + K).

Lemma  Let A ∈ L(H) such that A is invertible on the left or on the right, K an operator
of K(H) and B = A + K. If ‖K‖ < c(A) then

() δ(N(B), N(A)) ≤ ‖K‖
c(A) ,

() B is invertible on the left or on the right.

Proof We have by definition δ(N(B), N(A)) = ‖(I – PN(B))PN(A)‖. Assume that u ∈ H and
let v = (I – PN(A))PN(B)u. Then v is orthogonal to N(A) and we have

‖Av‖ ≥ c(A)‖v‖,

or still

‖v‖ ≤ ‖Av‖
c(A)

,

‖Av‖
c(A)

=
‖A((I – PN(A))PN(B)u)‖

c(A)

=
‖A(PN(B)u)‖

c(A)

=
‖(A – B)(PN(B)u)‖

c(A)

≤ ‖(A – B)‖‖PN(B)u‖
c(A)

.

Using Proposition , we have

δ
(
N(B), N(A)

)
<  ⇒ dim N(B) ≤ dim N(A).

If A is one-to-one, then dim N(A) =  ⇒ dim N(B) = . Therefore N(B) = {}, hence B
is one-to-one. As R(B) is closed (compact perturbation of semi-Fredholm operator), we
deduce that B is left invertible.

If N(A) �= {}, then A is not left invertible. Hence A is right invertible. Then N(A∗) = {}.
A, B ∈ L(H) ⇒ A∗, B∗ ∈ L(H), A∗ – B∗ = A – B, and c(A) = c(A∗).

By a similar reasoning we will have

δ
(
N

(
B∗), N

(
A∗)) ≤ ‖A∗ – B∗‖

c(A∗)
<  ⇒ dim N

(
B∗) = .

Then N(B∗) = {} and B∗ is one-to-one. B = (A + K) ∈ SF(H), in particular R(B) is a
closed subspace of H , R(B) = N(B∗)⊥ = {}⊥ = H , then B is onto. Thus it is right invert-
ible. �
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Lemma  Let M, N be two closed subspace of H such that dim N ≥ dim M >  and dim M <
∞. Then there is U , a partial isometry of H such that

R(U) ⊆ N and R
(
U∗) = M.

Proof Let e, e, . . . , em be an orthonormal bases of M and f, f, . . . , fm an orthonormal fam-
ily of vectors of N . Let P the orthogonal projection of H onto M and Q the orthog-
onal projection onto the space spanned by f, f, . . . , fm. If u ∈ H , there are m complex
numbers a, a, . . . , am such that Pu =

∑m
i= aiei. We put Uu =

∑m
i= aifi. Then R(U) ⊆ N

and if v ∈ H , there are m complex numbers b, b, . . . , bm such that Qv =
∑m

i= bifi. Then
〈Uu, v〉 =

∑m
i= aibi = 〈u,

∑m
i= biei〉 = 〈u, U∗v〉, hence U∗v =

∑m
i= biei. It is easy to see that

R(U∗) = M, U is a partial isometry of H , and

U∗U = P, UU∗ = Q. �

Lemma  Let A ∈ L(H), β ∈ ρe(A), and α ∈R
∗
+. Then there is T(A,β) ∈ L(H) such that

() T(A,β) is of finite rank,
() ‖T(A,β)‖ ≤ ,
() β ∈ Me(A + αT(A,β)).

Proof We suppose at first ind(A–βI) ≥ . Hence dim N(A∗ –βI) < ∞. By Lemma , there is
U such that R(U) ⊆ N(A –βI), R(U∗) = N(A∗ –βI). We take U∗ = T(A,β). Then T(A,β) is
of finite rank, thus compact, and we have β ∈ ρe(A+αT(A,β)). Furthermore A+αT(A,β)–
βI is onto. Indeed R(A – βI) is a closed subspace of H . Hence H = R(A – βI) ⊕ N(A∗ – βI).
Let u ∈ H , then u = u + u with u ∈ R(A – βI) and u ∈ N(A ∗ –βI). Let Q be a projection
onto N(A – βI). There is v and v such that (A – βI)v = u where Qv =  and u = αTv,
where v = Qv, that is, v ∈ N(A – βI). If we take v = v + v it follows that

(
A + αT(A,β) – βI

)
v = (A – βI)(I – Q)v + αT(A,β)v

= (A – βI)v + αT(A,β)v = u + u = u.

Hence the operator (A+αT(A,β)–βI) is onto and β ∈ Me(A+α(T ,β)). If ind(A–βI) < 
and dim N(A – βI) > , we proceed as above by replacing A – βI by A∗ – βI and T by T∗

as ind(A – βI) = – ind(A∗ – βI). The operator (A + αT(A,β) – βI) is one-to-one, it follows
that

β ∈ Me
(
A + αT(A,β)

)
. �

Remark  If ind(A – βI) = , then A + αT(A,β) – βI is onto and one-to-one.

Remark  If min ind(A – βI) = , we take T = . Indeed in this case A + αT(A,β) – βI =
A – βI is invertible on the left or right.

Lemma  Let A ∈ L(H). Then for all ε > , there is K ∈ K(H) such that
() ‖K‖ ≤ ε,
() ρe(A + K) ∩ reg(A + K) ⊆ Me(A + K).
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Proof Suppose that ρe(A) = ρe(B) =
⋃

≤i≤n Ci where Ci, i = , , , . . . , n, is a connected
component. For each i, let βi ∈ Ci. We inductively define a sequence of positive real num-
bers and a sequence of operators in L(H) as follows:

() α = α, A = A,
() Ai = Ai– + αiTi, i = , , , . . . , n, where Ti = T(Ai–,βi),
() αi+ = 

 min{αi, c(Ai – βiI), i = , , , . . . , n – }.
Note that () and () give αi+ ≤ 

αi ⇒ αi+ ≤ α

i . We set Si =
∑

≤j≤i αjTj; then

‖Si‖ ≤
∑

≤j≤i

αj‖Tj‖ ≤
∑

≤j≤i

αj ≤
∑

≤j≤∞
αj ≤ α

∑

≤j≤∞


j– =



α.

Therefore ‖Si‖ ≤ 
α. For each i, Ai = A + Si where Si is a finite rank operator and therefore

compact. We must have ρe(A) = ρe(Ai) and c(Ai –βiI) > . This shows that all αi are strictly
positive. In addition, by the previous lemma Ai – βiI is left or right invertible, from which
we deduce that Ci ∩ reg(Ai) ⊆ Me(Ai). Finally

‖Sn – Si‖ ≤
∑

i+≤j≤n

αj ≤ 

αi+ ≤ 


c(Ai – βiI) < c(Ai – βiI).

Hence An – βiI – (Ai – βiI) = Sn – Si; using Lemma , we deduce that for i = , , , . . . , n,
An – βiI is left or right invertible and therefore ρe(A + Sn) ∩ reg(A + Sn) ⊆ Me(A + Sn).
Accordingly we get K = Sn and α = 

ε, and the theorem is proved. If ρe(A) has a countable
infinite numbers of connected components, the only other possible case, we observe that
the sequence (Sn) converges normally, and taking K = limn→∞ Sn, we proceed exactly as in
the previous case. As, for every n, Sn is an operator of finite rank, K is a compact operator.
We set B = A + K. �

.. Second correction
Let B ∈ L(H) such that ρe(B) ∩ reg(B) ⊆ Me(B). We will build a second compact perturba-
tion K such that ρe(B) ⊆ Me(B + K). If B ∈ L(H) such that ρe(B) ∩ reg(B) ⊆ Me(B), then
ρe(B)\Me(B) is a finite or countable set denoted μj. Note that σe(B) = ∅, because in [],
there exist n ∈ N and μ,μ,μ, . . . ,μn ∈ C such that σ (B) = {μ,μ,μ, . . . ,μn}. Hence
dim H < ∞, this is contrary to our hypotheses. As σe(B) is a closed set of σ (B) (which is
compact), σe(B) is also compact. Since the distance function is continuous on σe(B), there
is a sequence of points (μ′

l)j∈N∗ ∈ σe(B) such that d(μj,σe(B)) = |μj – μ′
j|. Finally if the se-

quence (μn) is infinite, then limj→∞ |μj – μ′
j| = , because otherwise μn would have an

accumulation point in ρe(B), which is contradictory. For every μj, let Mj, Nj be the two
subspaces of H corresponding to the decomposition of Kato of the operator B – μjI and
let Pj be the associated projection of the kernel Mj and the range Nj.

Construction of subspaces M′
j and N ′

j

For j ∈ N, let M′
 = H , M′

j+ = M′
j ∩ Mj+, and N ′

 = M⊥
 , N ′

j+ = M′
j ∩ M′⊥

j+. Finally, we
denote by P′

j the orthogonal projection onto N ′
j .

Lemma 
() If  ≤ i ≤ n,  ≤ j ≤ n, and i �= j then N ′

i ⊥ N ′
j if and only if P′

iP′
j = .
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() If  ≤ j ≤ n, then N ′
j ⊕ M′

j = Nj ⊕ M′
j = M′

j– and dim N ′
j = dim Nj < ∞.

() If  ≤ j ≤ n, then
⋂

≤i≤j N ′
i = M′

j and co dim M′
j =

∑
≤i≤j dim Ni.

Proof For any i > j, we have N ′
i ⊥ N ′

j . Indeed N ′
i ⊆ M′

i– ⊆ M′
j ; and N ′

j ⊆ M′⊥
j , then M′

j ⊆
N ′⊥

j and we deduce N ′
i ⊆ N ′⊥

j . Suppose P′
iP′

j =  and let x ∈ N ′
i . Then 〈x, y〉 = 〈P′

ix, P′
jy〉 =

〈x, P′
iP′

jy〉 = . N ′
i is orthogonal to N ′

j . Reciprocally if N ′
i is orthogonal to N ′

j and u ∈ H ,
then P′

ju ∈ N ′
j and P′

ju ∈ N ′⊥
j then P′

iP′
ju =  and P′

iP′
j = .

N ′
j ∩ M′

j ⊆ M′⊥
j ∩ M′

j = {} and N ′
j ∩ M′

j ⊆ N ′
j ∩ M′

j = {}. M′
j + N ′

j = M′
j– (because N ′

j =
M′

j– ∩ M′⊥
j ).

For any i > j, N ′
i ⊆ M′

j– = N ′
j ⊕ M′

j , then M′
j ⊕ N ′

j ⊆ M′
j ⊕ N ′

j ; N ′
j ⊆ M′

j– = M′
j ⊕ Nj ⇒

M′
j ⊕ N ′

j ⊆ M′
j ⊕ Nj.

If i = j, the result is obvious. Suppose that it is true for j. Then co dim M′
j < ∞ and there-

fore M′⊥
j ⊕ M′

j+ is closed. Hence M′⊥
j ⊕ M′

j+ = N ′⊥
j+ and we have

⋂

≤i≤j+

N ′⊥
i = M′

j ∩ N ′⊥
j+ = M′

j ∩
(
M′⊥

j ⊕ M′
j+

)
= M′

j+.

It follows that for any j ∈ N,  ≤ j ≤ n; M′⊥
j+ = M′⊥

j ⊕ N ′
j It is easy to see that co dim M′

j =
∑

≤i≤j dim N ′
i < ∞. �

Remark  If (Pi) is a sequence of mutually orthogonal projections in H , then
∑

≤i≤n Pi

converges to P, which is an orthogonal projection (see []).

Suppose first that the sequence (μn) is finite,  ≤ j ≤ n. We put H =
⋂

≤j≤n Mj and
K =

∑
≤j≤n(μ′

j – μj)Pj. It is obvious that K is normal.

Lemma  If μ ∈ ρe(B), then N(B + K – μI) ⊆ N(B – μI) ∩ H.

Proof First show by induction that if u ∈ N(B+K –μI) then u ∈ H. Let u ∈ N(B+K –μI),
then P′

 = . Indeed

(B + K – μI)
(
I – P′


)
u + (B + K – μI)P′

u = (B + K – μI) = .

But

KP′
u =

[ ∑

≤k≤n

(
μ′

k – μk
)
P′

k

]
P′

u =
(
μ′

 – μ
)
P′

u.

Hence

 = (B + K – μI)
(
I – P′


)
u + B – μI +

(
μ′

 – μ
)
IP′

u

= (B + K – μI)
(
I – P′


)
u + B – μI +

(
μ′

 – μ
)
(I – P)P′

u

+ B – μI +
(
μ′

 – μ
)
IPP′

u.

Now we account for the last two terms of the amount in M (because K(I – P′
) = (I –

P′
)K is invariant under B) and the last part of N which is invariant under B. So as H =

M ⊕ N then B – μI + (μ′
 – μ)IPP′

u = . The operator (B – μI)|N is nilpotent; and as
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μ = μ, then B – μI + (μ′
 – μ)I is one-to-one. It follows that PP′

u = . Hence P′
u = .

Suppose that always u ∈ N(B+K –μI); P′
j =  with j = , , , . . . , m. According to Lemma ,

u ∈ M′
mu, we show P′

m+u = . Indeed

(B + K – μI)
(
I – P′

m+
)
u + (B + K – μI)P′

m+u = (B + K – μI) = .

But KP′
m+u = (μ′

m+ – μm+)P′
m+u, and (I – P′

m+) ∈ M′
m+ ⊆ Mm+. Hence

(B + K – μI)
(
I – P′

m+
)
u + B – μm+I +

(
μ′

m+ – μ
)
IP′

m+u = . (.)

But

(B + K – μI)
(
I – P′

m+
)
u = (B – μI)

(
I – P′

m+
)
u + K

(
I – P′

m+u
) ∈ Mm+.

Because Mm+ is invariant under B – μI and M′
m+ is invariant under K,

B – μm+I +
(
μ′

m+ – μ
)
IP′

m+u

= B – μm+I +
(
μ′

m+ – μ
)
I(I – Pm+)Pm+u

+ B – μm+I +
(
μ′

m+ – μ
)
IPm+P′

m+u.

The first term is in Mm+ while the second is in Nm+ (same reasons as before). So as H =
Mm+ ⊕Nm+, and as above, we deduce from (.) that B–μm+I +(μ′

m+ –μ)IPm+P′
m+u = 

then Pm+P′
m+u = . Hence Pm+u ∈ Mm+. So by Lemma  and using the induction hy-

pothesis u ∈ Mm+ and therefore P′
m+u = , which states that u ∈ H and Ku = . If the

sequence μn is infinite, we set H =
⋂

≤j≤∞ Mj and K
∑

≤j≤∞(μ′
j – μj)P′

j , the previous
proposal remains valid because the series defining K is normally convergent. Indeed
limj→∞(μ′

j – μj) =  ⇔ (∀ε > ) (∃N(ε) > ) (∀j ≥ N(ε) ⇒ |μ′
j – μj| < ε). Let u ∈ H and

n ≥ N(ε) then

∥∥∥
∥
∑

k≥n

(
μ′

k – μk
)
P′

ku
∥∥∥
∥



=
〈∑

k≥n

(
μ′

k – μk
)
P′

ku,
∑

j≥n

(
μ′

j – μj
)
P′

ju
〉

=
〈∑

k≥n

∑

j≥n

(
μ′

k – μk
)(

μ′
j – μj

)
P′

jP
′
ku, u

〉

=
∑

k≥n

∣
∣μ′

k – μk
∣
∣〈P′

ku, P′
ku

〉 ≤ ε
∥∥
∥∥
∑

k≥n

P′
ku

∥∥
∥∥



≤ ε∥∥P′u
∥∥ ≤ ε‖u‖.

Therefore ‖∑
k≥n(μ′

k – μk)P′
ku‖ ≤ ε, then

∑
≤j≤∞(μ′

j – μj)P′
j is normally convergent.

The rest of the proof is similar to the case of finite μj. �

Lemma  If μ ∈ ρe(B), then H⊥
 ⊆ R(B + K – μI) + H.

Proof (A) First prove that for any j ∈ N, if μj ∈ N ′
j then there exists one and only one

wj ∈ N ′
j such that

P′
j(B + K – μI)wj = uj. (.)
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Uniqueness. Suppose that wj and w′
j satisfy the requirement. Then wj – w′

j ∈ N(B + K –
μI) ⊆ H (see Lemma ), hence wj – w′

j ∈ N ′
j ∩ H = {}.

Existence. If uj ∈ N ′
j then uj = xj + yj with xj ∈ Nj, yj ∈ M′

j and uj = P′
jxj. We have B – μI +

(μ′
j – μj)I = B – μjI + (μ′

j – μ)I and as μ′
j �= μ, there is vj ∈ Nj such that xj = [B – μI + (μ′

j –
μj)I]vj then

uj = P′
j
[
B – μI +

(
μ′

j – μj
)
I
][

P′
jvj +

(
I – P′

j
)
vj

]

= P′
j[B – μI + K]P′

jvj + P′
j
[
B – μI +

(
μ′

j – μj
)
I
](

I – P′
j
)
vj.

But (I – P′
j)vj ∈ M′

j . Hence [B –μI + (μ′
j –μj)I](I – P′

j)vj ∈ M′
j and therefore P′

j[B –μI + (μ′
j –

μj)I](I – P′
j)vj = . We take wj = P′

jvj ∈ N ′
j .

(B) Let Q =
∑

j P′
j , uj = P′

ju, and u ∈ H⊥
 . We show that there is w ∈ H⊥

 such that

u = Q(B + K – μI)w. (.)

It follows from the existence of w ∈ N ′
 that P′

(B + K – μI)w = u. Suppose we know
w, w, w, . . . , wn, un+ –

∑
≤j≤n P′

n+(B + K – μI)wj ∈ N ′
n+, then there is wn+ ∈ N ′

n+ such
that

P′
n+(B + K – μI)wn+ = un+ –

∑

≤j≤n

P′
n+(B + K – μI)wj,

and therefore

un+ =
∑

≤j≤n

P′
n+(B + K – μI)wj. (.)

Let w =
∑

j wj. Then

Q(B + K – μI)w =
∑

j

P′
j(B + K – μI)

∑

i

wi

=
∑

j

∑

i

P′
j(B + K – μI)wi

=
∑

j

∑

i

P′
j
[
B – μI +

(
μ′

i – μi
)
I
]
wi.

But wi ∈ M′
i–, [B – μI + (μ′

i – μi)I]wi ∈ M′
i– and if j < i we have P′

j(M′
i–) = . Then

Q(B + K – μI)w =
∑

j

∑

≤i≤j

P′
j(B + K – μI)wi.

Using this we find Q(B + K – μI)w =
∑

j uj = u; then u = (B + K – μI)w – (I – Q)(B + K –
μI)w. Hence u ∈ R(B + K – μI) + H. This completes the proof of the lemma. �

Lemma  Let B ∈ L(H) such that ρe(B)∩ reg(B) ⊆ Me(B). Then there is a compact operator
K ∈ K(H) such that

ρe(B) = ρe(B + K) ⊆ Me(B + K).



Bensalloua and Nadir Journal of Inequalities and Applications  (2016) 2016:55 Page 10 of 12

Proof We show that

ρe(B) ⊆ reg(B + K). (.)

Let μ ∈ ρe(B) and u ∈ N(B + K –μI). Then u ∈ N(B –μI)∩H. But (B –μI)|H is regular
because for any j ∈N, (B –μI)|Mj is also regular. Hence for any j ∈N, u ∈ R[(B –μI)j|H] ⊆
R[(B + K – μI)j]. As further B + K – μI is a compact perturbation of the semi-Fredholm
operator B – μI , it is itself semi-Fredholm and hence R(B + K – μI) is a closed subspace,
which completes the demonstration We now show that reg(B + K) ⊆ Me(B + K). Let
ρe(B) =

⋃
k Ck = reg(B + K) where Ck is the nth k-connected component of ρe(B).

For any k ∈N
∗, Ck ∩ reg(B) = ∅. Let μ ∈ Ck ∩ reg(B) = Ck ∩ Me(B).

Two cases are possible.
First case. B –μI is one-to-one and therefore N(B + K –μI) ⊆ N(B –μI) =  ⇒ B + K –

μI is one-to-one, hence Ck ⊆ Me(B + K).
Second case. B – μI is onto and therefore H ⊆ R(B – μI). For any u ∈ H, there is v such

that (B – μI)v = u;

(B – μI)Qv = (B – μI)v – (B – μI)(I – Q)v,

(B – μI)v ∈ H, (I – Q)v ∈ H ⇒ (B – μI)(I – Q)v ∈ H, Qv =
∑

j P′
jv = vj where vj =

∑
j P′

jv.
We have

(B – μI)Qv =
∑

j

(B – μI)vj =
∑

j

(B – μI)Pjvj +
∑

j

(B – μI)(I – Pj)vj,

where

∑

j

(B – μI)Pjvj ∈ Nj and
∑

j

(B – μI)(I – Pj)vj ∈ M′
j

because vj ∈ N ′
j ⊆ M′

j– ⇒ (I – Pj)vj ∈ M′
j . We have

(B – μI)Pv = (B – μI)Qv –
∑

j>

(B – μI)Pjvj –
∑

j

(B – μI)(I – Pj)vj ∈ M.

Hence (B – μI)Pv =  because

(B – μI)Pv ∈ M ∩ N = .

As μ ∈ reg(B) ⇒ μ = μ and B – μI = B – μ + (μ – μ)I . We can see that Pv = , hence
v ∈ M ∩ N =  ⇒ v = . Suppose we have shown that v = v = v = · · · = vn =  and we
demonstrate that vn+ = . As previously (B – μI)Pn+vn+ ∈ M′

n+ hence (B – μI)Pn+vn+ =
, and as μ ∈ reg(B) ⇒ μ = μn+ ⇒ Pn+vn+ = , then vn+ ∈ Mn+ ∩ N ′

n+ =  ⇒ vn+ = .
It follows that (B – μI)Qv =  hence u = (B – μI)w with w = (I – Q)v ∈ H; therefore u =
(B + K – μI)w ⇒ u ∈ R(B + K – μI). Hence H ⊆ R(B + K – μI) and (by Lemma ) we
have H⊥

 ⊆ R(B + K – μI); hence H ⊆ R(B + K – μI), which implies that B + K – μI is
onto and Ck ⊆ Me(B + K) and therefore ρe(B) =

∑
k Ck ⊆ Me(B + K), which is equivalent

to ρe(B) = Me(B + K). �
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Theorem  Let A ∈ L(H). There is a compact operator K ∈ K(H) such that

ρe(A) = Me(A + K).

Proof This is an immediate consequence of Lemma  and Lemma ; simply take K = K +
K. �

Corollary  Let A be a Riesz operator. Then there exists a normal compact operator K
such that (A – K) ∈ QN(H).

Proof A satisfies the hypothesis of Lemma  and also ρe(A) = C\ and reg(A) = C\σ (A) =
ρ(A).

ρe(A)∩ reg(A) = ρ(A) = Me(A). Hence there is a compact operator K such that ρ(A–K) =
Me(A – K) = ρe(A) = C\ ⇒ σ (A – K) =  ⇒ (A – K) ∈ QN(H). We find the result of [].

�

Remark  The result of Stampfli is a special case of Theorem  because if μ ∈ �(A), then
μ ∈ ρe(A) ⊆ Me(A + K), hence A + K – μI is one-to-one or onto. If A + K – μI is one-to-
one (resp. onto), then N(A + K – μI) =  (resp. N(A∗ + K∗ – μI) = ) and ind(A + K – μI) =
ind(A – μI) = N(A∗ + K∗ – μI) =  (resp. N(A + K – μI) = ) and therefore A + K – μI is
one-to-one and onto. Hence μ ∈ ρ(A + K) ⇒ �(A) = ρ(A + K).

Remark  In , West has shown in [] that for any Riesz operator A ∈ L(H) such that
ρe(A) ⊆ C\ there is a compact operator K ∈ K(H) and Q ∈ QN(H) such that A = K + Q.
We find this result as a special case of our result (see Corollary ).

3 Conclusion
After the famous result of Stampfli, for all bounded operator A the Weyl spectrum is
σW (A) =

⋂
σ (A + K) where the intersection is taken over all closed ideal compact op-

erators. In this work, we prove the possibility to extend this result by the use of Kato’s
decomposition to the set of semi-Fredholm operators.
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