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Abstract
This paper is devoted to stability and oscillation analysis of Euler-Maclaurin method
for differential equation with piecewise constant arguments
u′(t) = au(t) + bu(2[(t + 1)/2]). The necessary and sufficient conditions under which the
numerical stability regions contain the analytical stability regions are given. Moreover,
the conditions of oscillation for the Euler-Maclaurin method are obtained. We show
that the Euler-Maclaurin method preserves the oscillation of the exact solution. In
addition, the connection between stability and oscillation are discussed theoretically
and numerically. Finally, some numerical examples are also provided.
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1 Introduction
The theory of differential equation with piecewise constant arguments (EPCA) was initi-
ated in [, ], which provided a mathematical instrument to applied science [, ]. These
systems have been under intensive investigation for the last twenty years. They describe
hybrid dynamical systems and combine properties of both differential and difference equa-
tions. For example, applying the explicit linear multistep method to differential equation
u′(t) = f (u(t)), we have

un+ = un + h
(
cf (un) + cf (un–)

)
,

where h is stepsize and un is approximation to u(t) at tn. By integration, we can see that
the above difference equation is equivalent to the following EPCA:

u′(t) = cf
(

u
([

t
h

]
h
))

+ cf
(

u
([

t
h

– 
]

h
))

,
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so EPCA has a similar structure to the difference equation. In the present paper we shall
consider the following EPCA:

u′(t) = au(t) + bu
(


[

t + 


])
, u() = u, ()

where a, b and u are real constants, b �=  for a =  and [·] denotes the greatest integer
function. Differential equation of this form has stimulated considerable interest and has
been studied by Cooke and Wiener [], Jayasree and Deo [], Wiener and Aftabizadeh [].
In this type of equation the argument deviation η(t) = t – [(t + )/] is a piecewise linear
period function with period . Also, η(t) is negative for t ∈ [n – , n) and positive for
t ∈ [n, n + ). Thus () is advanced type on [n – , n) and retarded type on [n, n + ).
Therefore () is EPCA of alternately advanced and retarded type.

There exists an extensive literature dealing with EPCA, for instance, the existence and
uniqueness of the solution of a class of first order nonhomogeneous advanced impulsive
EPCA were considered in [], the stability property of first order EPCA of generalized
type (EPCAG) was addressed in [], oscillation of exact solution of EPCA with retarded
and advanced arguments was discussed in []. In [], the authors constructed Green’s
function to the linear operator of boundary value EPCA and obtained some comparison
results for the same differential equation. The general theory and basic results for EPCA
have been thoroughly developed in the book of Wiener [].

In contrast to the study on the qualitative behavior of EPCA, the research on the numer-
ical solution of EPCA has become a hot issue recently. Numerical stability of many kinds
of EPCA was addressed in [–]. Numerical oscillation of θ -methods and Runge-Kutta
methods for equation x′(t) + ax(t) + ax([t – ]) =  was investigated in [, ], respec-
tively. Moreover, stability and oscillation of numerical solution for EPCA with [t + /]
and [(t + )/] were considered in [, ], respectively. Numerical methods in the above
mentioned papers involve θ -methods, Runge-Kutta methods, linear multistep method
and Galerkin methods. However, to the best of our knowledge, very few results concern-
ing Euler-Maclaurin method were obtained (see []). The authors of [] investigated
the stability of Euler-Maclaurin method for a linear neutral EPCA. Different from [], in
the present paper, we study the stability and oscillation of the numerical solution in the
Euler-Maclaurin method for (). Whether the numerical method preserves stability and
oscillation and the connection between stability and oscillation are also investigated.

The rest of this paper is arranged as follows. In Section , we propose some useful con-
cepts and results for stability and oscillation of the exact solution. In Section , we obtain
a discrete equation by applying the Euler-Maclaurin method to (), then the asymptotic
stability, oscillation and non-oscillation of numerical method for () are considered. In
Section , we discuss the preservation properties of Euler-Maclaurin method. The condi-
tions under which the analytical stability regions are contained in the numerical stability
regions are obtained, and it is proved that the Euler-Maclaurin method can preserve oscil-
lation of the exact solution. In Section , we obtain a lot of connections between stability
and oscillation. Finally, some numerical examples are reported in Section .

2 Stability and oscillation of exact solution
Definition  [] A solution of () on [,∞) is a function u(t) which satisfies the following
conditions:
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(i) u(t) is continuous on [,∞),
(ii) the derivative u′(t) exists at each point t in [,∞), with the possible exception of

the points t = n –  for n ∈ N, where one-sided derivatives exist,
(iii) () is satisfied on each interval [n – , n + ) for n ∈ N.

Theorem  [] Assume that a, b and u ∈ R, then () has on [,∞) a unique solution u(t)
given by

u(t) = �
(
η(t)

)
(

�()
�(–)

)[ t+
 ]

u

for a �=  and

u(t) = �
(
η(t)

)
(

�()
�(–)

)[ t+
 ]

u

for a = , where

�(t) = eat +
(
eat – 

)
a–b, �(t) =  + bt, η(t) = t – 

[
t + 



]
.

Theorem  [] The solution u(t) =  of () is asymptotically stable (u(t) →  as t → ∞)
if and only if any one of the following conditions is satisfied:

–
a(ea + )
(ea – ) < b < –a for a > ,

b > –
a(ea + )
(ea – ) or b < –a for a < ,

b <  for a = .

Definition  A nontrivial solution of () is said to be oscillatory if there exists a sequence
{tk}∞k= such that tk → ∞ as k → ∞ and u(tk)u(tk–) ≤ . Otherwise, it is called non-
oscillatory. We say () is oscillatory if all nontrivial solutions of () are oscillatory. We say
() is non-oscillatory if all nontrivial solutions of () are non-oscillatory.

Theorem  [] A necessary and sufficient condition for all solutions of () to be oscillatory
is any one of the following conditions is satisfied:

b < –
aea

ea – 
or b >

a
ea – 

for a �= ,

b < – or b >  for a = .

3 Stability and oscillation of Euler-Maclaurin method
3.1 Background of Euler-Maclaurin method
Euler-Maclaurin method is an important tool of numerical analysis which was discovered
independently and almost simultaneously by Euler and Maclaurin in the first half of the
eighteenth century. Rota [] called Euler-Maclaurin method ‘one of the most remarkable
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formulas of mathematics’. After that, it shows us how to change a finite sum for an integral.
It works much like Taylor’s formula: The equation involves an infinite series that may be
truncated at any point, leaving an error term that can be bounded.

It is well known that the trapezoidal rule can be derived from the Euler-Maclaurin for-
mula. See, for example, Munro’s paper []. In [], the author indicated how the Newton-
Cotes quadrature formulas and various other quadrature formulas can be developed from
special cases of the periodic Euler-Maclaurin formula.

3.2 The discretization and convergence
Let q be a positive integer, assume that the function f (t) is at least (q + )-times con-
tinuously differentiable on [c, d]. We further assume that h evenly divides c and d, then
Atkinson’s version of the Euler-Maclaurin formula [] is as follows:

∫ d

c
f (t) dt = h

d∑

n=c
f (n) –

h

(
f (c) + f (d)

)
–

q∑

i=

hiBi

(i)!
(
Di–f (d) – Di–f (c)

)
, ()

where Bj denotes the jth Bernoulli number, D denotes the differentiation operator. The
definition, property and application of the Bernoulli number can be found in [–]. For
brevity, we omit them.

Let h be a given stepsize, m ≥  be a given integer and satisfy h = /m. Let the gridpoints
ti be defined by ti = ih (i = , , , . . .). Applying () to (), we have

ui+ = ui +
ha


(ui+ + ui) + hbu(n)
i –

n∑

j=

Bj(ha)j

(j)!
(ui+ – ui), ()

where ui and ui+ are approximations to u(t) at tn and tn+, respectively, u(n)
i is an approx-

imation to u([(t + )/]) at tn. Let us denote i = km + l, l = –m, –m + , . . . , m – , m – 
for k ≥  and l = , , . . . , m –  for k = . Then u(n)

i can be defined as ukm according to
Definition . So we have

(

 –
ha


+
n∑

j=

Bj(ha)j

(j)!

)

ui+ =

(

 +
ha


+
n∑

j=

Bj(ha)j

(j)!

)

ui + hbukm. ()

Denote

z = ha, �(z) =  +
z

φ(z)
, φ(z) =  –

z


+
n∑

j=

Bjzj

(j)!
,

where �(z) is called a stability function of the Euler-Maclaurin method. Then () turns
into

ukm+l+ = �(z)ukm+l +
b
a
(
�(z) – 

)
ukm, a �= ,

ukm+l+ = ukm+l + hbukm, a = .
()

We also consider the iteration of difference scheme. Formula () leads to

ukm+l = G(l)ukm, ()
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u(k+)m = λukm, ()

for a �=  and

ukm+l = ( + hlb)ukm, ()

u(k+)m =
 + b
 – b

ukm ()

for a = , where

G(l) = �(z)l +
b
a
(
�(z)l – 

)
, λ =

G(m)
G(–m)

.

To guarantee that G(–m) �= , we require that

�(z)m �= a + b
b

, ()

where b �= .

Lemma  [] Assume that f (t) has (n + )rd continuous derivative on the interval
[ti, ti+], then we have

∣
∣∣
∣∣

∫ ti+

ti

f (t) dt –
h

(
f (ti+) + f (ti)

)
+

n∑

j=

Bjhj

(j)!
(
f (j–)(ti+) – f (j–)(ti)

)
∣
∣∣
∣∣

= O
(
hn+).

According to (.) in [] and Lemma , we obtain the following theorem for conver-
gence.

Theorem  For any given n ∈ N, the Euler-Maclaurin method is of order n + .

Proof Let km ≤ i < (k + )m – , then from Lemma  with f (t) = u′(t) we have

u(ti+) – u(ti) =
∫ ti+

ti

u′(s) ds =
ha


(
u(ti+) + u(ti)

)
+ hbu(k)

–
n∑

j=

Bj(ha)j

(j)!
(
u(ti+) – u(ti)

)
+ O

(
hn+). ()

Put i = (k + )m – , then for any given  < ε < h, we get

u(ti+ – ε) – u(ti) =
∫ ti+–ε

ti

u′(s) ds =
ha


(
u(ti+ – ε) + u(ti)

)
+ hbu(k)

–
n∑

j=

Bj(ha)j

(j)!
(
u(ti+ – ε) – u(ti)

)
+ O

(
hn+), ()

let ε → + in (), we can get that () holds for i = (k + )m – .
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Setting ui = u(ti) and ukm = u(k), then from () and () we also find

(
u(ti+) – ui+

)
(

 –
ha


+
n∑

j=

Bj(ha)j

(j)!

)

= O
(
hn+);

therefore, the Euler-Maclaurin method is of order n + . The proof is complete. �

3.3 Numerical stability
Definition  The Euler-Maclaurin method is called asymptotically stable at (a, b) if there
exists a constant M such that un defined by () tends to zero as n → ∞ for all h = /m and
any given u.

In the rest of this paper, we always assume M > |a|, which implies that |z| <  for the
stepsize h = /m with m ≥ M. The following lemmas play an essential role in proving the
main theorem.

Lemma  [] If |z| ≤ , then φ(z) ≥ / for z >  and φ(z) ≥  for z ≤ .

Lemma  [] If |z| ≤ , then

φ(z) ≤ z
ez – 

, n is even,

φ(z) ≥ z
ez – 

, n is odd.

In the following theorem we consider numerical stability for ().

Theorem  The Euler-Maclaurin method is asymptotically stable if any one of the follow-
ing conditions is satisfied:

–
a(�(z)m + )
(�(z)m – ) < b < –a for a > ,

b < –a or b > –
a(�(z)m + )
(�(z)m – ) for a < ,

b <  for a = .

()

Proof From () and () we can easily see that un →  as n → ∞ if and only if ukm →  as
k → ∞. Therefore, the Euler-Maclaurin method is asymptotically stable if and only if

∣∣
∣∣

�(z)m + b
a (�(z)m – )

�(z)–m + b
a (�(z)–m – )

∣∣
∣∣ <  for a �= ,

∣
∣∣
∣
 + b
 – b

∣
∣∣
∣ <  for a = ,

()

from which we obtain

–  <
(a + b)�(z)m – b�(z)m

a + b – b�(z)m <  for a �= ,

b <  for a = ,
()
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it is obvious from b �=  for a =  and () that the denominators in () and () do not
vanish. From the second item of () we can see that the third condition in () is obtained.
Then we consider the sign of a + b – b�(z)m in (), thus we have the following two cases.

Case I. If a + b – b�(z)m > , then the first inequality of () reduces to

b > –
a(�(z)m + )
(�(z)m – ) , (a + b)�(z)m < a + b. ()

If a >  then by Lemma  we have �(z) > , that is, �(z)m �= , so the denominator of the
first inequality in () does not vanish. In view of () we obtain b < –a, thus

–
a(�(z)m + )
(�(z)m – ) < b < –a for a > , ()

which is the first condition in (). If a < , then by Lemma  we have  < �(z) < , thus,
the denominator of the first item in () does not vanish because of �(z)m �= . By () we
have b > –a. Due to

–
a(�(z)m + )
(�(z)m – ) > –a > ,

then by () we get

b > –
a(�(z)m + )
(�(z)m – ) for a < . ()

Case II. If a + b – b�(z)m < , then the first inequality of () yields

b < –
a(�(z)m + )
(�(z)m – ) , (a + b)�(z)m > a + b.

Similar to Case I, we have

b < –a for a < . ()

Consequently, by virtue of (), (), () and (), the proof is complete. �

3.4 Numerical oscillation
Theorem  The following statements are equivalent:

(i) {un} is oscillatory,
(ii) {ukm} is oscillatory,

(iii) b < –a�(z)m/(�(z)m – ) or b > a/(�(z)m – ) for a �=  and b < – or b >  for a = .

Proof When a �= , to prove (i) and (ii) are equivalent, first of all, we show that the following
two statements

(a) {un} is not oscillatory,
(b) {ukm} is not oscillatory
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are equivalent. Obviously, (a) implies (b). If (b) holds, we have λ > , where

λ =
�(z)m + b

a (�(z)m – )
�(z)–m + b

a (�(z)–m – )
,

or equivalently,

(
�(z)m +

b
a
(
�(z)m – 

)
)(

�(z)–m +
b
a
(
�(z)–m – 

)
)

> ,

which gives

–
a�(z)m

�(z)m – 
< b <

a
�(z)m – 

.

Then, for any l ∈ {, , . . . , m – }, we have

–
a�(z)l

�(z)l – 
< –

a�(z)m

�(z)m – 
< b <

a
�(z)m – 

<
a

�(z)l – 
,

from the above inequality, we can get

�(z)l +
b
a
(
�(z)l – 

)
> 

and

�(z)–l +
b
a
(
�(z)–l – 

)
> .

We obtain from () that {un} is not oscillatory. So (a) and (b) are equivalent; in other words,
(i) and (ii) are equivalent. Next, we will prove that (ii) and (iii) are equivalent. We know
that {ukm} is oscillatory if and only if λ < , i.e.,

�(z)m + b
a (�(z)m – )

�(z)–m + b
a (�(z)–m – )

< ,

then we immediately obtain

b < –
a�(z)m

�(z)m – 
or b >

a
�(z)m – 

,

so (ii) and (iii) are equivalent. When a = , from () we only let λ = ( + b)/( – b) in the
above process. Therefore the proof is finished. �

4 Preservation of stability and oscillation
For one equation, generally speaking, the exact solution and the numerical solution may
have the same or different stability and oscillatory properties. It is known to us that the
numerical method which can preserve the corresponding properties of original problem
is useful and practical. Therefore, it is necessary to study the conditions under which the
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numerical solution and the exact solution have the same stability and oscillatory proper-
ties.

In this part, we discuss the conditions under which the analytical stability regions are
contained in the numerical stability regions and the conditions under which the numerical
solution and the exact solution are oscillatory at the same time.

4.1 Preservation of stability
Definition  The set of all points (a, b) at which () is asymptotically stable is called the
asymptotic stability region denoted by H .

Definition  The set of all points (a, b) at which the Euler-Maclaurin method is asymp-
totically stable is called the asymptotic stability region denoted by S.

In the following we will find which conditions lead to H ⊆ S. For convenience, we divide
H and S into three parts, respectively:

H =
{

(, b) ∈ H : a = 
}

,

H =
{

(a, b) ∈ H \ H : a < 
}

,

H =
{

(a, b) ∈ H \ H : a > 
}

,

and

S =
{

(, b) ∈ S : a = 
}

,

S =
{

(a, b) ∈ S \ S : a < 
}

,

S =
{

(a, b) ∈ S \ S : a > 
}

.

It is easily seen that H = H ∪ H ∪ H, S = S ∪ S ∪ S and

Hi ∩ Hj = ∅, Si ∩ Sj = ∅, Hi ∩ Sj = ∅, i �= j, i, j = , , .

Therefore, we can conclude that H ⊆ S is equivalent to Hi ⊆ Si (i = , , ). In the following
theorem, we establish some results for preservation of stability.

Theorem  H ⊆ S if and only if n is even, H ⊆ S if and only if n is odd.

Proof According to Theorems  and , we have that H ⊆ S if and only if

–
a(�(z)m + )
(�(z)m – ) ≤ –

a(ea + )
(ea – ) ,

that is,

�(z)m + 
(�(z)m – ) ≤ ea + 

(ea – ) , ()
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it is not difficult to know that the function g(x) = (x + )/(x – ) is increasing in [, ) and
decreasing in (,∞), so () leads to

�(z) ≤ ez,

that is,

φ(z) ≤ z
ez – 

,

as a consequence of Lemma , we have n is even. The other case can be proved analo-
gously. �

Obviously, the next result is valid.

Theorem  For the Euler-Maclaurin method with any n ∈ N, we have H = S.

4.2 Preservation of oscillation
Definition  We say that the Euler-Maclaurin method preserves oscillation of () if ()
oscillates, which implies that there is h such that () oscillates for h < h.

The following theorem states the condition that the numerical method preserves the
oscillation of ().

Theorem  If a �= , then the Euler-Maclaurin method preserves the oscillation of () if
and only if n is even.

Proof In view of Theorems  and , the Euler-Maclaurin method preserves the oscillation
of () if and only if

–
aea

ea – 
≤ –

a�(z)m

�(z)m – 
or

a
ea – 

≥ a
�(z)m – 

.

If a > , then we have

ea

ea – 
≥ �(z)m

�(z)m – 
or ea ≤ �(z)m. ()

Because the function ω(x) = x/(x – ) is decreasing, so from () we obtain

�(z)m ≥ ea,

that is,

φ(z) ≤ z
ez – 

,

then by Lemma , we get n is even. The case of a <  can be proved in the same way. �

With a proof similar to that of Theorem , the following theorem can be obtained.
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Theorem  If a �= , then the Euler-Maclaurin method preserves the non-oscillation of
() if and only if n is odd.

According to Theorems  and , we can easily get the following result for the case of
a = .

Theorem  If a = , then the Euler-Maclaurin method preserves the oscillation and non-
oscillation of () for any n ∈ N.

5 The connection between stability and oscillation
Stability and oscillation are two significant properties in the research of differential equa-
tion, so it is necessary to study the connection between them. In this section, the connec-
tion between stability and oscillation for the exact solution and the numerical solution will
be discussed, respectively.

For simplicity, we define

V =
a

ea – 
, V = –

aea

ea – 
, V = –

a(ea + )
(ea – ) ,

and

V(m) =
a

�(z)m – 
, V(m) = –

a�(z)m

�(z)m – 
, V(m) = –

a(�(z)m + )
(�(z)m – ) .

A combination of Theorems , ,  and  leads to the following three results.

Theorem  When a > , the exact solution of () is
(i) oscillatory and unstable if b ∈ (–∞, V) or b ∈ (V, +∞),

(ii) oscillatory and asymptotically stable if b ∈ (V, V),
(iii) non-oscillatory and asymptotically stable if b ∈ (V, –a),
(iv) non-oscillatory and unstable if b ∈ (–a, V),

when a < , the exact solution of () is
(i) oscillatory and asymptotically stable if b ∈ (–∞, V) or b ∈ (V, +∞),

(ii) non-oscillatory and asymptotically stable if b ∈ (V, –a),
(iii) non-oscillatory and unstable if b ∈ (–a, V),
(iv) oscillatory and unstable if b ∈ (V, V).

Theorem  When a > , the numerical solution of () is
(i) oscillatory and unstable if b ∈ (–∞, V(m)) or b ∈ (V(m), +∞),

(ii) oscillatory and asymptotically stable if b ∈ (V(m), V(m)),
(iii) non-oscillatory and asymptotically stable if b ∈ (V(m), –a),
(iv) non-oscillatory and unstable if b ∈ (–a, V(m)),

when a < , the numerical solution of () is
(i) oscillatory and asymptotically stable if b ∈ (–∞, V(m)) or b ∈ (V(m), +∞),

(ii) non-oscillatory and asymptotically stable if b ∈ (V(m), –a),
(iii) non-oscillatory and unstable if b ∈ (–a, V(m)),
(iv) oscillatory and unstable if b ∈ (V(m), V(m)).
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Table 1 Errors and ratio for (22) and (23)

(22) (23)

AE RE AE RE

m = 2 5.9270e–04 3.0000e–03 2.1142e–08 1.8000e–03
m = 3 4.9566e–05 2.4792e–04 1.8071e–09 1.5564e–04
m = 5 2.2540e–06 1.1274e–05 8.3186e–11 7.1644e–06
m = 10 3.4836e–08 1.7424e–07 1.2924e–12 1.1131e–07
m = 20 5.4283e–10 2.7151e–09 2.0165e–14 1.7367e–09
m = 40 8.4785e–12 4.2407e–11 3.1361e–16 2.7010e–11

Ratio 64.0243 64.0248 64.2996 64.2984

Figure 1 The numerical solution of (22) with m = 40 and n = 2.

Theorem  When a = , the exact solution and the numerical solution of () both are
(i) oscillatory and asymptotically stable if b ∈ (–∞, –),

(ii) non-oscillatory and asymptotically stable if b ∈ (–, ),
(iii) non-oscillatory and unstable if b ∈ (, ),
(iv) oscillatory and unstable if b ∈ (, +∞).

6 Numerical experiments
In order to give a numerical illustration to the results in the paper, we present some ex-
amples made by applying MATLAB ..

The first part of this section is devoted to examining the convergence and the stability
of the Euler-Maclaurin method. Consider the following three problems:

u′(t) = –.u(t) + .u
(


[

t + 


])
, u() = , ()

u′(t) = .u(t) – .u
(


[

t + 


])
, u() = . ()

u′(t) = –.u
(


[

t + 


])
, u() = . ()
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Figure 2 The numerical solution of (23) with m = 50 and n = 2.

Figure 3 The numerical solution of (24) with m = 40 and n = 2.

From Theorem  and the definitions of Hi (i = , , ), it is easy to see that the coef-
ficients in (), () and () satisfy (–., .) ∈ H, (., –.) ∈ H and (, –.) ∈ H,
respectively. We shall use the Euler-Maclaurin method with the stepsize h = /m to get
the numerical solution at t = , where the exact solutions are u() ≈ –., u() ≈
–. × – and u() ≈ –. for (), () and (), respectively. In Table  we list
the absolute errors (AE) and the relative errors (RE) between the numerical solution and
the exact solution at t =  and the ratio of the errors of the case m =  over that of m = .
We can see from this table that the Euler-Maclaurin method with n =  is of order , which
is consistent with Theorem .
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Figure 4 The exact solution and the numerical solution of (25) with m = 30 and n = 2.

Figure 5 The exact solution and the numerical solution of (26) with m = 20 and n = 2.

For () and (), it is easy to verify that condition () holds true. In Figures -, we
plot the numerical solution with different parameters for (), () and (), respectively.
We can see from these figures that the numerical solutions all are stable.

The second part of this section is devoted to examining the oscillation and the connec-
tion between stability and oscillation. Consider the following problems:

u′(t) = –u(t) + .u
(


[

t + 


])
, u() = , ()

u′(t) = .u(t) – u
(


[

t + 


])
, u() = , ()

u′(t) = .u
(


[

t + 


])
, u() = , ()
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Figure 6 The exact solution and the numerical solution of (27) with m = 60 and n = 3.

Figure 7 The exact solution and the numerical solution of (28) with m = 40 and n = 3.

u′(t) = –.u(t) + u
(


[

t + 


])
, u() = , ()

u′(t) = u(t) – .u
(


[

t + 


])
, u() = , ()

u′(t) = –.u
(


[

t + 


])
, u() = . ()

It is not difficult to test that condition () holds true for (), (), () and (). As to
()-(), the exact solutions of (), () and () are oscillatory; the exact solutions of
(), () and () are non-oscillatory according to Theorem . In Figures -, we draw
the figures of the exact solutions and the numerical solutions, respectively. As shown in
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Figure 8 The exact solution and the numerical solution of (29) with m = 60 and n = 3.

Figure 9 The exact solution and the numerical solution of (30) with m = 50 and n = 2.

these figures, the numerical solutions of (), () and () are oscillatory; the numerical
solutions of (), () and () are non-oscillatory, which coincides with Theorem .

We further investigate the connection between stability and oscillation from () to ().
Take () as an example. Let us set m =  and n =  in Figure , then we calculate that
V ≈ . and V(m) ≈ .. Clearly, b = . ∈ (V, +∞) and b = . ∈ (V(m), +∞).
Thus, the exact solution and the numerical solution of () are both oscillatory and asymp-
totically stable. That is to say, the connection between stability and oscillation is in agree-
ment with Theorems  and . For ()-(), ()-(), we can test them analogously (see
Figures -, -).
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