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Abstract
In this paper we define a new graph-theoretic cyclicity index CW(G) as a natural
generalization of the global cyclicity index C(G) when arbitrary resistances are
allocated to each edge of an electrical network. Upper and lower bounds for CW(G)
are then provided using a powerful technique, based on p-majorization, which
extends our prior studies (Bianchi et al. in Discrete Appl. Math., 2014,
doi:10.1016/j.dam.2014.10.037; Bianchi et al. in Math. Inequal. Appl. 16(2):329-347,
2013). These new results on weighted majorization are of interest in themselves and
may be applied also in other scenarios.

Keywords: p-majorization; p-Schur-convex functions; graphs; weighted global
cyclicity index

1 Introduction
A simple connected undirected graph (or network) G = (V , E), where each edge is endowed
with a unit resistance, is the basic model for molecules in mathematical chemistry: vertices
represent atoms and edges represent bonds. Several graph measures based on distances,
degrees, and graph entropies have been investigated in the recent literature to study a va-
riety of physicochemical properties of these molecules [, ]. In the sequel, among the
mathematical descriptors in the field, we focus on those indices based on electrical net-
work theory like the Kirchhoff index [–] defined as

K(G) =
∑

i<j

Rij,

where Rij is the effective resistance between vertices i and j, and the global cyclicity index
[] defined as

C(G) =
∑

(i,j)∈E


Rij

– m,

where m = |E|.
When introducing a new topological index it is desirable to investigate its discrimina-

tive power (see [] and []). In this regard, the global cyclicity index appears to be able
to capture cyclicity meaningfully (see [] for a thorough discussion on this matter and

© 2015 Bianchi et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly credited.

http://dx.doi.org/10.1186/s13660-015-0624-5
mailto:alessandra.cornaro@unicatt.it


Bianchi et al. Journal of Inequalities and Applications  (2015) 2015:113 Page 2 of 11

for a plethora of examples). Besides its appearance in the realm of mathematical chem-
istry, cyclicity is a key concept in other purely mathematical contexts, like measures of
connectivity or complexity of graphs [].

Through the majorization technique discussed in [–] and [] significant bounds
have been obtained by the authors for the Kirchhoff index as well as for some of its gen-
eralizations like the additive/multiplicative degree-Kirchhoff indices. Recently, using this
powerful tool, Yang provided good bounds for the global cyclicity index [].

One natural generalization of the molecular model described above is to endow the
edges with arbitrary resistances. This is customary when studying random walks [] but
it has not received much attention in the area of molecular descriptors. We can single out
the article [] where they minimize the Kirchhoff index of a graph when there is a fixed
total conductance to be allocated among the edges of the graph. Also, in references []
and [], they study the Kirchhoff index for networks where the effective resistances Rij

are made to depend on a single parameter λ and a set of weights on the vertices.
In this direction, we allow the edges of our graph to have arbitrary resistances rij and we

consider the weighted global cyclicity index

CW (G) =
∑

(i,j)∈E

(


Rij
–


rij

)
,

as a natural extension of the global cyclicity index, which can be recovered when rij =  for
all (i, j) ∈ E.

In order to tackle this new descriptor, we extend prior results of majorization into the
realm of weighted majorization [], and then we express the descriptor as an appropriate
p-Schur-convex function to which the new technique can be applied. We believe that the
new results on weighted majorization are of interest in themselves and may be of interest
in other scenarios.

2 Notations and preliminaries
We recall in this section some notions on p-majorization (for further details see [] and
[]).

We will denote by [xα
 , xα

 , . . . , xαp
p ] a vector in R

n with αi components equal to xi, where
∑p

i= αi = n. If αi = , we use for convenience xi instead of x
i , while x

i means that the
component xi is not present. Let ej, j = , . . . , n, be the fundamental vectors of Rn. Recalling
that the Hadamard product of two vectors x, y ∈R

n is defined as follows:

x ◦ y = [xy, xy, . . . , xnyn]T ,

it is easy to verify the following properties, where 〈·, ·〉 denotes the inner product in R
n,

sj = [j, n–j], with j = , , . . . , n and vj = [j, n–j], with j = , . . . , n:
(i) 〈x ◦ y, z〉 = 〈x, y ◦ z〉,

(ii) 〈sh, vk〉 = h – min{h, k},
(iii) sk ◦ sj = sh, h = min{k, j},
(iv) vk ◦ sj = sj – sh = vh – vj, h = min{k, j}.
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Definition  Fix p > . Given two vectors y, z ∈ D = {x ∈ R
n : x ≥ x ≥ · · · ≥ xn}, the

p-majorization order y �p z means:

〈
p ◦ y, sk〉 ≤ 〈

p ◦ z, sk〉, k = , . . . , (n – )

and

〈
p ◦ y, sn〉

=
〈
p ◦ z, sn〉

.

Notice that for p = sn p-majorization reduces to the usual majorization. Thus in the
sequel all our results entail as particular cases the results known for majorization (see [,
]).

Let x∗p(S) and x∗p(S) denote the maximal and the minimal elements of a subset S ⊆ R
n

with respect to the p-majorization order.
Given a positive real number a, let

�a = D ∩ {
x ∈R

n
+ : 〈x, p〉 = a

}
.

By direct calculations we can show that the maximal and the minimal elements of �a

with respect to the p-majorization order are, respectively,

x∗p(�a) =
a
p

e and x∗p(�a) =
[(

a∑n
i= pi

)n]

(see also []).
For the maximal element we have 〈p ◦ x∗p(�a), sj〉 = a, for all j = , , . . . , n and thus

〈p ◦ x, sj〉 ≤ 〈p ◦ x∗p(�a), sj〉 for all x ∈ �a, j = , , . . . , (n – ).
Now we prove that for each x ∈ �a and every k = , , . . . , (n – ) we have

a∑n
i= pi

k∑

i=

pi ≤
k∑

i=

pixi. ()

Indeed, if a∑n
i= pi

∑k
i= pi >

∑k
i= pixi, then

a –
n∑

i=k+

pixi <
a∑n
i= pi

k∑

i=

pi

and rearranging the terms

n∑

i=k+

pixi >
a∑n
i= pi

n∑

i=k+

pi.

Thus

xk+

n∑

i=k+

pi >
a∑n
i= pi

n∑

i=k+

pi
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and consequently x ≥ x ≥ · · · ≥ xk+ > a∑n
i= pi

. But this implies (), a contradiction. Thus
condition () holds, and it simply implies

〈
p ◦ x, sj〉 ≥ 〈

p ◦ x∗p(�a), sj〉

for all x ∈ �a, j = , , . . . , (n – ).
We finally recall the notion of p-Schur-convex functions (see []). Let π be a permuta-

tion of {, . . . n} and xπ be the vector obtained exchanging the components of x according
to π .

Given a fixed vector of positive components p, a function φ(·, p) : Rn −→ R, is said to be
p-Schur-convex if it preserves the p-majorization order, that is, if

φ(x, p) = φ
(
xπ , pπ

)
for all π , ()

φ(x, p) ≤ φ(y, p) whenever x, y ∈ D and x �p y. ()

The following result gives an important characterization of differentiable p-Schur-
convex functions.

Theorem  (see []) Let p >  be fixed and φ : Rn −→ R be a differentiable function
satisfying (). Then the function φ is p-Schur-convex if and only if, for all x,

(xi – xj)
(


pi

∂φ(x; p)
∂xi

–

pj

∂φ(x; p)
∂xj

)
≥  for all i, j = , . . . , n. ()

Note that for p = sn we recover the classical notion of Schur-convex function (see []).

3 Some results on p-majorization
Now let us consider the subset of �a given by

Sa = �a ∩ {
x ∈R

n : Mi ≥ xi ≥ mi, i = , . . . , n
}

, ()

where m = [m, m, . . . , mn]T and M = [M, M, . . . , Mn]T are two assigned vectors arranged
in nonincreasing order with  ≤ mi ≤ Mi, for all i = , . . . , n, and a is a positive real number
such that

〈m, p〉 ≤ a ≤ 〈M, p〉.

The existence of maximal and minimal elements of Sa with respect to the p-majorization
are ensured by the compactness of the set Sa and by the closure of the upper and lower
level sets:

U(x) = {z ∈ Sa : x �p z}, L(x) = {z ∈ Sa : z �p x}.

For the sequel we are interested in computing the maximal element, with respect to the
p-majorization order, of the set Sa.

Theorem  Let k ≥  be the smallest integer such that

〈
p ◦ M, sk〉 +

〈
p ◦ m, vk〉 ≤ a <

〈
p ◦ M, sk+〉 +

〈
p ◦ m, vk+〉 ()
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and θ = a–〈p◦M,sk〉–〈p◦m,vk+〉
pk+

. Then

x∗p(Sa) = M ◦ sk + θek+ + m ◦ vk+. ()

Proof First of all we verify that x∗p(Sa) ∈ Sa.
It easy to see that 〈p◦x∗p(Sa), sn〉 = a and that mi ≤ [x∗p(Sa)]i ≤ Mi for i �= k + . To prove

that mk+ ≤ x∗p
k+(Sa) ≤ Mk+, notice that from ()

pk+mk+ ≤ a –
〈
p ◦ M, sk〉 –

〈
p ◦ m, vk+〉 = θpk+ < pk+Mk+.

Now we show that x �p x∗p(Sa) for all x ∈ Sa. By property (i) it follows that

〈
p ◦ x∗p(Sa), sj〉 =

〈
p ◦ M, sk ◦ sj〉 + θpk+

〈
ek+, sj〉 +

〈
p ◦ m, vk+ ◦ sj〉, j = , . . . , (n – ),

and by (iii) and (iv)

〈
p ◦ x∗p(Sa), sj〉 =

{
〈p ◦ M, sj〉,  ≤ j ≤ k,
〈p ◦ M, sk〉 + θpk+ + 〈p ◦ m, sj – sk+〉, (k + ) ≤ j ≤ (n – ).

Thus, given a vector x ∈ Sa, for  ≤ j ≤ k we obtain

〈
p ◦ x, sj〉 ≤ 〈

p ◦ M, sj〉 =
〈
p ◦ x∗p(Sa), sj〉,

while for (k + ) ≤ j ≤ (n – ), by (iii),

〈
p ◦ x, sj〉 =

〈
p ◦ x, sn〉

–
〈
p ◦ x, vj〉 ≤ a –

〈
p ◦ m, vj〉

=
〈
p ◦ M, sk〉 + θpk+ +

〈
p ◦ m, vk+〉 –

〈
p ◦ m, vj〉

=
〈
p ◦ M, sk〉 + θpk+ +

〈
p ◦ m, sj – sk+〉

=
〈
p ◦ x∗p(Sa), sj〉,

and the result follows. �

From this general result, the maximal element of particular subsets of Sa can be deduced.

Corollary  Let  ≤ m < M and m ≤ a∑n
i= pi

≤ M. Given the set

S
a = �a ∩ {

x ∈R
n : M ≥ x ≥ x ≥ · · · ≥ xn ≥ m

}

we have

x∗p(S
a
)

= Msk + θek+ + mvk+,

where k is the first integer such that

M
k∑

i=

pi + m
n∑

i=k+

pi ≤ a < M
k+∑

i=

pi + m
n∑

i=k+

pi

and θ = a–M
∑k

i= pi–m
∑n

i=k+ pi
pk+

.
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Remark 
() When p = sn we get the maximal element given in [] (see also Corollary  in []).
() The minimal element of the set S

a is again x∗p(�
a) = [( a∑n

i= pi
)n].

4 Effective resistance in general electric networks
Let G = (V , E) denote a simple connected network with n vertices and m edges. To each
edge (i, j) ∈ E we associate the resistance rij and the effective resistance Rij, which can be
computed using Ohm’s law.

If we deal with electric network with rij =  the following relations are well known:
()

∑
(i,j)∈E Rij = n –  (Foster’s first formula);

() 
n ≤ Rij ≤ .

The inequality on the left hand side of () follows taking di = dj = n– in the general bound
proved in []

Rij ≥ di + di – 
didj – 

, ()

where (i, j) ∈ E and di denotes the degree of vertex i. The inequality on the right hand side
follows noting that the effective resistance Rij between two adjacent vertices i and j is equal
to one if there is only one path connecting them, otherwise it is strictly less than one.

For a general electric network, assuming k ≤ rij ≤ K , the previous relations generalize
as follows:

(′)
∑

(i,j)∈E
Rij
rij

= n –  (generalized Foster’s first formula);
(′) k

n ≤ Rij ≤ K .

Relation (′) can be obtained via electric arguments as we will show below. Indeed, we
can prove a more general result that extends the lower bound ().

Proposition  If (i, j) ∈ E then

Rij ≥ k(di + dj – )
didj – 

. ()

Proof The monotonicity principle states that if the resistance of an individual resistor any-
where in the graph is increased (decreased) then the effective resistance between any two
vertices in the graph can only increase (decrease) (see Doyle and Snell [], p.). Thus Rij

is greater than or equal to the effective resistance between i and j when the resistance of
all the edges is reduced to k, and so we may assume that rst = k for all (s, t) ∈ E.

Let us consider (i, j) ∈ E. If either di =  or dj =  then Rij = rij = k and () holds. So we take
di ≥  and dj ≥ . Consider now all the endpoints of all the other di –  edges stemming
out of i and all the dj –  edges stemming out of j. Short all these. Then we get two edges
in parallel between i and j: one with resistance k and the other with resistance k

di– + k
dj– .

Solving this into a single resistor finishes the proof. �

Corollary  If di ≤ d for all i ∈ V then

Rij ≥ k
d + 

()

for all (i, j) ∈ E.
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Proof By differentiating the functions F(x) = k(x+dj–)
xdj– and G(x) = k(d+x–)

dx– , they are easily
seen to be decreasing and thus

Rij ≥ F(di) ≥ F(d) = G(dj) ≥ G(d) =
k

d + 
. �

Note that the bound () holds in particular if the graph is d-regular. Finally, since
di ≤ n –  for all i ∈ V , it follows that

Rij ≥ k
n

, for all (i, j) ∈ E.

5 Bounds for the global cyclicity index
In [], by means of the concept of effective resistances, the global cyclicity index has been
proposed:

C(G) =
∑

(i,j)∈E


Rij

– m. ()

Yang in [] continued the study of this new cyclicity measure for connected graphs. Fol-
lowing Bianchi et al. [, ] and computing the extremal values of the Schur-convex func-
tion f (Rij) =

∑
(i,j)∈E


Rij

on the set S = {Rij ∈R
m :

∑
(i,j)∈E Rij = n–, 

n ≤ Rij ≤ }, he obtained
the following bounds for C(G):

m(m – n + )
n – 

≤ C(G) ≤ n(m – n + )


, ()

where (m – n + ) is the well-known cyclomatic number of a graph (see Theorems .,
. and Corollary . in []).

The aim of this section is to extend bounds () to the case of general networks where
a resistance rij, k ≤ rij ≤ K , is associated to any edge. We show next how the weighted
majorization technique proposed in Section  can be a fruitful tool to bound the weighted
global cyclicity index, throughout the p-Schur-convex functions.

First of all, let us define the weighted global cyclicity index as a natural extension of the
global cyclicity index () which can be recovered when rij =  for all (i, j) ∈ E:

CW (G) =
∑

(i,j)∈E

(


Rij
–


rij

)
.

If we define the variables xij = Rij√rij
and the weights pij = √rij

, the weighted global cyclicity
index can be written as a function of xij and pij as follows:

CW (G) = f (xij, pij) =
∑

(i,j)∈E

(
pij

xij
– p

ij

)
.

The choice of the variables and of the weights ensures that the function f is p-Schur-
convex. Indeed, applying Theorem  we get

(xij – xi′j′ )
(


pij

∂f
∂xij

–


pi′j′
∂f

∂xi′j′

)
=

(xij – xi′j′ )(xij + xi′j′ )
x

ijx
i′j′

≥ 

for all (i, j), (i′, j′) ∈ E.
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Remark  Note that other possible choices of the variables and of the weights are not
fruitful:

() if we use as variables xij = Rij and as weights pij = 
rij

the function CW (G) is not
p-Schur-convex;

() if we use as variables xij = Rij
rij

and as weights pij =  the function CW (G) is not
Schur-convex.

We can now state our main result.

Theorem  Let G = (V , E) a connected network with n vertices and m edges. Let rij,
k ≤ rij ≤ K , be the resistances associated to any edge (i, j) ∈ E and let

C =
∑

(i,j)∈E


rij

, C′ =
∑

(i,j)∈E

√rij
, C′′ = max

{
nK
k

,
√

k√
K

+
n
√

K
k

√
k

–

K

}
.

Then

(C′)

n – 
– C ≤ CW (G) ≤ C′′ +

(
n
√

K
k

+
√

k
K

)
C′ –

n
k

–
n – n


√

k
√

K
– C. ()

Proof Let e, e, . . . , em be the edges of G. For simplicity denote the resistances and the
effective resistances between the end vertices of the edge ei, as ri, and Ri, respectively and
let pi = √ri

. Moreover, let us assume, without loss of generality, that the variables xi = Ri√ri
are arranged in nonincreasing order: x ≥ x ≥ · · · ≥ xm.

Recalling that by Foster’s first formula

∑

ei∈E

pi · xi = (n – ),

and that

k
n
√

K
≤ xi ≤ K√

k
, for all  ≤ i ≤ m,

let us now consider the set

S =

{
x ∈R

m :
m∑

i=

xipi = (n – ),
K√

k
≥ x ≥ x ≥ · · · ≥ xm ≥ k

n
√

K

}
.

The function CW (G) = f (xi, pi) is p-Schur-convex and thus its lower and upper bounds
on S are attained at the minimum and maximum element of S with respect to the p-
majorization order, respectively.

From Remark  we know that the minimal element of S is x∗p(S) = [( n–∑m
i= pi

)]m. Thus the
lower bound is

f (x∗p, p) =
m∑

i=

pi ·
∑m

i= pi

n – 
– C =

(C′)

n – 
– C.
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The maximal element x∗p of the set S can be computed with Corollary , yielding

x∗p =
[

K√
k

, . . . ,
K√

k︸ ︷︷ ︸
l-times

, θ ,
k

n
√

K
, . . . ,

k
n
√

K︸ ︷︷ ︸
(m–l–)-times

]
,

where l is the first integer such that

K√
k

l∑

i=

pi +
k

n
√

K

m∑

i=l+

pi ≤ (n – ) <
K√

k

l+∑

i=

pi +
k

n
√

K

m∑

i=l+

pi ()

and θ = pl+ · (n –  – K√
k

∑l
i= pi – k

n
√

K

∑m
i=l+ pi). Let D =

∑l
i= pi and

H =
n –  – k

n
√

K C′

K√
k

– k
n
√

K

.

From () easy computations show that

 ≤ (H – D) < pl+.

Moreover,

f
(
x∗p, p

)
=

(
n
√

K
k

–
√

k
K

)
(H – D) +


( K√

k
– k

n
√

K )(H – D) + k
n
√

K · pl+
+ T ,

where

T =
(

n
√

K
k

+
√

k
K

)
C′ –

n
√

K
k

· pl+ –
n – n


√

k
√

K
– C.

Let y = H – D and consider the function

h(y) =
(

n
√

K
k

–
√

k
K

)
y +


( K√

k
– k

n
√

K )y + k
n
√

K · pl+
+ T .

The first derivative is

h′(y) = –
K√

k
– k

n
√

K

[( K√
k

– k
n
√

K )y + k
n
√

K · pl+]
+

n
√

K
k

–
√

k
K

and the only nonnegative stationary point is

ŷ =

√

√

kK
n – k

n
√

K · pl+

K√
k

– k
n
√

K

.

Assuming, without loss of generality that k ≤  ≤ K , we can also be assured that ŷ < pl+.
The stationary point ŷ turns out to be a minimum. Thus the maximum value of the func-
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tion h is attained at the extremum of the interval [, pl+]. We have

h() =


k
n
√

K · pl+
+ T ,

h(pl+) =


K√
k

· pl+
+

(
n
√

K
k

–
√

k
K

)
· pl+ + T .

We can get rid of pl+ by using the bounds on the resistances. We obtain

h() ≤ nK
k

+ T ,

h(pl+) ≤
√

k√
K

+
n
√

K
k

√
k

–

K

+ T .

The assertion easily follows from the bound

T ≤
(

n
√

K
k

+
√

k
K

)
C′ –

n
k

–
n – n


√

k
√

K
– C. �

Noting that m√
K ≤ C′ ≤ m√

k
and m

K ≤ C ≤ m
k , we get the following corollary.

Corollary  Let G = (V , E) a connected network with n vertices and m edges. Let rij,
k ≤ rij ≤ K , be the resistances associated to any edge. Then

m

K(n – )
–

m
k

≤ CW (G) ≤ C′′ +
nm

√
K

k
√

k
–

n
k

–
n – n


√

k
√

K
, ()

where C′′ = max{ nK
k ,

√
k√
K + n

√
K

k
√

k
– 

K }.

If in inequality () we set k = K = , that is, rij =  for all (i, j) ∈ E, we get

m(m – n + )
n – 

≤ CW (G) ≤ n(m – n + )


i.e. the bounds provided by Yang in [], Theorem . and Corollary . for the global
cyclicity index.

6 Summary and conclusion
In this article we defined the new weighted global cyclicity index that applies to graphs
whose edges are endowed with arbitrary resistances and generalizes the global cyclicity
index, introduced by Klein and Ivanciuc, which applies only to graphs whose edges are
endowed with unit resistances. Through the use of p-majorization we provided upper
and lower bounds for the new index that coincide with those given by Yang in the partic-
ular case of unit resistances. The maximal results obtained through p-majorization are of
interest in themselves and may be applicable in other contexts.
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