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Abstract

patch matching and structure completion.

Image inpainting has been presented to complete missing content according to the content of the known region.
This paper proposes a novel and efficient algorithm for image inpainting based on a surface fitting as the prior
knowledge and an angle-aware patch matching. Meanwhile, we introduce a Jaccard similarity coefficient to
advance the matching precision between patches. And to decrease the workload, we select the sizes of target
patches and source patches dynamically. Instead of just selecting one source patch, we search for multiple source
patches globally by the angle-aware rotation strategy to maintain the consistency of the structures and textures.
We apply the proposed method to restore multiple missing blocks and large holes as well as object removal tasks.
Experimental results demonstrate that the proposed method outperforms many current state-of-the-art methods in
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1 Introduction
With the advancement of society and the rapid develop-
ment of the Internet, image completion, also called
image inpainting, has been applied to many fields pro-
verbially, such as the protection of ancient relics, image
editing, medical field, and military field. The technology
is originally developed to renovate damaged photos and
films or to remove unwanted texts and the occlusion
from images in a plausible way, etc. All image comple-
tion algorithms are based on a hypothesis that the com-
pleted region and the missing region have the same
statistical property and geometric structure. In addition,
the inpainted image should satisfy the human visual
consistency requirement as much as possible. That is,
the colors, textures, and geometric structures of the
inpainted regions should be similar to those of the ambi-
ent regions. Based on this assumption, many researchers
have put forward their researches and obtained signifi-
cant success. In the next paragraphs, we introduce sev-
eral main completion methods and the classification
diagram is shown in Fig. 1.

Currently, image inpainting methods have been mainly
divided into two categories. The first category is
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diffusion-based methods [1-4], where parametric
models are established by partial differential equations
in order to propagate the local structures from known
regions to unknown regions. Bertalmio et al. [1] pro-
posed the Bertalmio—Sa-piro—Caselles—Ballester-based
inpainting method, in which the information around the
defective area was propagated from the outside to the
inside along the direction of the isophotes in incomplete
regions, thereby obtaining the restored image from
the damaged one. Motivated by the idea, Chan and Shen
[2] proposed the total variation (TV) model which can
restore and maintain edge information, while performing
denoising by using anisotropic diffusion. But, the
method merely depended on its gradient values rather
than geometric information of the isophotes, which led
to the applicability of small missing regions. Further-
more, Chan and Shen proposed curvature-driven diffu-
sions (CCD) model [3] in which the diffusion process
took structure information of contour (curvature term)
into account. When there was a large curvature any-
where, the isophotes became strong and then gradually
weakened as the isophotes extended. It suppressed the
large curvature and protected the small in the restoring
process so that the “connectivity criterion” was satisfied.
Therefore, compared with TV model, the CCD model
can repair not only images with large damaged areas but
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Fig. 1 The classification of image completion methods

also fine edges, especially for gray-scale images. In recent
years, other diffusion-based methods have been studied
for restoring images [5—8]. Biradar and Kohir [6] made
use of median filter to preserve important properties of
edges through diffusing median information of pixels
from the outside to the inside in inpainted region.
Prasath et al. [8] combined total variation with
regularization to solve ill-posed image processing prob-
lems. In short, the diffusion-based methods can only re-
store natural and small-scale images with lower
structures of texture and geometric. When containing
large holes (e.g., the missing regions) or complex tex-
tures, the resorted part will be over-smoothed and pro-
duce unpleasant artifacts which led to the inconsistency
of structure and texture.

Therefore, the second category is exemplar-based
methods which have been presented to complete an
image with a large missing region [9-13]. Exemplar-
based inpainting methods filled in the missing region at
a pixel level or a patch level. Due to massive runtime
and inconsistent texture synthesis at a pixel level, Efors
and Leung [9] proposed a patch-based inpainting
method to fill in the unknown region by using texture
synthesis. Afterward, Criminisi et al. [10] presented a
classical inpainting method to remove a large object ac-
cording to the computation of priority and similarity of
patches, while preserving important information of tex-
ture and structure. After that, many other exemplar-
based methods have been proposed. For example, Sun et
al. [11] proposed a global structure propagation method
which connected the geometry structure of the whole
image manually and then propagated the known texture
to an unknown region. Wong et al. [12] proposed a non-
local mean by utilizing multiple samples in an image to
obtain more similar source patches. Based on the
method achieved in [11], Li and Zhao [14] proposed an
automatic structure completion method which avoided
manual intervention and enhanced the efficiency of the
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algorithm. In addition, the dropping effect of a confi-
dence term was also an obvious drawback, so Wang et
al. [15] introduced a regularized factor to limit the ad-
verse effect and improved matching accuracy through a
two-round search. Hereafter, a multi-scaled space
method using a multi-resolution hierarchy was proposed
by Kim et al. [16] and Liu et al. [17] that it can reduce
workload and restore more textural information and
structural features. Wang et al. [18] improved the prior-
ity estimation and structure consistency considered in
patch matching. These methods were proud of accom-
plishing the textural and structural coherence inside the
cavity.

Unlike the aforementioned exemplar-based methods,
other methods were also applied to image inpainting
and got satisfactory inpainted results. For example,
Komodakis et al. [19] proposed the discrete global
optimization tactics optimized by priority-BP based on a
Markov random field. But this method was time-
consuming. Subsequently, Ruzic et al. [20] presented
context-aware patch-based image inpainting which di-
vided the image into patches with variable sizes. MRF
encoded consistency of neighboring patches. To fill large
holes surrounded by different types of structure and tex-
ture, Alotaibi and Labrosse [21] compared with the pre-
vious methods in terms of speed and performance and
obtained significant improvement. Ge et al. [22] made
use of an optimal seam method to synthesize texture
seamlessly and proposed patch subspace learning to
limit patch selection. The problem was solved by EM-
like algorithm, but it was sensitive to the initial values.
Zhao et al. [23] proposed a coherent direction-aware
patch alignment scheme based on GPU to enhance the
similarity between matching patches, so the runtime can
be reduced compared with similar methods. Huang et al.
[24] proposed an automatically guiding patch-based
image completion which considered patch transform-
ation and used the mid-level constraints to guide the fill-
ing process.

In this paper, our novel scheme is performed in a dy-
namic manner. We initialize the unknown regions of a
damaged image with the help of the MLS method. Ac-
cording to a dynamic patch selection process, small tar-
get patches are applied in the high-frequency region to
maximize the restoration of the structural information,
while large patches can reduce the computational work-
load in the low-frequency region. By developing the
angle-aware patch matching with a Jaccard similarity co-
efficient, the process of patch matching can be per-
formed better to advance matching accuracy. And the
proposed approach can select multiple matching patches
automatically from the available region by using an
angle-aware rotation strategy to increase the probability
of obtaining the optimal matching patch. It is worth
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mentioning that we also improve the priority function
based on [10] for the selection of the target patch. In
summary, the main contributions of this paper are as
follows:

1. The proposed algorithm is first initialized by a
surface fitting technique using the moving least
squares method. Then, the estimated values can be
viewed as the prior knowledge for the following
inpainting.

2. We capture the structural details efficiently by
using different sizes of the target patches and
reduce computational time.

3. A novel patch-matching algorithm is proposed in
which we introduce a Jaccard similarity coefficient
that can improve the matching precision between
patches. Meanwhile, we also add the gradient infor-
mation to the matching process. The most import-
ant point is that we rotate the direction of
matching patches to find an optimal result.

4. Finally, we compare it with state-of-the-art image
inpainting approaches on some real images. The
final results illustrate the superiority of the pro-
posed method in terms of accuracy and efficiency.

The remainder of this paper is organized as follows.
Section 2 briefly narrates the classical exemplar-based
method. Section 3 introduces the proposed approach in
detail. Section 4 compares the proposed method with
other state-of-the-art methods in some real images. The
proposed method is compared with deep learning for
image inpainting in Section 5. Finally, we draw a conclu-
sion for this paper in Section 6.

2 The general exemplar-based inpainting

In exemplar-based image inpainting methods, the
most famous method was proposed by Criminisi et al.
[10], which can restore structural and textural infor-
mation of the large damaged region simultaneously.
Given an image I decomposed into two parts as
shown in Fig. 2, the source region (pixels are known)
and the target region (pixels are unknown), are repre-
sented by ® and Q respectively, where @ =7-Q. §Q
denotes the boundary line connecting @ and Q to-
gether. Since the point filled earlier can affect the
points filled afterward [18], we need to determine the
priority of every pointpedQ by a priority function.
The process is described as follows briefly. Firstly, a
target patch ¥, centered at a point p with the highest
priority is selected preferentially and it contains both
the known pixels and the unknown pixels. Secondly,
a source patch ¥, centered at a point ge® is se-
lected to match the above target patch. Finally, the
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Fig. 2 Typical schematic diagram by exemplar-based inpainting. An
original image / including the missing region Q and the source
region @. 5Q) is the boundary line of O and 60 e ®. W, is a target
patch centered at the pixel p € Q) and is a source patch ¥, centered
at a pixel g€ ®. n, is a unit vector orthogonal to &Q. V/; is the

isophote vector at point p

defective region is filled by copying the corresponding
pixels in ¥, to the unknown pixels within ¥,

When filling the missing cavity, we need first select
the target patch to be filled with the highest priority
along the boundary 6Q. That is, the higher the priority
of a patch is, the more important the contained informa-
tion is. Thus, the priority function, to compute which
patch will be earliest filled, is defined as

P(p) = C(p)D(p),pedQ (1)

where C(p) is the confidence term to measure the
ratio of the reliable pixels in ¥,; D(p) is the data term
to denote the strength of the isophotes along the
boundary Q. If a patch is along the direction of the
isophotes, it will have a higher priority to be filled. The
confidence term C(p) is computed as

C(p) = |:Pp| (2)
e ={ e @

where k is one of the common pixels in both ¥, and
®. C(k) is the confidence value of the pixel k. |¥,| repre-
sents the number of all points in the ¥,. And the confi-
dences of all points in source region ® are initialed as 1,
while others are zero. Next, the data term is defined as
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[y

D(p) (4)

a

where 1 and VI, are an orthogonal operation and the
gradient centered at pixel p respectively. Thus, VI; de-
notes the isophotes vector orthogonal to the gradi-
ent VI, and #, is a unit vector orthogonal to the
boundary 6Q. « is a normalization factor (a =255 if I is
a gray image). Finally, through calculating the priority
function, we can find the point p with the highest prior-
ity, and construct the target patch centered at it.

After determining the target patch to be filled, we
search for the best matching patch ¥, from the source
region @ to complete the unknown pixels of the target

patch \Pﬁ' How to select a source patch or how to meas-

ure the similarity correctly between the source patch
and target patch is critical for the quality of inpainted
images. Criminisi's method measures the textural simi-
larity distance between ¥, and‘I’pby the sum of squared

differences (SSD), which can be expressed as

D(¥y, %) = 3 [¥,(k)-¥, (k)] (5)

ke,

Next, we fill the unknown pixels in the target patch‘l’f?

according to the corresponding pixels within the most
similar source patch‘l’é. The confidence values need also
be initialized for the newly filled pixels, defined as

C(k) = C(p), Yke¥;nQ) 6)

After ﬁlling‘Pﬁ, the boundary 6Q) is updated iteratively

until the unknown region is filled entirely.
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3 Proposed method

We propose an exemplar-based image inpainting algo-
rithm using angle-aware patch matching which is used
to recover missing regions consisting of textural and
structural components. And it can make inpainting re-
sult look more natural in connection. The overall archi-
tecture of our inpainting system is shown in Fig. 3. The
first step is to initialize all unknown pixels in the missing
region by surface fitting technique. At the second step,
we need to calculate the priority function to determine
the filling order of every pixel point at the boundary and
select the target patch to be filled according to the size
of gradient value of filled points dynamically. Next,
we search for multiple matching patches using angle
rotation strategy from the source region, and these
patches have the most similar features to the target
patch. And according to the proposed similarity
metric, we find that the optimal source patch can
achieve satisfactory inpainted results.

3.1 Initialization by surface fitting method

The aim of the subsection is to estimate pixel values for
the missing region of an image. These values are plaus-
ible but have some randomness. Based on this case, we
apply the surface fitting technique in 3D subspace to
initialize the pixel values within the missing region. We
utilize the moving least squares (MLS) method [25] to
fit a surface in 3D subspace according to surrounding
pixels of the missing region.

Given an image [ viewed as a 2D matrix, we project
pixels of the image to a 3D subspace according to simi-
lar geometrical structure and regard the gray value of
each pixel as the height of the 3D coordinate. The miss-
ing pixels of the image form the holes in 3D point
clouds as shown in Fig. 4a. Figure 4a is the point cloud
of the incomplete image in which the black part is the
missing region in 3D subspace and Fig. 4b is the fitted
surface by MLS. By this initialization, we can preserve
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Fig. 3 The overall architecture of the proposed method
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some structure features of the damaged regions. Thus,
we fill the hole by fitting a surface which is generated by
moving least square method and we can get a complete
image I'with the estimated pixels.

In Fig. 5, we fit a real color image called ‘Lena.’ Figure
5a is an original image. Figure 5b is an incomplete image
with a small missing block. In Fig. 5c the hole is filled by
quadric fitting. We can observe that the intensity of the
fitted region is similar to the intensity of surrounding
pixels. And the estimated pixels can be regarded as the
prior knowledge for inpainting and provide certain
structural information. More importantly, we restore the
damaged region more precisely by using the proposed
algorithm.

3.2 Calculation of the target patch priorities

For all points belonging to Q, the points filled earlier
can influence the points filled afterward. Thus, how to
determine the filling order of these points is extremely
important. The priorities of the target patches centered
at these points are also critical to preserving structural
information in the inpainting process. The confidence
values decrease too rapidly in terms of Eq. (2) so that
the priority order becomes insignificant. Recently, Wang
et al. [18] propose a novel inpainting algorithm based on
space varying updating strategy and structure consistent
patch matching which are used to deal with the drop-
ping problem of the confidence and improve matching
quality, respectively. In this method, instead of initializ-
ing the confidences of newly filled pixels to the same
value as in Eq. (6), they consider that the priority of the
center pixel p is higher than that of its surroundings.
Consequently, an upper bound and a lower bound are
defined to restrain the space varying confidence of
points in ‘}’i)nQ. However, the values of confidence in

this method only pay attention to the known pixels in
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‘I’i) while ignoring the effect of the unknown pixels in

Y.

p

In our algorithm, the values of the unknown pixels have
been estimated roughly as presented in Section 3.1. Thus,

we need consider the contribution of all pixels in \yfa'

However, the estimated pixels are not enough precise in
the unknown region. So we introduce weight factors for
balancing the importance of pixels between ¥, and ¥ ,

o] Q

p
where \Pf? and \P[a denote the known and unknown re-
(o) Q

gions in ‘I’p

assigned to \Pfa , in contrast, a small weight should be
]

assigned to ‘Pp in order to better preserve the structural
Q

information in the utmost extent. To maintain the newly
filled pixels having smaller confidences than the current
existing pixels, the upper bound is rewritten as

- Zke‘l’[,c(k)
P |/11‘P[,® -l—A.Z‘IJ[,

ol

respectively. A large weight should be

C (7)
where |L,W; +1,¥; | denotes the number of all
Po Pq

pixels including both known pixels and estimated pixels.
Ay and A, are balancing factors which can control the
status of the confidence, and they are adjusted dynamic-
ally in range (0,1), where 1;=1-1, and A; >, The
lower bound is set asC(p).

The new confidence term can be summarized as

Cu(k) = max(-B* dis(p, k)’ + Cup, C(p)), ke¥p,
(8)
where dis(p, k) is Euclidean distance between two

pixels used to differentiate pixels in different locations of
the patch, and S is the decreasing factor for limiting the

100
200
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9 0 100 200 300 400 500
a

Fig. 4 Visualization of the damaged image called ‘Lena." a The point cloud from image to 3D subspace. b The fitting surface using MLS
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Fig. 5 Fitting a missing region using MLS. a Original image. b Mask. ¢ The fitted image

dropping rate of the confidence term, set as 0.02 empiric-
ally in our experiments.

The data term D(p) is a benefit to reconstruct the local
linear structure and texture. However, the priority value
may be closer to zero when the data term is zero. In this
case, in order to eliminate the above malpractice, we add
a curvature factor to the data term based on [26]. Hence,
D(p) can be rewritten as

D(p) = D(p) +1/S(p) ©)

S(p) = V- [V—’] (10)

VIl

where S(p) is the curvature of the isophotes through
the center pixel p, which produces a better effect with a
significant change in the linear structure. Besides, we
take a patch along the direction of the isophotes with a
higher data-term value into consideration. And we intro-
duce the intensity information of point p at the image I
as I(x,,9,), in which (x,,7,) is the coordinate of pointp
and the propagation of intensity is along the direction of
the isophotes.

The priority function defining the optimal filling order
can be rewritten as

1
P(p) = C(p)(D(p) + S(p)) (11)

Finally, we find a pixel p in the contour 6Q) with the
highest priority according to Eq. (11).

After finding a pointp, we need to construct the target

patch ‘I’ﬁcentered at it. In previous methods, the size of

the target patch is fixed, so the runtime and matching
inaccuracy are increased. Based on above reasons, we
introduce a novel idea that the size of the target patch
should be selected dynamically according to frequency
information of the image content. We notice that the
high-frequency region contains more edge details and
structural information, while the low-frequency region
represents the smooth part in images. Therefore, we

firstly divide an image into two components: the low-
frequency component R; and the high-frequency com-
ponent Ry. To speed up convergence and enhance glo-
bal consistency, a small patch is used in Ry to enhance
the restoration of the edge and structure details, while a
large patch is employed in R; to reduce runtime. Here,
we apply a threshold operator y set as 0.3 empirically to
determine the size of each target patch. We compare
threshold value y with the gradient value of point p. If
the gradient value is larger than y, we will construct a
smaller target patch, otherwise construct a larger one.
The equation of the gradient is as follows

Gp(x,y) = /& +8&°

gx(l’]) :g(i+ 17j)_g(i7j)
gy(i7j) =g(i,j+1)-g(i )

(12)

where g, and g, denote gradients of horizontal and
vertical directions of point (i, j) respectively.

3.3 Finding the optimal source patch by angle-aware
patch matching scheme

At the moment, the optimal source patch should be
found from the whole source region after defining the
size of the target patch to be filled first. The similarity
metric is very important to find the most similar patch
from the source region. Previously, many traditional
similarity metric methods, including Euclidean distance,
mean squared error (MSE) as well as the sum of squared
difference (SSD), etc., fail to adequately consider the
matching coherence and ignore the differences of direc-
tion and structure variations within two patches. Due to
the difference of the angle of the patterns, the same pat-
tern can give rise to the unreasonable matching results
between patches. Hence, we propose a similarity metric
based on the angle-aware to avoid the inexact matching
caused by different angles of patterns in two patches. In
our algorithm, the purposed of rotation is to find more
similar contents which ensure the consistency of match-
ing results. With regard to this, we need to search for
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multiple source patches and select the best one after ro-
tating as shown in Fig. 6. Meanwhile, we introduce a Jac-
card similarity coefficient to enhance the similarity
between patches, and when we calculate the similarity
between the target patch and each rotated source patch,
its value is fixed. The similarity metric is defined as

D(¥y,¥y) = 7]|Go © (¥R (¥, 40)) ||* + nDss (V¥ V¥, ),
(13)

where 7 is a Jaccard similarity coefficient defined as
[¥ 5|
W, where |‘I’ﬁm‘l’q| and |‘I’pu‘l’q| are the number of

same pixels and the number of all pixels within ‘I’ig and

W, respectively. The larger the coefficient is, the more
similar two patches are. G, is a Gaussian filter in which
o is a standard deviation whose change interval is [0.4,
0.6] leading to good inpainting results, and ® is the con-
volution operator. When o> 0.6, the difference between
the target patch and a source patch will be over-
smoothed by Gaussian filter, which will yield more
matching errors. When o< 0.4, the result is poor. R(, -)
is a rotation function which rotates each source patch to
guarantee the consistency of the patterns in matching
results. A6 is a rotated angle for each source patch, its
value is 20° and the rotated range is from - 90° to 90°.
The purpose of this choice is that if the rotated angle is
too large or too small, the inaccurate matching results
will be amplified. We yet apply gradient features be-
tween two patches to the proposed distance metric in
addition to color features. Dssp is the sum of squared
differences over the gradients of two patches, and the
gradient dimensions are weighted by 7.

The similarity metric considers the property of tex-
tures and structures and also merges the gradient infor-
mation to make the edge more outstanding. Unlike the
previous methods finding a source patch from the
source region, we want to find # nearest neighbors for
each target patch. In this search process, we utilize a
nearest neighbor field (NNF) [23] defined as a multi-
value function f{-) which can map each target patch co-
ordinate to multiple source patches coordinates so that

Source patches

Ti t patch

arge pac_jaih/_-——).
k4

T

Fig. 6 Select multiple matching patches for a target patch

q
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the matching results is more accurate. The multi-value
mapping is as follows

f(¥p) =Y, i=1,2,...,n (14)

We store these distance values between ‘P[a and ¥, to

an additional array. Then, we compare these distance
values by a competitive mechanism according to Eq.
(13) in which we select the optimal sé@rdeZpatch for
each target patch. That is, the distance value is the
smallest.

3.4 Updating the pixels of target patch
So far, we have found the best matching patch ‘I’q for

the target patch ‘Pfo' In the last step, the previous

methods directly copy the intensity values of those pixels
within \Pq to corresponding pixels of the unknown part

of the target patch [13, 15, 27]. In contrast, we add the
intensity values of those pixels in the optimal matching
patch to corresponding initialized pixels in the unknown
part of the target patch, and their average values are
used to fill the missing region within the target patch,
which can reduce the inconsistency of structures and
textures. Then, we update the confidence values of the
newly filled pixels as

C(k) = C,(k),Vke¥;, (15)

The boundary 5Q is also updated. And the total
process is repeated until the final result is obtained.

4 Results and discussion

In this section, we test the proposed approach on all
kinds of natural and textural images which are selected
from references as well as the Berkeley image dataset.
We compare our approach with other inpainting
methods including Criminisi’s algorithm [10], image
melding using patch-based synthesis by Darabi et al.
[28], image restoration via group-based sparse represen-
tation (GSR) by Zhang et al. [29], and annihilating filter-
based low-rank Hankel matrix approach (ALOHA) pro-
posed by Jin and Ye [30]. Our experiments are simulated
using Matlab 2016b in WIN10 system with Intel(R) Cor-
e(TM) i5-4590 CPU (3.30 GHz). We apply our algorithm
to inpainting of missing blocks and object removal task
for color images. And our approach can also be applied
to a grayscale image. In our experiments, the parameters
are set as follows: 1; and 1, is set as 0.7 and 0.3 respect-
ively. Furthermore, we search for # = 3 the most similar
source patches for every target patch. And, we set 7 as
0.3 in Eq. (13) to balance the contribution of the
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gradient features. We set the search range as [-%,7] for
rotation. The approach is fairly robust in the variation of

this range.

4.1 Image quality analysis methods

To evaluate the objective quality of the inpainted images
we use the peak signal-to-noise ratio (PSNR) [31] and
structure similarity index (SSIM) [32]. The PSNR is de-
fined as follows

PSNR = 10 log,, (%) (16)
MSE = LSS i), (17)

i=1 j=

in which the value of MAX is 255 representing the lar-
gest gray value of image color, and m *n denotes the
number of pixels. [ indicates the original complete
image, and I is the inpainted image. In general, the lar-
ger the PSNR value is, the lesser the diversity is between
the original image and the inpainted one.

Furthermore, SSIM is used for measuring the similar-
ity between two images. The SSIM is expressed as
follows

(Zﬂlﬂj + 01) + (201; + cz)

SSIM(I,1) =
(/4} +u; + c1) (a% +07+ Cz)

(18)

where y; is the average of I, ﬂjis the average of I;

o7 is the variance of I, anda% is the variance of I; 75

is the covariance of I and I; ¢; = (k,L)? and ¢, = (koL)?
are the two variables to stabilize the division with
weak denominator; L is the dynamic range of the
pixel values (typically this is 27PitsPerpixel _ 1), £ — 0,01
and k, =0.03 by default [32].

In the next subsections, we will discuss the visual ef-
fectiveness of our approach and its runtime. And we also
discuss the feasibility of our method in image
compression.

4.2 Recovery of multiple block losses and large holes

We first apply our approach to restore the damaged im-
ages with multiple missing blocks. We compare our
approach to Crinimisi’s algorithm [10] and the experi-
mental result is shown in Fig. 7, in which nine missing
blocks are all set to 20 x 20. We can observe clearly that
her face is mottled and the stripes on the headscarf are
also blurred in Fig. 7c. That is, Crinimisi's algorithm fails
to recover textures and structures of missing regions.
However, Fig. 7d displays the inpainted result of our ap-
proach which can restore both complex textural and
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Fig. 7 Restoration of multiple missing blocks. a Original image. b
Mask. ¢ Crinimisi. d Proposed method

J

structural details. In contrast, our method can produce a
satisfactory visual effect.

To further demonstrate the advancement of our ap-
proach, we give average image recovery accuracy accord-
ing to PSNR and SSIM on a dataset of thirty images
with nine missing blocks taken from the Berkeley image
dataset. In Fig. 8, we compare the average PSNR and
SSIM of every missing block with other methods re-
spectively. From Fig. 8a, b, we notice that average PSNR
and SSIM of the proposed algorithm are higher than
those of other methods in a majority of blocks. When
missing regions are smooth, Criminisi’s and GSR algo-
rithms can also obtain satisfactory and natural effects.
But if the missing regions have complex textures and
structures, these regions will be filled using error con-
tents. In addition, ALOHA’s result is generally satisfac-
tory, but it is still slightly inferior to our method. Since
the proposed method restores the damaged regions
using dynamic patches whose sizes are determined by
gradient values, our method makes the inpainted image
more reasonable in visual, and decreases the run-time.
When gradient value is smaller than y, we set the size of
the target patch as 5x 5, otherwise set as 7 x 7. There-
fore, according to the above experimental results, we
can prove that the proposed method is more effective
for images with rich textures and structures.

Then our method is also suitable for filling a large hole
inside images. For example, in Fig.9 we mainly give the
inpainting results about filling a large hole set as 70 x 60
in an image of size 256 x 256. Fig.9 (a) is an original
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image, and Fig. 9 (b) is the masked image with a target
region of a rectangular block. Figs. 9 (c)-(g) are the
inpainting results of the Criminisi algorithm, GSR,
ALOHA, image melding, and the proposed algorithm.
Clear errors can be observed in Figs. 9 (c)-(e) in which
the textures of the butterfly wing are very different from
the original one. From Fig. 9 (f) we observe that the
inpainting result is better than the previous methods in
terms of inpainting textures, but it is slightly inferior to
ours as shown in Fig. 9(g). Therefore our approach can
better restore not only a large hole but also textural and
structural information.

4.3 Object removal

We also test our approach on the object removal task in
Fig. 10. The performance of the object removal task re-
lies on the two main aspects: image naturalness and the
runtime. In this subsection, we show the results of the
various algorithms on a variety of color images of size
383 x 256 by discussing these aspects. The removed ob-
jects in these images are shown in Fig. 10 row 2 using
black block masks. From the first image in row 3, we no-
tice that the cloud generated by Criminisi’s algorithm is
not smooth and not natural enough, and the connection
with the rainbow also produces the mottled content. In
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Fig. 9 The filling of a large hole. a Original. b Mask. ¢ Crinimisi. d GSR. e ALOHA. f Melding. g Ours
A

contrast, the proposed algorithm generates relatively
natural contents compared with the original image. As
we have seen in row 4, GSR-based algorithm gives rise
to the most unsatisfactory result, and we can clearly ob-
serve that the inpainted regions have serious inconsist-
ency with surrounding contents. From Fig. 10 row 5 of
column 2, we observe that the reflection of a person has
not been reconstructed by Melding algorithm and is dis-
continuous. However, our algorithm and Crinimisi’s al-
gorithm can both restore the shadow better. In column
3, these methods yield the severely blurred contents in
the auditorium. Overall, compared with these methods,
our method generates more plausible details without
sacrificing the naturalness. From these results, we dis-
cover that the restoration of texture and structure plays
an important role in the whole inpainting process. By
comparing with other methods, experimental results
prove that our method can complete more realistic con-
tents in visual.

In Section 3.2, we proposed that the size of the target
patch is selected dynamically. The patch size is a pivotal
parameter in patch-based algorithms. Larger patches cap-
ture more structures and edge details, if good matches are
found. However, if such matches are not found, the result
can easily converge to a blurry solution. Thus, we suggest
that if the gradient of point p with the highest priority is
higher than y, we set the size of the target patch centered
at the point p as 5x 5. Otherwise, it is set as 10 x 10. If
patches are too large, error contents will be yielded. How-
ever, smaller patches may consume much runtime. There-
fore, we exploit dynamic patches to preserve the
structures as well as strong edges in transitional areas,
meanwhile, to advance the performance efficiency of our

approach. Consequently, Fig. 11 gives the comparison be-
tween a fixed patch set as 7x7 and dynamic patches,
where we mark the inpainted roof with a red bold square.
Obviously, the chasm is generated on the inpainted roof
and structures are discontinuous as shown in Fig. 11b. In
contrast, the inpainted result using dynamic patches is
more acceptable and reasonable in visual in Fig. 11c. To
prove the advantage of dynamic patches, we compare the
mean runtime of our approach for 30 images with Crimi-
nisi's method, GSR, image melding, and ALOHA on the
Berkeley image dataset shown in Table 1. We find that
our approach is faster than other inpainting methods ex-
cept for Criminisi’s method. This is mainly because we use
the Gaussian convolution in the computation of the simi-
larity metric and search for multiple source patches for
each target patch.

4.4 Image compression

Image compression is a technology that represents the
original pixel matrix with fewer bits in a lossy or lossless
manner, also known as image coding, and is the applica-
tion of data compression technology on digital images.
The purpose is to reduce redundant information in
image data and store and transmit data in a more effi-
cient format. In order to guarantee communication effi-
ciency and save network bandwidth, compression
techniques can be implemented on digital content to re-
duce redundancy, and the quality of the decompressed
versions should also be preserved. Nowadays, most
digital contents, particularly digital images and videos,
are converted into the compressed forms for transmis-
sion [33-36]. Recently, many image inpainting methods
have been applied to the image and video compression
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Fig. 10 The restore results of object removal task. Row 1, Original images. Row 2, Masked images. Row 3, Criminisi's method [10]. Row 4, GSR
method [29]. Row 5, Image melding method [28]. Row 6, ALOHA method [30]. Row 7, Proposed method
A\

tasks. For example, Liu et al. [33] proposed a
compression-oriented edge-based inpainting algorithm
in which more redundant information will be removed
during encoding for increasing the compression ratio due
to adopting assistant information; then the removed re-
gions can be restored at the decoder side to achieve
good visual quality. Qin et al. [34] proposed a novel joint
data-hiding and compression scheme using side match
vector quantization and PDE-based image inpainting,

which is applied to the decompression process success-
fully. Currently, Qin and Zhou et al. [35] proposed a
novel lossy compression scheme for an encrypted image
in which the final reconstructed image can be generated
with the help of image inpainting based on a total vari-
ation model. Besides, an inpainting algorithm based on
de-interlacing method was applied to a video processing
task by Coloma et al. [36] which view the lines to
interpolate as gaps to be inpainted. Inspired by the above
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a
Fig. 11 A comparison of inpainted results using fixed patch and dynamic patch. a Mask. b A fixed patch. ¢ Dynamic patches

c

works, we consider that our method can also be applied
to image compression field. So in the future, we will ex-
pand our work to image compression task. And we ex-
pect that our approach can lead to the satisfactory visual
effect and higher compression ratio.

5 Comparison between the proposed method and
deep learning

Recently, deep learning has been diffusely applied to image
completion to extract high-level features of images. Pathak et
al. [37] proposed context encoders motivated by feature
learning which used a convolutional neural network (CNN)
trained with a reconstruction plus an adversarial loss to gen-
erate the contents of an arbitrary image region. lizuka et al.
[38] proposed a novel architecture based on context en-
coders with global and local context discriminators, which
resulted in both globally and locally consistent images. Yu et
al. [39] presented a unified feed-forward generative network
using a novel contextual attention layer for image inpainting,
which is trained end to end with reconstruction losses and
two Wasserstein GAN losses to generate higher-quality
inpainting results.

Undoubtedly, deep learning-based inpainting methods
may achieve more meticulous results by utilizing a convolu-
tional neural network to extract high-level features. How-
ever, image inpainting algorithms using the high-level
features require very complex models and a large amount
of parameters to adjust, especially the higher the accuracy

Table 1 Comparison of mean run time in HH:MM:SS for 30

images

Algorithms Runtime (average)
Criminisi 00:02:10

GSR 00:10:16

Melding 00:08:57

Aloha 02:24:36

Ours 00:03:45

of the model is, the worse the general robustness will be.
And they need also a number of external training data that
needs to be collected in the same circumstances as the data
set used. In a fast-developing society, the quality of the
inpainting result is not the only criterion to evaluate the ef-
fectiveness of the algorithm, since the runtime is also a sig-
nificant factor that cannot be ignored. Therefore, the
proposed method is more robust for image inpainting
based on low-level features. And our method has fewer pa-
rameters and can be adjusted easily. Furthermore, the com-
putational time is much shorter than that of deep-learning
methods. Our method will be further improved in the fu-
ture to achieve better visual quality.

6 Conclusions

In this paper, we have proposed a novel inpainting
method which estimates the missing pixels by MLS
method in 3D subspace as the prior knowledge utilized
to solve the confidence term. And we also add a curva-
ture factor for the data term to avoid its value of zero.
We propose an angle-ware rotation patch matching
strategy which considers the different angles of the same
source patch in order to find multiple candidate patches
for every target patch, thereby increasing the matching
accuracy. Meanwhile, a Jaccard similarity coefficient is
used to enhance the textural and structural similarity be-
tween the target patch and each corresponding source
patche. In order to improve the restored efficiency, we
divide the whole image into high-frequency and low-
frequency components and introduce the gradient to de-
termine the size of target patch dynamically. Our
method is applied to the filling with a large hole, the res-
toration of multiple missing blocks and object removal
task. And a large number of experimental results dem-
onstrate that the proposed method is superior to other
advanced methods and the runtime is shorter. In the fu-
ture, we will extend our approach to image compression
field.
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