
RESEARCH Open Access

Optical character recognition on
heterogeneous SoC for HD automatic
number plate recognition system
Ali Farhat1* , Omar Hommos1, Ali Al-Zawqari1, Abdulhadi Al-Qahtani1, Faycal Bensaali1, Abbes Amira1

and Xiaojun Zhai2

Abstract

Automatic number plate recognition (ANPR) systems are becoming vital for safety and security purposes. Typical
ANPR systems are based on three stages: number plate localization (NPL), character segmentation (CS), and optical
character recognition (OCR). Recently, high definition (HD) cameras have been used to improve their recognition
rates. In this paper, four algorithms are proposed for the OCR stage of a real-time HD ANPR system. The proposed
algorithms are based on feature extraction (vector crossing, zoning, combined zoning, and vector crossing) and template
matching techniques. All proposed algorithms have been implemented using MATLAB as a proof of concept and the
best one has been selected for hardware implementation using a heterogeneous system on chip (SoC) platform. The
selected platform is the Xilinx Zynq-7000 All Programmable SoC, which consists of an ARM processor and programmable
logic. Obtained hardware implementation results have shown that the proposed system can recognize one character in
0.63 ms, with an accuracy of 99.5% while utilizing around 6% of the programmable logic resources. In addition, the use of
the heterogenous SoC consumes 36 W which is equivalent to saving around 80% of the energy consumed by the PC
used in this work, whereas it is smaller in size by 95%.

Keywords: Optical character recognition, Automatic number plate recognition systems, FPGA, High-level synthesis, Vivado

1 Introduction
Modern cities are implementing intelligent transportation
systems (ITSs) as they are an essential part of the infra-
structure especially with the increase of population and
number of vehicles. The system that identifies vehicles by
recognizing their number plates (NPs) is known as an
automatic number plate recognition (ANPR) system and it
is a part of ITS. It does not require any pre-installed
equipment in the vehicle. They are used for several pur-
poses including car park management, law enforcement,
counter-terrorism and security, tolling, traffic monitoring,
vehicles tracing, and cloning prevention [1–4]. Car cloning
is a car identity theft that is achieved using a false NP.
Typically, an ANPR system consists of three stages:

number plate localization (NPL), character segmentation
(CS), and optical character recognition (OCR). The NPL
stage localizes the vehicle’s NP in an input image. The

CS stage segments the characters of the plate from the
localized NP. The OCR stage encodes the segmented
characters to text, which corresponds to the vehicle’s
NP. Therefore, the OCR process is critical as identify-
ing one character mistakenly results in wrong vehicle
identification [5, 6].
Since old ANPR systems were implemented using

powerful computers that had power, size, and cost
issues, researchers are motivated to develop new systems
that are compact in size, cheaper, and power efficient
through utilizing improved algorithms that require less
resources [7]. Moreover, new systems target processing
high definition (HD) images instead of standard definition
(SD) images. The reason is that HD images improve the
recognition rate of the ANPR system and increase the area
covered by a single camera. Thus, HD cameras could
cover multiple lanes instead of dedicating an SD camera
for each lane, which reduces the cost. Nevertheless, using
HD images requires more time to process one image since
HD images have more pixels than SD images. In fact, this

* Correspondence: farhat.a@outlook.com
1College of Engineering, Qatar University, Doha, Qatar
Full list of author information is available at the end of the article

EURASIP Journal on Image
and Video Processing

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58
https://doi.org/10.1186/s13640-018-0298-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-018-0298-2&domain=pdf
http://orcid.org/0000-0002-3109-7082
mailto:farhat.a@outlook.com
http://creativecommons.org/licenses/by/4.0/

introduces a challenge for designers and engineers to
achieve real-time processing [8]. However, researchers
were able to overcome this impediment through imple-
menting their systems using field programmable gate array
(FPGA), digital signal processor (DSP), or heterogeneous
system on chip (SoC). Heterogeneous SoC consists of two
or more processing units that have different architectures
such as an FPGA and a DSP.
In this paper, the aim is to develop and implement the

OCR stage for a real-time HD ANPR system. The system
should be implemented on a SoC platform that allows the
processing unit to be placed within a HD ANPR camera
housing. Moreover, the proposed system will process NPs
that consists of numeral characters only. Qatar, United
Arab Emirates, and Kingdom of Bahrain are some of the
countries that have single font numeral characters NPs as
shown in Fig. 1. The proposed system will process HD car
images of resolution 960 × 720 in real-time. In other
words, each frame will be processed in less than 40 ms
which is equivalent to 25 frame/s. The selected algorithms
to implement this stage are based on the fact that the NPs
consists of numeral digits only. Four algorithms are devel-
oped based on feature extraction and template matching
techniques. The four algorithms have been implemented
using MATLAB as a proof of concept and the best
algorithm, in terms of execution time, and recognition
rate has been implemented on a heterogeneous SoC plat-
form. The selected platform is the Xilinx Zynq-7000 All
Programmable SoC, which is a heterogeneous platform
consisting of two processing units: a programmable logic
(PL), which is basically an FPGA, and a processing system
(PS), the ARM Cortex-A9. The three stages of the devel-
oped HD ANPR system should be implemented using one
chip only; thus, it is critical to optimize the hardware
implementation to achieve an optimum recognition rate
while meeting real-time processing.
The remaining sections of this paper are organized as

follows: Section 2 presents the related work. The proposed
methodologies and algorithms are reported in Section 3.
The software implementation is described in Section 4.
Section 5 discusses the hardware implementation. Results
and discussion are reported in Section 6 and Section 7
concludes the paper.

2 Related work
OCR algorithms are important and widely used to translate
the content of scanned images into encoded text. Their

usage ranges from tasks involving translating hand writing
on notebooks, parcels, and checks to simpler character
recognition tasks since the text in the captured image has
a uniform font and was taken under good lighting condi-
tions. For ANPR systems, character recognition is relatively
less complex because fonts are usually uniform and NPs in
some countries include only numeral characters. However,
a challenge lies in dealing with the different conditions of
these NPs, such as being under sunlight or shadow, dirty,
rotated, or having damaged paint [9]. Good OCR algo-
rithms must be able to handle these conditions efficiently.
Furthermore, as NPs contain a string of several characters,
one mistake is enough to wrongly render the detected
plate. Thus, the performance of the full ANPR system is
affected by this stage performance. In general, OCR
algorithms fall into four categories: feature extraction
techniques [10–12], template matching or correlation
[13], statistical classifiers [13–16], and artificial neural
networks (ANN) [5, 17]. The performance of the hardware
implementations of a given algorithm differs by its ability
to be pipelined and parallelized, and by the amount and
type of calculations performed by these parallel blocks.
In [10], different OCR techniques are explained. Zoning,

moments, crossings and distances, n-tuples, and charac-
teristic loci are techniques that fall into feature extraction.
Zoning is about dividing the image into zones and finding
the densities of each zone. For example, images were
divided into 50 zones such as in [11] where the density of
each zone is calculated. Statistical analysis is then used to
identify each character. In [12], an OCR algorithm to
recognize Persian digits was developed on hardware using
the Altera Stratix FPGA. The algorithm extracts specific
features like the number of zeros in the horizontal and
vertical projections, total number of black pixels in the
image, and the top left quarter of the image. Calculated
features are then matched to pre-defined features to deter-
mine the character. The algorithm was tested using 100
samples that are typed using Microsoft Word and then
scanned by a 300 dpi scanner. Testing results have shown
that the samples were successfully identified. The proposed
OCR algorithm takes 47 ns to process one character. How-
ever, in case the noise affected more than two pixels, recog-
nition errors start to appear. Subsequently, this proposed
algorithm might be useful for OCR systems that process
documents, but it is not good enough to be used in an
ANPR system where the algorithm should be robust to
noise which usually affects the characters as shown later.

Fig. 1 NPs of a Qatar, b UAE, and c Kingdom of Bahrain

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 2 of 17

In [13], two methods were used to perform OCR. The
first uses template matching where it correlates the
image of the unknown character with a given set of tem-
plates to identify the character. The second one depends
on support vector machine (SVM) classifiers that were
trained by using feature extraction techniques to identify
the input character. In [14], SVMs were used for character
classification. Segmented characters from the previous
stage were resized to a common size. The feature vectors
consist of direct pixel values. A combination of OneVsAll
SVMs and Tree-like structure classifiers were used. This
was implemented on a TI C64 fixed-point DSP platform
that classified one character in 2.88 ms, with a recognition
rate of 94%. The proposed OCR stage in [15] is based on a
simple nearest neighbor classifier.
The work in [16] proposed a majority voting system

based on fuzzy logic to perform OCR. The idea is to
implement parallel classifiers to recognize the characters.
Then, based on the number of classifiers agreeing on the
recognized character in the image, three scenarios are
used to determine the final result of the OCR stage. The
fuzzy logic plays a critical role in deciding which scenario
to use while recognizing every character based on four
fuzzy variables: distortion, resolution, angle, and contrast.
These variables are used because they influence the
performance of the classifiers.
In [5], an algorithm for the OCR stage of an ANPR

system was developed and implemented for the UK NPs.
The 4M Gates Xilinx Virtex-4 LX40 was chosen as the
hardware development platform. The algorithm depends
on an ANN with 50 neurons to recognize binarized
segmented characters. The network was trained using
the scaled conjugate gradient algorithm. The overall
stage recognition rate was found to be 97.3% and it pro-
cesses one character in 0.7 ms. Testing was performed
on 3570 characters, which are the output of the previous
stages of the system. In [17], self-organizing map (SOM)
neural network was used. The employed SOM has an
input layer and a computation layer. The design was imple-
mented on hardware using the Xilinx Virtex IV FPGA. The
hardware design calculates the hamming distance between
the weight matrix of each neuron and the input image and
uses that to make a decision on the output character. This
method was tested using 8531 characters and had a recog-
nition rate of 90.93%.

3 Proposed methodologies and algorithms
As mentioned earlier, a typical ANPR system consists of
three stages. The first stage is the HD NPL and its proposed
implementation by the authors consists of three main oper-
ations: image resizing, morphological operations, and con-
nected component analysis (CCA). The three operations
have been implemented on the PS and PL units to reduce
the processing time and take advantage of the pipelining in

the PL. The bilinear image resizing method, and the
morphological operations are implemented using the PL,
whereas the CCA is executed using the PS. For the second
stage proposed implementation, the CS, there are three
operations: adaptive thresholding, morphological opera-
tions, and CCA. Similar to the HD NPL, the adaptive
thresholding and morphological operations has been
implemented using the PL, whereas the CCA is executed
by the PS. For both stages, the open source computer
vision (OpenCV) library is used to perform the CCA.
Moreover, the segmented characters by the CS stage are
resized using the PS before identifying the characters in
the OCR stage. The MATLAB implementation to process
one plate using the proposed HD NPL and CS takes 32.84
and 16.4 ms respectively. However, after exploiting the
parallelism in the selected hardware platform, the times
dropped to 16.17 and 0.59 ms respectively. The recogni-
tion rates for the HD NPL is 98% where the CS achieved
98.7%. The two stages utilize around 12% of the available
resources in the selected platform. More details about the
proposed HD NLP and CS stages by the authors can be
found in [18, 19].
OCR could be achieved through different algorithms.

The most suitable algorithm is selected based on the
application requirements and constraints. For this appli-
cation, a Qatari NP contains three to six characters
where the characters might be repeated in one plate.
The characters are the digits from ‘0’ to ‘9’ and the ideal
characters are shown in Fig. 2. In addition, the algorithm
for the OCR stage should be able to recognize the
segments that contain ‘noise’ instead of characters. These
‘noise’ segments are due scratches, dust or plate’s edges
where they might have similar area and ratio characteris-
tics of a character. Figure 3 shows examples of ‘noise’
segments passed by the CS stage of the real-time HD
ANPR system as characters.
As noticed in Fig. 2, processed images by the stage are

binary where the pixels are represented by either ‘1’ or ‘0.’
In this case, characters and background are represented
using ‘1’ (white) and ‘0’ (black) respectively.
The four proposed algorithms have a preprocessing

stage. For the first three algorithms, the preprocessing
stage resizes the input binary image of the segmented
character to 22 × 34 pixels and then adds a border to the
image. This size is selected based on the experimental
results in [5]. It was found that the larger the size of the
segmented characters, the higher the recognition rate of
the algorithm while its complexity increases to process

Fig. 2 Qatari private number plate ideal characters

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 3 of 17

the additional pixels. Therefore, this selected segmented
character size was found to be the optimal size that
compromises between recognition rate and calculations
complexity. The border is required to limit noise effect
on the edges of characters and improve zoning feature
extraction results. Furthermore, it eases the process for
vector crossing feature extraction. Figure 4a shows the
preprocessing stage for feature extraction-based algorithms.
On the other hand, the preprocessing stage for the last
algorithm only resizes the image. The advantage of the
template matching algorithm is that it depends on the
general shape of the character, which does not need a
border since the noise minimally affects the algorithm.
Figure 4b shows the preprocessing stage for the template
matching-based algorithm. It is worth noting that the
bilinear image resizing method is used to resize the images
in the whole ANPR system when any image is resized.
To develop and test the algorithms, two sets of HD

images are used. The first set of HD images are collected
using smart phones. However, the second set consists
of 454 HD images and they are taken from the security
department at Qatar University. The images are taken
by the installed cameras at the gates of the university
during different timings, under various lighting and
weather conditions as shown in Fig. 5a, b. Therefore,
the results of the testing for the developed algorithms
are more authentic. The HD images of the two sets are
processed by the MATLAB implementation of the pro-
posed algorithms (HD NPL and CS) of the real-time HD
ANPR system to extract the characters. The former char-
acter set is used for training purposes and it contained
1242 characters. The latter set is used to test the proposed

algorithms and it consists of 2790 characters. Examples
from the 2790 character set are shown in Fig. 5c.

3.1 Vector crossing
The idea of vector crossing is very simple since it only
counts the number of times a vector crosses the segmented
character in the image. OCR is performed through count-
ing the number of times the vector crosses the character.
However, to have an effective result, the position of the
vectors used should be selected carefully to distinguish
between the characters. In addition, increasing the number
of used vectors to identify the characters decreases the
speed of the algorithm. Therefore, the number of vectors
used should be selected wisely. To process the image of a
segmented character, the image is preprocessed as shown
in Fig. 4a. As mentioned earlier, the resizing step of the
image is accomplished to have fixed positions for the used
vectors to identify the characters. The crossing process
counts the times pixels’ color changes from black to white
for two consecutive white pixels. In other words, every
black pixel followed by at least two white pixels is counted.
Therefore, the border in this case ease the process of
vector crossing.
To implement this process, three vectors—one vertical

and two horizontal—are used to cross every image. The
positions of the horizontal vectors are one-third and
two-thirds the height of the image. However, the position
of the vertical vector is the center of the width. Acquired
results are summarized in Table 1.
Hence, by using three vectors, the characters are

classified into 8 groups, and only group 311 requires extra
processing to identify the character. This is achieved
through zoning feature extraction technique which divides
the image into zones. The technique is explained in more
details in the following subsection. On the other hand, the
disadvantage of this algorithm is that it is unable to iden-
tify the images that contain ‘noise’ instead of characters.
Therefore, to enhance ‘noise’ recognition, it is assumed

Fig. 3 ‘Noise’ segments passed to the OCR stage as characters

Resizing the
character
22 x 34

Add a border

Resizing the
character
22 x 34

a

b
Fig. 4 The two preprocessing stages for the proposed OCR
algorithms. a Feature extraction-based algorithms. b Template
matching-based algorithm

Fig. 5 Examples of the images and characters used to test the
developed OCR algorithm (5–6–8–0–2–9–3–7–4–1)

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 4 of 17

that every image contains ‘noise’ unless it satisfies one of
the characters’ conditions. Algorithm 1 shows the pseudo
code of the vector crossing algorithm.

3.2 Zoning
Zoning is another feature extraction technique that is
based on dividing the image into zones and then calcu-
late the density of white or black pixels in each zone.
The number of zones for this application is selected to
be four. Figure 6 shows how an image is divided into
four different zones where each zone has 187 pixels for
the selected resolution. Afterwards, the calculated dens-
ities of the four zones are matched with the densities of
the reference characters using the absolute difference.
After calculating the absolute difference for each zone
per reference character, the differences for the four
zones per reference character is added to identify the
character. The reference character that has the smallest
summation is the character in the input image. For the
reference characters’ images, it was tested to be the ideal
characters and some of the characters obtained from the
training set. The overall results obtained for the two
cases were almost identical.

Table 2 shows the densities of each zone for the ideal
resized bordered characters. The density is the total
number of white pixels in each zone since the character
is represented by the white color in the binary image.
After testing the algorithm using the training set, it was

found that characters ‘5’ and ‘6’ have similar densities.
Hence, many times character ‘5’ is identified as character
‘6’ due to the effect of noise on the segmented character.
Accordingly, one horizontal vector crossing is used at
two-thirds the height of the image to resolve this issue.
The vector would cross character ‘5’ once where character
‘6’ should be crossed twice. In addition, to reduce the
effect of noise on character ‘5,’ a small deviation for zoning
was added for character ‘5’ only. This deviation value is
found through testing using the training set to be 60
pixels. Consequently, to identify a character as ‘6,’ the
summation for zoning of character ‘6’ must be the
smallest summation and the value for the crossing
should be 2. However, to identify the character as ‘5,’
there are two possibilities. The first is that the summation
for zoning of character ‘5’must be the smallest summation.
The second possibility is when the summation for zoning
of character ‘5’ is within 60 pixels from the smallest
summation and the horizontal crossing equals 1.
Furthermore, a threshold is added to identify ‘noise’

segments. The threshold is set at 100 which zoning
smallest summation should not exceed. This value is
found through testing. In addition, any image is assumed
to contain ‘noise’ unless it satisfies a condition for one of
the characters. This improves the recognition rate for the
‘noise’ segments. Algorithm 2 shows the pseudo code of the
zoning algorithm. The HOR, VER, and MIN abbreviations
stand for horizontal, vertical, and minimum respectively.

3.3 Zoning and vector crossing
The main idea of this algorithm is to combine the previous
two techniques to identify the characters. For example, the
density of the image and at least one vector crossing are
considered when the segmented character is identified.
The advantage of this method is that if one method fails in
recognizing the character correctly, the other might suc-
ceed which increases the probability of correct character
recognition and enhance the overall performance. To
implement this algorithm, two approaches are followed.
The first approach is based on specific conditions selected

Table 1 Vector crossing using three vectors

Vector crossing Digits crossing

0 1 2 3 4 5 6 7 8 9

Vertical vector 2 1 3 3 2 3 3 2 3 3

Horizontal vector 1 2 2 1 1 1 1 1 1 2 2

Horizontal vector 2 2 1 1 1 2 1 2 1 2 1

Zone 1

Zone 3

Zone 2

Zone 4
Fig. 6 The zones of each image

Table 2 Zone densities for ideal resized bordered characters

Zone Densities of the digits

0 1 2 3 4 5 6 7 8 9

Zone 1 96 74 56 55 46 135 117 73 106 99

Zone 2 94 177 101 108 30 64 78 104 113 101

Zone 3 95 0 100 62 84 66 96 69 109 83

Zone 4 95 170 73 111 104 95 94 12 104 117

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 5 of 17

based on testing using the training set to identify the char-
acters. In this approach, the selected vector to identify a
character varies from one character to another, and the
vector is selected based on how it is affected by noise, rota-
tion or any other effects. Moreover, sometimes zoning fail
to recognize the character due to noise effect; hence, a
marginal value is found practically for zoning to deviate
from for that character (similar to character ‘5’ in proposed
zoning algorithm). However, in this case, two vectors are
used to identify the character. Algorithm 3 summarizes the
pseudo code for this approach. Since the two techniques
used in this approach cannot recognize ‘noise’ segments
effectively as shown in the first two algorithms, the
assumption that all segments are ‘noise’ segments unless it
satisfies a condition for a character improves the recogni-
tion rate for ‘noise’ segments.
On the other hand, the second approach uses the two fea-

tures extracted from the input image and a OnevsAll SVM
classifier to identify the character. The main aim of using
the SVM classifier is to replace the conditions used in algo-
rithm 3. The SVM classifier is trained using the training set.

3.4 Template matching
The idea of this algorithm is to match the segmented
character with templates of the ten characters and find
matching percentages to identify the character. The match-
ing process is performed through image correlation where
two images are correlated to find the normalized correlation
coefficient. Equation (1) represents the mathematical ex-
pression used to correlate the two images A and B, whereas
Anm corresponds to the pixel at row n, column m in image
A and A represent the mean of the image. As the matching
between the two images increases, the normalized correl-
ation coefficient approaches 1. If the matching decreases or
there is no matching, the coefficient drops. Therefore, if the
image contains ‘noise’ instead of a character, the correlation
coefficient drops for all template characters, which indicates
that the image contains ‘noise.’ The threshold that is used
for ‘noise’ detection is determined by testing to be 0.45. If
this value increases, characters recognition rate drops while
‘noise’ detection improves. However, since the number of
images that contain characters is much greater than ‘noise,’
the overall recognition rate will drop. This threshold
achieves the best overall recognition rate where the
algorithm is capable of detecting ‘noise’ segments efficiently
compared to the other algorithms.

r ¼
P

m

P
n Anm−A
� � � Bnm−B

� �
ffiP

m

P
n Anm−A
� �2� �

� P
m

P
n Bnm−B
� �2� �r ð1Þ

The algorithm for template matching correlates the
resized segmented character with the ten template images
and finds ten correlation coefficients. Afterwards, by

identifying the highest correlation coefficient, the character
is identified since the coefficient indicates for the highest
matching. The images for the template characters are the
resized ideal characters except for characters ‘6’ and ‘8.’ For
these two characters, the template image is selected to be
one of the images from the training set as this improved
the recognition of the algorithm. The reason for this is that
most of the acquired ‘6’ and ‘8’ characters from the
previous stages of the developed real-time HD ANPR
system have slightly different shape from the ideal one.
Algorithm 4 shows the pseudo code of the template
matching algorithm.

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 6 of 17

4 Software implementation
The four proposed algorithms have been implemented
using MATLAB and tested using the testing set. The
acquired results for each algorithm are reported in Table 3
and Fig. 7. The table includes overall recognition rate and
processing time per character where the figure illustrates
the recognition rate per character. It is worth noting that
the used computer is equipped with an Intel Core i7
4770s 3.1 GHz processor and 8 GB of RAM.
As stated in Table 3, the second approach of the com-

bined zoning and vector crossing-based algorithm takes
the longest time to process one character since it is the
most complicated one. It processes one character in
9.15 ms where the second longest time to process a
character is found for the template matching algorithm
at 1.95 ms. Both vector crossing and zoning algorithms
take 1.33 ms to process one character, whereas the first
approach for the combined zoning and vector crossing
algorithm takes 1.46 ms. Despite that the vector crossing
algorithm is the simplest algorithm, its MATLAB imple-
mentation processing time is very close and even equal to
the processing time of other algorithms. This might be
due to several reasons including the fact that the vector
crossing algorithm is not based on matrix operations while
other algorithms’ implementations are based on matrix
operations. Therefore, the processing time for the vector
crossing algorithm is close to the other algorithms’ pro-
cessing time as MATLAB is optimized to execute matrices
operation.
As shown in the table, the best algorithm that compro-

mises between recognition rate and processing time is the
template matching algorithm. Therefore, it is selected to
implement the OCR stage. Moreover, since a Qatari NP

consists of three to six characters, it will take 5.35–11.7 ms
to be processed by the selected algorithm. This time is ap-
proximately one-fourth the time required to achieve real-
time processing where the system processes one frame in
less than 40 ms (25 frames/s). However, since the first two
stages take relatively most of the time in the ANPR system,
it is required to improve the processing time of this stage.
Furthermore, by observing Fig. 7, it is clear that the

first three algorithms (vector crossing, zoning and com-
bined zoning and vector crossing) do not achieve a good
recognition rate for ‘noise.’ Vector crossing is the worst
at around 12% while zoning achieved better recognition at
approximately 68%. In fact, the low rate was anticipated,
as these algorithms lack the ability to identify the ‘noise.’
Conversely, the template matching-based algorithm out-
performs the three algorithms in identifying ‘noise’ as it
reaches slightly more than 96%. Additionally, the two
algorithms that achieved steady recognition rate for
characters are the second approach for the combined
zoning and vector crossing and the template matching.
Indeed, the steady performance in character recognition
for these two algorithms yield a high overall recognition
rate at 97.13 and 99.5% respectively. However, the recogni-
tion rates per character for the other algorithms fluctuates
between 12.65 and 100%. Therefore, the overall recogni-
tion rates for the vector crossing, the zoning, and the first
approach for the combined zoning and vector crossing
are around 90, 85, and 90% respectively. Since zoning
algorithm is the one that is mostly affected by noise, it
was anticipated that zoning algorithm has the lowest
overall recognition rate. However, the unexpected result
was found when both the vector crossing and the combined
zoning and vector crossing first approach algorithms
achieved the exact same recognition rate as shown in the
table. This in fact does not have any real meaning except
that the total number of unrecognized characters out of the
2790 is the same for both algorithms. These unrecognized
characters are different as proven by the characters recogni-
tion rate in the figure. It is worth noting that while testing
the template matching-based algorithm it was found to be
capable of recognizing slightly rotated characters without
the need for a stage to process rotated NP. This advantage
simplifies the design of the real-time HD ANPR system
because it eliminates the need for such stage.

Table 3 Performance of proposed OCR algorithms based on software implementation—MATLAB

OCR technique Platform Recognition rate (%) Processing time per character (ms)

Vector crossing Intel Core i7 4770s–3.1 GHz
8 GB of RAM

90.43 1.33

Zoning 85.27 1.33

1st approach zoning and vector crossing 90.43 1.46

2nd approach zoning and vector crossing 97.13 9.15

Template matching 99.50 1.95

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 7 of 17

5 Hardware implementation
After proposing and implementing four algorithms using
MATLAB, the algorithm with the highest recognition
rate is selected for hardware implementation. In addition,
since the CS stage of the real-time HD ANPR system
segments the characters of the NP and prepare them for
identification, the preprocessing stage is moved from the
OCR stage to the CS stage.
The Zynq-7000 All programmable SoC heterogeneous

platform is selected to implement the whole real-time HD
ANPR system. The platform consists of two processing
units; the former is a software programmable dual core
ARM Cortex-A9 processor (PS), where the latter is a
hardware programmable FPGA (PL). Since the platform
consists of two separate processing units, the PL could be
used to perform and execute computationally intensive
tasks that exploits the parallelism of the unit; meanwhile,
the PS is utilized to perform and implement other tasks
[20]. Several systems synthesize soft core on the FPGA to
perform some tasks that requires flexibility or communi-
cation with peripherals. The disadvantage of soft cores is
that it has lower performance in comparison with hard
cores [21], as it runs on lower frequencies.
Since the hardware platform consists of two units, it is

essential to know which one to use for the OCR stage
implementation. Thus, the stage is implemented using
both units and to investigate which one executes the
stage faster and observe if it affects the recognition rate
of the stage.

5.1 PS implementation
The implementation of the OCR stage using the PS unit
is accomplished using the OpenCV library. The bare-
metal implementation is not considered as an option
since the first two stages of the ANPR system (HD NPL
and CS) uses the OpenCV library as mentioned earlier.
The library is developed to perform optimized real-time

image processing. To use the library on the PS, it is
essential to have an operating system (OS) running on
the PS since the library requires system functionality
and high level operations [22]. Consequently, the Linaro
OS is used because it is specifically developed and highly
optimized for ARM and heterogeneous hardware platform
architectures [23]. In this case, the OpenCV function
calculates the correlation coefficient based on the standard
IEEE floating-point single precession data type variable
[24]. Therefore, the PS implementation is tested to verify
that the recognition rate of the stage is not affected by the
use of single precession variables as MATLAB uses double
precession variables. It is found that the PS implementa-
tion takes 4.28 ms to process one character. In other
words, it takes between 12.84–25.68 ms to process one
Qatari NP. Subsequently, the PS unit cannot be used to
implement the developed algorithm while satisfying the
real-time constraint for the whole HD ANPR system.

5.2 PL implementation
The OCR stage PL implementation is accomplished
using Vivado high-level synthesis (HLS) developed by
Xilinx to create, develop, and implement hardware
blocks using the FPGA fabric [25]. The Vivado HLS tool
has a HLS video library which consists of several functions
to perform image processing. However, the library does
not have a function to perform image correlation and cal-
culate the correlation coefficient. Therefore, the required
function was written by the authors. After implementing
the OCR stage and finding promising results, more efforts
were spent to optimize the function in terms of total
number of used variables and their data type, and the
procedure followed to calculate the correlation coeffi-
cient using Eq. (1). These steps are explained in detail
in the following subsections. It is worth noting that the
following approaches are implemented and tested on
the PL.

'noise' '0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

Vector Crossing 12.65 99.58 80.81 80.40 99.31 99.33 99.32 99.33 99.10 100.00 100.00

Zoning 68.07 67.65 86.72 99.67 99.65 100.00 98.63 80.13 98.64 56.82 58.16

1st App. Zoning & Vector Cross 45.78 81.93 96.68 98.34 100.00 99.67 89.04 91.25 98.19 93.18 78.57

2nd App. Zoning & Vector Cross 63.25 100.00 98.52 97.34 99.31 99.67 99.32 99.33 100.00 100.00 100.00

Template Matching 96.39 99.58 99.63 100.00 100.00 100.00 99.66 99.66 99.10 100.00 98.98

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

R
ec

og
ni

ti
on

 R
at

e
[%

]

Fig. 7 Recognition rate per character for the four proposed algorithms

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 8 of 17

5.2.1 First approach
The block diagram for the OCR hardware implementation
first approach is depicted in Fig. 8. First, the image of the
segmented character is fed to the OCR stage as a synthe-
sized first-in-first-out (FIFO) stream with a depth of 1 bit
[26]. Therefore, one pixel is written to the FIFO stream on
a clock cycle and on the next clock cycle, it is unloaded
and consumed. Therefore, the pixel is lost on the next
clock cycle if its content is not stored after accessing it
during this clock cycle. However, since each image is
randomly accessed during the execution of the OCR stage
more than once (during the calculation of the mean and
the correlation coefficient), it is required to store the
image. As the image is accessed and stored, the mean is
calculated to optimize the time resource. The image is
stored as a hls::Mat variable data type provided by the
HLS Video Library. Afterwards, ten independent correl-
ation operations are performed to correlate the stored
input image with the ten pre-stored templates to identify
the character in the image. The written function requires
the two images and their mean as inputs and the address
of the variable used to store the calculated correlation
coefficient. Since the mean of each template image is
required, the values are calculated using MATLAB and
stored as constants. After calling the correlation function
ten times and calculating ten coefficients, the maximum
correlation coefficient is identified. Later, the maximum
coefficient should exceed the selected noise threshold to
verify that the image contains a character. Once verified,
the character is identified; otherwise, it is assumed to
contain ‘noise.’ Table 4 shows the performance esti-
mates of the first approach hardware implementation
where Table 5 shows its hardware utilization. It is
worth noting that all variables used to perform the
calculations are of the standard IEEE floating-point
single precession data type.
As noticed in Tables 4 and 5 that the stage takes

around 1.5 ms to process one character and consumes
about 25% of the PL fabric resources. The results show
that the stage could be implemented using the PL unit
but with more optimization and adjustments that are
discussed in the following approach.

5.2.2 Second approach
In this approach, the target is to optimize the performance
estimates and the hardware utilization of the first approach.
Two observations achieved that. First, the steps followed to
perform ten correlation operations and identify the charac-
ter are not efficient since ten variables are used where only
the maximum coefficient is significant. Moreover, the cal-
culations performed using the standard IEEE floating-point
single precession data type variables are not time efficient.
The solution for this impediment is proposed through the
next subsection.
The block diagram for the improved approach is illus-

trated in Fig. 9. The first steps, where the input image is
stored and its mean is calculated, are the same as the
first approach. Afterwards, a two-elements vector is ini-
tialized to replace the ten variables of the first approach
and find the maximum correlation coefficient. The pur-
pose of the two elements is as follows:

– The first element—cc [0]: the element stores the
maximum correlation coefficient calculated up to
step i (where i goes from 0 to 9). First, its value is
initialized to the selected threshold of noise to
eliminate the step where the input image is verified
to contain a character. Thus, the calculated
correlation coefficient will be stored in the first
element if and only if it exceeds the noise threshold.
At the end (i = 9), the value of the first element cc
[0] corresponds to the maximum correlation
coefficient if the maximum correlation coefficient is
greater than the noise threshold.

– The second element—cc [1]: the element stores the
calculated coefficient for step i despite its value.
However, only if it exceeds the value that is stored in
the first element (cc [0]), it is stored in the first element
(cc [0]); otherwise, it is overwritten by the calculated
correlation coefficient in the next iteration i + 1.

After initializing the vector, the execution of the correl-
ation block starts where it calls the written correlation
function ten times. For each call, the following parameters
are passed:

Fig. 8 First approach OCR hardware implementation block diagram

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 9 of 17

– The address of both input and character i template
images.

– The mean of both input and character i template
images.

– The address of vector cc.
– The character inside the template image.

Algorithm 5 shows the pseudo code of the correlation
block algorithm. After the execution of the correlation
block, if the value of the character is changed to be from 0
to 9, the input image character is recognized; otherwise,
the image is assumed to contain ‘noise’ where the value of
character is 10 (10 represents ‘noise’).
Table 6 shows the performance estimates of the second

approach PL hardware implementation where Table 7
shows its hardware utilization. It is clear that the hardware
utilization dropped from approximately 25 to 8% only as
the redundant variables have been eliminated. Addition-
ally, the performance has slightly improved due to the
elimination of the test that verifies if the image contains a
character or ‘noise.’

5.2.3 Second approach using fixed-point
After optimizing the hardware utilization, it is required
to improve the OCR stage performance through redu-
cing the time of processing one image and recognize the
character. The first two approaches use the standard
IEEE floating-point single precession data type. However,
fixed-point data type will be used since it reduces the

computation time and optimizes the hardware utilization
further. To use fixed-point variables, it is essential to
determine the total number of bits for both integer and
fractional parts, which introduces and controls calcula-
tion errors. However, increasing the number of bits
increases the time to perform the calculations. As a result,
the number of bits used for both integer and fraction parts
of the fixed-point variables should be optimized.

5.2.3.1 Fixed-point integer part optimization The
proposed template-matching algorithm stores two types
of values in fixed-point variables. The first type is constants
such as noise threshold and means of template images and
all of them are small (smaller than 1). However, the second
type of values are related to the calculations of the input
image mean and the correlation coefficients. These values
vary from one input image to another. Equation (1) is used
to correlate two images. Three variables are used to per-
form the operation and calculate the correlation coeffi-
cient. The first variable represents the numerator of Eq. (1)
as shown in Eq. (2). The remaining two variables are
used to calculate the denominator of Eq. (1) as shown
in Eqs. (3) and (4). Later, the three variables are used in
a loop to scan the two images matching them to find
the correlation coefficient.

Num: ¼
X

m

X
n

Anm−A
� �
|fflfflfflfflffl{zfflfflfflfflffl}

x

� Bnm−B
� �
|fflfflfflfflffl{zfflfflfflfflffl}

y

ð2Þ

Den:1 ¼
X

m

X
n
Anm−A
� �2 ¼

X
m

X
n
x2 ð3Þ

Den:2 ¼
X

m

X
n
Bnm−B
� �2 ¼

X
m

X
n
y2 ð4Þ

These four variables (the mean and the three variables
used in the correlation operation) are the only fixed-
point variables involved in the calculations. Therefore,
they are considered to determine the total number of
bits required to represent the integer part of the fixed-
point variables. In this case, all fixed-point variables are
defined to be of the same size. This is important to
maintain the recognition rate of the stage. The four vari-
ables control the accuracy of the calculated correlation
coefficient as shown in Eqs. (2), (3), and (4).
The mean of the input image is calculated by adding

up the pixels of the image and then dividing by the total
number of the pixels in the image. Therefore, during the
calculation of the mean of a binary fixed size image, the
total number of pixels in one image is the maximum
value that could be reached during the calculation. In
this case, the value is 748 since the resolution of the
images is 22 × 34 pixels.
For the other three variables, finding the maximum value

is not straight forward. Equation (2) is the summation of
the multiplications of two different expressions (x and y).

Table 4 First approach OCR algorithm performance estimates

Clock Latency (clock cycles) Total time (ms)

115.875 MHz 179,639 1.550

Table 5 First approach OCR algorithm utilization estimates

Name BRAM_18K DSP48E FF LUT Overall

Total 9 30 16,874 22,567 39,480

Available 280 220 106,400 53,200 160,100

Utilization (%) 3 13 15 42 25

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 10 of 17

In addition, Eqs. (3) and (4) are exactly the same but in-
stead of two different expressions, each equation has one
expression that is being squared (x→Eq. (3) and y→Eq.
(4). In this case, it could be stated that Eqs. (3) and (4) are
special case of Eq. (2) where the two different images
became one image instead (A = B). To find the maximum
value of the equations, it is very critical to notice that in
case x > y, the multiplication in Eq. (3) will be the largest
among the three equations while if y > x, the largest value
for the multiplication is computed by Eq. (4). But what if x
= y? In fact, this is the only case where the three equations
will have the same multiplication result. The last scenario
is where the two images are perfectly matching or perfectly
non-matching where the correlation coefficient is found to
be 1 or − 1 respectively (the maximum value of the correl-
ation coefficient). Up to this point, it is known that finding
the maximum of Eqs. (3) or (4) would immediately identify
the maximum of the three equations since all of them have
the same maximum. In fact, the maximum of the three
equations is 187 which occurs when the mean of the image
is 0.5. One way to find the maximum is to plot Eq. (3) or
Eq. (4) against the mean of the image as shown in Fig. 10.
Therefore, the recorded greatest absolute number is

748. However, since the correlation coefficient is signed,
11 bits are required to represent the integer part as 1
bit is used for the sign and 10 bits determine the value.
Subsequently, the range of numbers represented by 11
bits is [− 1024, 1024].

5.2.3.2 Fixed-point fractional part optimization The
optimization of the fractional part shown in Eq. (5) is
more difficult than the integer part since it affects the
recognition rate of the stage. Hence, the aim of this
optimization is to maintain the recognition rate of the
stage when compared to the software implementation

using MATLAB while achieving better performance
estimates.
As a starting point, it was observed from MATLAB

that the first four digits are different for any calculated
correlation coefficients where the first three digits might
be equal (bolded digits in Eq. (5). Therefore, they are
considered the most important digits and should be
error free in the fixed-point implementation of the algo-
rithm. To have the first four digits error free, the fifth
digit should be error free which means the sixth digit’s
error should be limited. Despite that, the aim of using
fixed-point variables is to reduce the performance esti-
mates of the stage; however, the recognition rate should
not drop due to the introduced errors. Therefore, the
performance estimates will be found only after finding
the size of the fixed-point variables that sustains the
recognition rate of the OCR stage. The acquired results
are analyzed by computing the absolute error when
compared with the MATLAB results (Eq. (6). Then, the
average and maximum absolute errors per fixed-point
variable size are calculated using the results from several
tests. However, after using the single precision floating-
point variables to implement the algorithm, it is found
that the error in the calculated correlation coefficients is
changing from one image to another as shown in Fig. 11.
Nonetheless, it is known that the use of single precision
variables does not affect the recognition rate of the stage (as
discussed in the PS implementation). Hence, a threshold
for the error is set based on the numbers’ common
rounding method. Based on the discussion of the four
digits earlier, the error threshold is set to be a 5 in the
sixth digit where any error larger than 5 is considered
to affect the fifth digit. Therefore, two conditions for
selecting the size of the fixed-point variable can be

Fig. 9 Second approach OCR hardware implementation block diagram

Table 6 Second approach OCR algorithm performance
estimates

Clock Latency (clock cycles) Total time (ms)

115.875 MHz 179,288 1.547

Table 7 Second approach OCR algorithm utilization estimates

Name BRAM_18K DSP48E FF LUT Overall

Total 10 17 4955 7630 12,612

Available 280 220 106,400 53,200 160,100

Utilization (%) 3 7 4 14 8

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 11 of 17

stated: first condition is that the error of the fixed-point
implementation should be very close to the error of the
single precision floating-point implementation. Second
condition states that the error in calculating the correl-
ation coefficient should be lower than the threshold to
maintain the recognition rate. It is worth noting that
the Vivado HLS tool denotes a fixed-point variable by
two parameters N and I that corresponds to the total
number of bits used to represent the variable and the
number of bits used to represent the integer part
respectively.

Correlation Coeff : ¼ X0:X−1X−2X−3X−4X−5X−6X−7…

ð5Þ

Absolute error ¼ MATLAB−fixed point N ; Ið Þ ð6Þ

Random samples of images from the testing set are
used to test the accuracy of the calculated correlation
coefficients while implementing the algorithm using
Vivado HLS. First, 31 bits are used to implement the
fixed-point variables (11 bits for the integer part and 20
bits for the fractional part). Later, the number of bits
used for the fractional part is reduced by one bit each
time. The reduction process is controlled by the absolute
error per sample illustrated in Fig. 11 for all investigated
variables. However, to select the fractional part optimum

size, the maximum and average absolute error shown in
Fig. 12 are used. For the FP (25, 11), FP (26, 11), FP
(27, 11), and FP (28, 11) fixed-point variables, the first
sample rules them out as Figs. 11 and 12 illustrate that
their absolute error for the acquired results exceeds
three times the selected threshold. However, for the FP
(31, 11), FP (30, 11), and FP (29, 11) fixed-point vari-
ables, 20 samples are used first. From Fig. 11, it is clear
that the absolute error of FP (29, 11) fixed-point vari-
able exceeds the threshold for several samples and its
maximum absolute error is greater than the selected
threshold. Accordingly, FP (29, 11) fixed-point variable
could not be used.
For the FP (30, 11) fixed-point variable, the absolute

error per sample does not reach the threshold as shown
in Fig. 11. However, Fig. 12 indicates that its maximum
absolute error is close to the threshold. Meanwhile, the
number of samples used in this testing process is small;
hence, there may be a case where the absolute error
exceeds the threshold. Consequently, to be confident
that does not happen, FP (31, 11) fixed-point variable is
selected. Afterwards, additional nine samples are used to
further test the algorithm using FP (31, 11) fixed-point
variable. Eight samples are selected randomly where the
ninth sample represents the worst case scenario of the
testing set. If every testing set image is matched with
the ten templates, there will be ten coefficients for each
image. The worst case is when the difference between
the highest two correlation coefficients out of the ten is
the smallest. The image that has the smallest difference
is the most likely affected by the introduced errors of
the fixed-point variables. This image is found using
MATLAB. For the 29 samples, the recognized characters
by the OCR hardware implementation using FP (31, 11)
fixed-point variables are the same as the MATLAB imple-
mentation; hence, both implementations have the same
99.5% recognition rate.
After selecting the optimum size of the fixed-point

variables, it is essential to find the performance and
utilization estimates for the OCR stage hardware imple-
mentation using fixed-point and analyze the improvements.

187

0

40

80

120

160

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
qu

at
io

n
(3

)

The mean of the image

Fig. 10 The maximum of Eq. (3) while varying the mean of
the image

Fig. 11 Absolute error per sample for the investigated variables

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 12 of 17

Tables 8 and 9 summarize the performance and utilization
estimates for the FP (31, 11) fixed-point hardware imple-
mentation respectively.
The impact of using fixed-point variables on the

performance estimates of the OCR stage is clear. After
using the fixed-point variable, the speed of the hardware
implementation is around three times faster. Additionally,
its effect is also noticeable on the hardware utilization as
it dropped to reach 6% of the total available on chip
resources. The usage of DSP slices increased slightly,
whereas the utilization of other resources (flip flops (FF)
and lookup tables (LUT)) has dropped significantly in this
case when compared with the second approach imple-
mentation using single precision floating-point variables.
The Vivado HLS tool uses the DSP slices to perform the
calculations when fixed-point variables are used instead of
simulating the operations using FF and LUT. Additionally,
by comparing the PS-based and the PL-based implemen-
tations of the stage, it is clear that the PL-based imple-
mentation using fixed-point variables outperforms all
other implementations. It processes one plate with six
characters in around 3.78 ms which is approximately six
times faster than the PS-based implementation (25.68 ms)
and almost two and half times faster than the PL-based
implementation using the standard IEEE floating-point
single precession (9.28 ms).
As the second approach to implement the OCR stage

using fixed-point variables shows that the hardware
utilization is 6%, and the processing time for one character
is 0.63 ms, parallelism was not considered at this stage.
Moreover, the segmented characters passed by the CS
stage to the OCR stage are recognized sequentially where

each segmented character is correlated sequentially with
the template images to identify the character. The main
reason of avoiding the use of parallelism in the OCR stage
only is that the performance of this stage and the first two
stages satisfies the main aim of the work, which is devel-
oping and implementing a real-time HD ANPR system
using single SoC platform. The total hardware utilization
of the system including the three stages is 18% of the
available resources on the platform while processing one
frame in 17.56–19.94 ms. Thus, the use of parallelism will
not enhance the performance in general as it will reduce the
processing time while increasing the hardware utilization
where both parameters are met by the proposed system.
However, it is worth noting that the proposed ANPR system
is pipelined where the Vivado HLS tool takes care of this.

6 Results and Discussion
To evaluate the proposed OCR stage, a comparison based
on the recognition rate, time performance, and hardware
utilization of the proposed algorithm with already existing
ones is conducted. However, since OCR is a common
application used as part of a software application or
implemented on hardware platforms, two comparisons
are required.
Table 10 summarizes the software implementation of

the proposed OCR algorithm and some already existing
algorithms showing their platform, recognition rate and
processing time. It is worth noting that the proposed
algorithm is capable of recognizing numbers only where
in [5] for example, the proposed algorithm identifies 9
Arabic numbers and 25 English letters. Similarly, the
algorithms proposed in [27, 28] process both numbers
and letters from the Persian language. The proposed
algorithm in [29] is capable of recognizing 10 Arabic
numbers and 17 English letters. To compare the proposed
algorithm in this work with other algorithms, the algo-
rithms proposed in [5, 14] were implemented by the

Fig. 12 Average and maximum absolute error for the
investigated variables

Table 8 OCR hardware implementation performance estimates

Processing unit Variable type Clock (MHz) Latency (clock cycles) Total time (ms)

PS Floating-point N/A N/A 4.28

PL Floating-point 115.875 179,288 1.547

Fixed-point (31,11) 114.416 71,510 0.63

Table 9 Detailed FP (31, 11) fixed-point OCR utilization
estimates

Name BRAM_18K DSP48E FF LUT Overall

Total 10 20 4247 5616 9893

Available 280 220 106,400 53,200 160,100

Utilization (%) 3 9 3 10 6

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 13 of 17

authors to process the same characters targeted in this
work (the numbers from ‘0’—‘9’). The same training and
testing character sets were used to train and test these
algorithms. As it can be seen from the table, the proposed
algorithm outperforms the existing algorithms in terms of
recognition rate and processing time when processing
numeral characters only.
Table 11 reports an overall hardware comparison between

the proposed algorithm and other existing algorithms. The
numbers reported for the proposed algorithm in [12] show
that it outperforms other systems. However, this algorithm
was tested using 100 samples only, and it was reported that
if the processed digit image is just slightly affected by noise,
the performance degrades significantly. Therefore, its
implementation in ANPR systems will affect their over-
all performance, since characters processed in the OCR
stage of such systems are noisy, as discussed earlier.
Additionally, the algorithm reported in [30] has an increased
hardware utilization compared to the work proposed in [5]
and compared to this work. It uses 43 times the BRAM and
twice the number of LUTs used in [5], even though the
work in [5] uses a larger network on a bigger input image
size. The large difference in utilization all goes to further ac-
celerate its processing speed. This might be optimal for their
implementation, as they implement only the OCR stage on
hardware. However, this extra amount of required hardware
resources might not be available practically for ANPR imple-
mentations, since the remaining stages of the ANPR system
(i.e., HD NPL and CS stages) should fit in the same single
chip. Therefore, in this work the aim is to accelerate the
implementation of the OCR stage to be fast enough to
meet the real-time requirement of the ANPR system,
while leaving enough on-chip resources in the SoC plat-
form to implement the complete system. The hardware
implementation of the proposed approach utilizes more
BRAMs compared to [5] due to the storage of the charac-
ters’ templates. Therefore, it is noticed that the proposed
stage compromises between hardware utilization and
algorithm acceleration. Yet, it is outperforming other
systems in terms of the recognition rate. This is due to the

nature of Qatari number plates which includes the ten
Arabic digits only, where the systems in [5, 14, 17, 30] are
used to recognize English letters and Arabic digits.
From Tables 10 and 11, it is concluded that the het-

erogeneous SoC platform is three times faster than a PC
in implementing the proposed algorithm. Moreover, the
PC is rated at 180 W where the heterogeneous SoC is
rated at 36 W which means that the platform saves 80%
of the energy consumed by the PC. Meanwhile, the plat-
form is 95% smaller than the PC used [31, 32]. Overall,
the heterogeneous platform is found to be faster, smaller,
and more power efficient compared to the PC.
To sum up, it was found that the template matching-

based algorithm can identify the segments that contain
‘noise’ instead of characters which are detected due to dust
or scratches on the NP. Moreover, it recognized slightly
rotated characters without the need for a stage to process
rotated NP. Thus, the overall performance was found to be
outstanding when compared with other algorithms while
having an acceptable processing time to meet the real-time
constraint for the ANPR system. However, this is valid when
the total number of possible characters is limited. In case
this number increases, other algorithms might achieve better
results and be more efficient in terms of processing time
and hardware utilization.

7 Conclusions and future work
This paper proposes four different algorithms to develop
real-time HD ANPR system to recognize Qatari NPs.
The proposed algorithms depend on two feature extraction
(vector crossing and zoning) and one template matching
techniques. The proposed algorithms were implemented
using MATLAB to proof the concepts. The best algorithm
has been selected and implemented on hardware. The
Zynq-7000 All programmable SoC heterogeneous platform
has been used to implement the whole real-time HD
ANPR system. The heterogeneous platform consists of two
separate processing units, PL (FPGA) and PS (ARM
processor). Both PL and PS units were used to implement
the template matching-based algorithm. The results of the

Table 10 Different OCR algorithms performance based on software implementation—MATLAB

OCR Platform Recognition rate (%) Processing time per character (ms)

[Proposed] template matching Intel Core i7 4770s 3.1 GHz
8 GB of RAM

99.50 1.95

[5] ANNa 97.49 7.46

[14] SVMa 98.75 7.49

[5] ANN Dual Core–2.4 GHz
3 GB of RAM

97.30 8.4

[27] Normal factoring Intel Core i3 2330M 2.2 GHz
2 GB of RAM

97.00 N/A

[28] Distance and angle features 99.00 N/A

[29] ANN N/A 94.32 N/A
aThe algorithm has been implemented and tested by the authors using the training and testing sets of this work to process numeral characters only

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 14 of 17

Ta
b
le

11
O
ve
ra
ll
co
m
pa
ris
on

of
O
C
R
st
ag
es

or
sy
st
em

s
ha
rd
w
ar
e
im

pl
em

en
ta
tio

ns

O
C
R
al
go

rit
hm

H
ar
dw

ar
e
pl
at
fo
rm

Ty
pe

of
ch
ar
ac
te
rs

N
o.
of

te
st
in
g

ch
ar
ac
te
rs

C
ha
ra
ct
er

si
ze

(c
ol
s×
ro
w
s)

Re
co
gn

iti
on

ra
te

(%
)

Pr
oc
es
si
ng

tim
e
pe

r
ch
ar
ac
te
r
(m

s)
BR
A
M

D
SP

FF
LU

T

[P
ro
po

se
d]

te
m
pl
at
e

m
at
ch
in
g

Ze
db

oa
rd

(Z
yn
q-
70
00
)

10
A
ra
bi
c
di
gi
ts

27
90

22
×
34

99
.5
0

0.
63

10 18
-K
bi
t

20
(D
SP
48
E)

42
47

56
16

[5
]

A
N
N

M
en

to
r
G
ra
ph

ic
s
RC

24
0
FP
G
A

25
En
gl
is
h
le
tt
er
s
an
d
9

A
ra
bi
c
di
gi
ts

35
70

22
×
34

97
.3
0

0.
7

4 18
-K
bi
t

8
(D
SP
48
s)

27
11

68
68

[1
2]

Fe
at
ur
e

Ex
tr
ac
tio

n
A
lte
ra

St
ra
tix

FP
G
A

10
Pe
rs
ia
n
di
gi
ts

10
0

10
×
7

10
0

47
ns

N
/A

N
/A

N
/A

N
/A

[1
3]

SV
M

N
/A

10
A
ra
bi
c
ha
nd

w
rit
te
n
di
gi
ts

12
0

16
×
16

83
.3
0

N
/A

N
/A

N
/A

N
/A

N
/A

[1
4]

SV
M

TI
C
64

Fi
xe
d-
Po

in
t
D
SP

Pl
at
fo
rm

25
En
gl
is
h
le
tt
er
s
an
d
9

A
ra
bi
c
di
gi
ts

N
/A

6
×
9

94
.0
0

2.
88

N
/A

N
/A

N
/A

N
/A

[1
7]

SO
M
-N
N

Xi
lin
x
Vi
rt
ex

IV
FP
G
A

22
En
gl
is
h
le
tt
er
s
an
d
10

A
ra
bi
c
di
gi
ts

85
31

N
/A

90
.9
3

N
/A

N
/A

N
/A

43
,5
51

50
,3
10

[3
0]

A
N
N

N
/A

25
En
gl
is
h
le
tt
er
s
an
d
9

A
ra
bi
c
di
gi
ts

66
5

9
×
21

98
.2
0

4.
36

μs
35
1

9-
Kb

it
N
/A

N
/A

13
,9
09

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 15 of 17

PL-based implementation were found promising. Therefore,
more work was accomplished to improve the algorithm
through modifying the steps and use optimized fixed-point
data type variables. Accordingly, the acquired results show
that the proposed OCR stage consumes 6% of the PL unit
resources and it is capable of processing one character in
0.63 ms where the recognition rate was found to be 99.5%.
The rest of the available on-chip resources could be
used to implement other stages of the ANPR system. In
addition, it is found that the heterogenous SoC saves
80% of the energy consumed by the PC used in this
work and it is smaller by 95%.

Abbreviations
ANN: Artificial neural network; ANPR: Automatic number plate recognition;
CCA: Connected component analysis; CS: Character segmentation;
DSP: Digital signal processor; FF: Flip flops; FIFO: First-in-first-out; FPGA: Field
programmable gate array; HD: High definition; HLS: High-level synthesis;
HOR: Horizontal; ITS: Intelligent transportation system; LUT: Lookup tables;
MIN: Minimum; NP: Number plate; NPL: Number plate localization;
OCR: Optical character recognition; OpenCV: Open source computer vision;
OS: Operating system; PL: Programmable logic; PS: Processing system;
SD: Standard definition; SoC: System on chip; SOM: Self-organizing map;
SVM: Support vector machine; VER: Vertical

Acknowledgements
This publication was made possible by UREP grant #17-138-2-037 from the
Qatar national research fund (a member of Qatar foundation). The
statements made herein are solely the responsibility of the authors.

Funding
This project was funded by Qatar National Research Fund (a member of
Qatar Foundation) under the Undergraduate Research Experience Program
(UREP) grant #17-138-2-037.

Availability of data and materials
The datasets of images used in this work is confidential and not available for
public as it was provided by the Security Department at Qatar University.

Authors’ contribution
AF was the main contributor to the algorithms proposed and their software
and hardware implementations. He also wrote most of the manuscript. OH
contributed in the PL hardware implementation and wrote the related work
section in the paper. AAZ was involved in the PS hardware implementation.
AAQ acquired and prepared the used dataset in addition to reviewing the
manuscript. FB was the overall project coordinator. FB and AA had the
overall academic supervision and revised the manuscript. XZ contributed to
the PL hardware implementation. All the authors read and approved the
final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1College of Engineering, Qatar University, Doha, Qatar. 2Department of
Electronics, Computing and Mathematics, University of Derby, Derby, UK.

Received: 15 September 2017 Accepted: 26 June 2018

References
1. MAV Systems Ltd. ANPR Solutions. [Online] Available: http://www.

anprcameras.com/anpr-solutions/, Accessed Oct 2016
2. United Kingdom Police. Automatic Number Plate Recognition [Online]

Available: https://www.police.uk/information-and-advice/automatic-number-
plate-recognition/#why-we-use-anpr, Accessed Oct 2016

3. United Kingdom Government. National Police Conference on Automatic
Number Plate Recognition. [Online] Available: https://www.gov.uk/
government/speeches/national-police-conference-on-automatic-number-
plate-recognition, Accessed Oct 2016

4. V Abolghasemi, A Ahmadyfard, An edge-based color-aided method for
license plate detection. Image Vis. Comput. 27(8), 1134–1142 (2009). https://
doi.org/10.1016/j.imavis.2008.10.012.

5. X Zhai, F Bensaali, R Sotudeh, Real-time optical character recognition on
field programmable gate array for automatic number plate recognition
system. IET Circuits Devices Syst. 7(6), 337–344 (2013). https://doi.org/10.
1049/iet-cds.2012.0339

6. P Roy, F Rayar, J Ramel, Word spotting in historical documents using primitive
codebook and dynamic programming. Image Vis. Comput. 44, 15–28 (2015).
https://doi.org/10.1016/j.imavis.2015.09.006.

7. X Zhai, F Bensaali, Improved number plate character segmentation
algorithm and its efficient FPGA implementation. J. Real-Time Image Proc.
10(1), 91–103 (2015). https://doi.org/10.1007/s11554-012-0258-5

8. Z Jeffrey, X Zhai, F Bensaali, R Sotudeh, A Ariyaeeinia, Automatic number
plate recognition system on an ARM-DSP and FPGA heterogeneous SoC
platforms (IEEE Hot Chips 25 Symposium (HCS), Stanford, CA, 2013), pp. 1–9.
https://doi.org/10.1109/HOTCHIPS.2013.7478331

9. C Yan, H Xie, S Liu, J Yin, Y Zhang, Q Dai, Effective Uyghur language text
detection in complex background images for traffic prompt identification.
IEEE Trans. Intell. Transp. Syst. 19(1), 220–229 (2018). https://doi.org/10.1109/
TITS.2017.2749977

10. L Eikvil, Optical Character Recognition, 1st edn. (Oslo, 1993). http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.25.3684

11. G Vamvakas, B Gatos, N Stamatopoulos, S Perantonis, A complete optical
character recognition methodology for historical documents (2008 The Eighth
IAPR International Workshop on Document Analysis Systems, 2008). https://
doi.org/10.1109/DAS.2008.73

12. N Toosizadeh, M Eshghi, Design and implementation of a new Persian digits
OCR algorithm on FPGA chips (Signal Processing Conference, 2005 13th
European, Antalya, 2005), pp. 1–4

13. X. Yafang.: ‘Optical Character Recognition’, [Online] Available: http://web.
eecs.umich.edu/~girasole/teaching/451/2014fall/gradprojects/optical_
character_recognition_final_report.pdf, Accessed June 2017

14. C Arth, F Limberger, H Bischof, Real-time license plate recognition on an
embedded DSP-Platform (2007 IEEE Conference on Computer Vision and
Pattern Recognition, Minneapolis, MN, 2007), pp. 1–8. https://doi.org/10.
1109/CVPR.2007.383412

15. M Sarfraz, A Shahzad, M Elahi, M Fraz, I Zafar, E Edirisinghe, Real-time automatic
license plate recognition for CCTV forensic applications. J. Real-Time Image
Proc. 8(3), 285–295 (2013). https://doi.org/10.1007/s11554-011-0232-7

16. D Kassymkhanova, D Kurochkin, N Denissova, S Kumargazhanova, A
Tlebaldinova, Majority voting approach and fuzzy logic rules in license plate
recognition process (2014 IEEE 8th International Conference on Application
of Information and Communication Technologies (AICT), Astana, 2014), pp.
1–5. https://doi.org/10.1109/ICAICT.2014.7035933

17. H Caner, H Gecim, A Alkar, Efficient embedded neural-network-based
license plate recognition system. IEEE Trans. Veh. Technol. 57(5), 2675–2683
(2008). https://doi.org/10.1109/TVT.2008.915524

18. O Hommos, A Al-Qahtani, A Farhat, A Al-Zawqari, F Bensaali, A Amira, X
Zhai, HD Qatari ANPR system, vol 2016 (2016 International Conference on
Industrial Informatics and Computer Systems (CIICS), Sharjah), pp. 1–5.
https://doi.org/10.1109/ICCSII.2016.7462420

19. A Al-Zawqari, O Hommos, A Al-Qahtani, AAH Farhat, F Bensaali, X Zhai, A
Amira, HD number plate localization and character segmentation on the
Zynq heterogeneous SoC. J. Real-Time Image Proc., 1–5 (2018). https://doi.
org/10.1007/s11554-017-0747-7

20. Xilinx. Accelerating OpenCV Aplications with Zynq-7000 All Programable
SoC using Vivado HLS Video Libraries. [Online] Available: http://www.xilinx.

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 16 of 17

http://www.anprcameras.com/anpr-solutions/
http://www.anprcameras.com/anpr-solutions/
https://www.police.uk/information-and-advice/automatic-number-plate-recognition/#why-we-use-anpr
https://www.police.uk/information-and-advice/automatic-number-plate-recognition/#why-we-use-anpr
https://www.gov.uk/government/speeches/national-police-conference-on-automatic-number-plate-recognition
https://www.gov.uk/government/speeches/national-police-conference-on-automatic-number-plate-recognition
https://www.gov.uk/government/speeches/national-police-conference-on-automatic-number-plate-recognition
https://doi.org/10.1016/j.imavis.2008.10.012.
https://doi.org/10.1016/j.imavis.2008.10.012.
https://doi.org/10.1049/iet-cds.2012.0339
https://doi.org/10.1049/iet-cds.2012.0339
https://doi.org/10.1016/j.imavis.2015.09.006.
https://doi.org/10.1007/s11554-012-0258-5
https://doi.org/10.1109/HOTCHIPS.2013.7478331
https://doi.org/10.1109/TITS.2017.2749977
https://doi.org/10.1109/TITS.2017.2749977
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.3684
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.3684
https://doi.org/10.1109/DAS.2008.73
https://doi.org/10.1109/DAS.2008.73
http://web.eecs.umich.edu/~girasole/teaching/451/2014fall/gradprojects/optical_character_recognition_final_report.pdf
http://web.eecs.umich.edu/~girasole/teaching/451/2014fall/gradprojects/optical_character_recognition_final_report.pdf
http://web.eecs.umich.edu/~girasole/teaching/451/2014fall/gradprojects/optical_character_recognition_final_report.pdf
https://doi.org/10.1109/CVPR.2007.383412
https://doi.org/10.1109/CVPR.2007.383412
https://doi.org/10.1007/s11554-011-0232-7
https://doi.org/10.1109/ICAICT.2014.7035933
https://doi.org/10.1109/TVT.2008.915524
https://doi.org/10.1109/ICCSII.2016.7462420
https://doi.org/10.1007/s11554-017-0747-7
https://doi.org/10.1007/s11554-017-0747-7
http://www.xilinx.com/support/documentation/application_notes/xapp1167.pdf

com/support/documentation/application_notes/xapp1167.pdf, Accessed Jul
2016

21. T Kryjak, M Komorkiewicz, M Gorgon, Real-time hardware–software
embedded vision system for ITS smart camera implemented in Zynq SoC. J.
Real-Time Image Proc. (2016). https://doi.org/10.1007/s11554-016-0588-9

22. OpenCV. ‘OpenCV (open source computer vision)’. [Online] Available: http://
opencv.org/, Accessed June 2016

23. Linaro. “Linaro”. [Online] Available: https://www.linaro.org/, Accessed Mar
2017

24. OpenCV. ‘Object Detection’. [Online] Available: http://docs.opencv.org/3.1.0/
df/dfb/group__imgproc__object.
html#ga586ebfb0a7fb604b35a23d85391329be, Accessed May 2017

25. Xilinx. Vivado High-Level Synthesis. [Online] Available: http://www.xilinx.
com/products/designtools/vivado/integration/esl-design.html, Accessed Apr
2016

26. Xilinx. Vivado Design Suite User Guide. [Online] Available: http://www.xilinx.
com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-
level-synthesis.pdf, Accessed Apr 2016

27. R Azad, F Davami, B Azad, A novel and robust method for automatic license
plate recognition system based on pattern recognition. Advances in
Computer Science: an International Journal 2(3), 64–70 (2013)

28. R Azad, B Azad, HR Shayegh, Real-time and efficient method for accuracy
enhancement of edge based license plate recognition system (2013 First
International Conference on computer, Information Technology and Digital
Media, 2013), pp. 146–155

29. HM Alyahya, MK Alharthi, AM Alattas, V Thayananthan, Saudi license plate
recognition system using artificial neural network classifier (2017 International
Conference on Computer and Applications (ICCA), Doha, 2017), pp. 220–
226. https://doi.org/10.1109/COMAPP.2017.8079759

30. Y Jing, B Youssefi, M Mirhassani, R Muscedere, An efficient FPGA
implementation of optical character recognition for license plate recognition
(2017 IEEE 30th Canadian Conference on Electrical and Computer
Engineering (CCECE), Windsor, ON, 2017), pp. 1–4. https://doi.org/10.1109/
CCECE.2017.7946734

31. Dell Inc. OptiPlex 9030 All-in-One Desktop with Optional Touch Screen.
[Online] Available: http://dell.to/2etCT0W, Accessed Nov 2016

32. ZedBoard. ZedBoard Technical Specifications. [Online] Available: http://
zedboard.org/content/zedboard-0, Accessed Nov 2016

Farhat et al. EURASIP Journal on Image and Video Processing (2018) 2018:58 Page 17 of 17

http://www.xilinx.com/support/documentation/application_notes/xapp1167.pdf
https://doi.org/10.1007/s11554-016-0588-9
http://opencv.org/
http://opencv.org/
https://www.linaro.org/
http://docs.opencv.org/3.1.0/df/dfb/group__imgproc__object.html#ga586ebfb0a7fb604b35a23d85391329be
http://docs.opencv.org/3.1.0/df/dfb/group__imgproc__object.html#ga586ebfb0a7fb604b35a23d85391329be
http://docs.opencv.org/3.1.0/df/dfb/group__imgproc__object.html#ga586ebfb0a7fb604b35a23d85391329be
http://www.xilinx.com/products/designtools/vivado/integration/esl-design.html
http://www.xilinx.com/products/designtools/vivado/integration/esl-design.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
https://doi.org/10.1109/COMAPP.2017.8079759
https://doi.org/10.1109/CCECE.2017.7946734
https://doi.org/10.1109/CCECE.2017.7946734
http://dell.to/2etCT0W
http://zedboard.org/content/zedboard-0
http://zedboard.org/content/zedboard-0

	Abstract
	Introduction
	Related work
	Proposed methodologies and algorithms
	Vector crossing
	Zoning
	Zoning and vector crossing
	Template matching

	Software implementation
	Hardware implementation
	PS implementation
	PL implementation
	First approach
	Second approach
	Second approach using fixed-point

	Results and Discussion
	Conclusions and future work
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contribution
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

