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Abstract

Facial aging adversely impacts performance of face recognition and face verification and authentication using facial
features. This stochastic personalized inevitable process poses dynamic theoretical and practical challenge to the
computer vision and pattern recognition community. Age estimation is labeling a face image with exact real age or
age group. How do humans recognize faces across ages? Do they learn the pattern or use age-invariant features?
What are these age-invariant features that uniquely identify one across ages? These questions and others have
attracted significant interest in the computer vision and pattern recognition research community. In this paper, we
present a thorough analysis of recent research in aging and age estimation. We discuss popular algorithms used in
age estimation, existing models, and how they compare with each other; we compare performance of various systems
and how they are evaluated, age estimation challenges, and insights for future research.
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1 Introduction
You can never see the same face twice. This statement
is true because facial appearance varies more dynami-
cally as it is affected by several factors including pose,
facial expression, head profile, illumination, aging, occlu-
sion, mustache, beards, makeup (cosmetics), and hair
style. Major factors that influence facial aging include
gravity, exposure to ultraviolet (UV) rays from the sun,
maturity of soft tissues, bone re-structuring, and facial
muscular activities [1]. These factors cause variations in
face appearance. For instance, a face seen in blue light
illumination is totally different from one seen under red
light illumination. Another factor that constantly and per-
manently causes variations in facial appearance is age.
Aging is an inevitable stochastic process that affects facial
appearance. Aging involves both variations in soft tissues
and bony structure on the human face. A face seen at one
age is totally different from the face of same individual at
a different age. Therefore, these age-introduced variations
could be learned and used to estimate facial age.
The human face provides prior perceptible informa-

tion about one’s age, gender, identity, ethnicity, and mood.
Alley [2] asserts that attributes derived from human facial
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appearance like mood and perceived age significantly
impact interpersonal behavior as is considered as essential
contextual cue in social networks [3, 4]. Information ren-
dered by the human face has attracted significant atten-
tion in the face image processing research community.
Image-based age and age-group estimation particularly
has attracted enormous research interest due to its vast
application areas like age-invariant face recognition and
face verification across age, among other commercial and
law enforcement areas [5–9]. Age estimation has been
extensively studied with the aim of finding out aging pat-
terns and variations and how to best characterize an aging
face for accurate age estimation.
Age estimation research has gained significant atten-

tion in recent years with many journal and conference
papers being published annually as well as Masters and
PhD theses defended [10]. Age estimation is a technique
of automatically labeling the human face with an exact age
or age group. This age can be either actual age, appear-
ance age, perceived age, or estimated age [11]. Actual
age is the number of years one has accumulated since
birth to date, denoted as a real number. Appearance and
perceived age are estimated based on visual age infor-
mation portrayed on the face while estimated age is a
subject’s age estimated by a machine from the facial visual
appearance. Appearance age is assumed to be consistent
with actual age although there are variations due to the
stochastic nature of aging among individuals. Estimated
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age and perceived age are defined on visual artifacts of
appearance age. There has been relatively few publica-
tions on age and age-group estimation [11]. This could
be attributed to age estimation not being a classical clas-
sification problem. Age estimation can be approached as
a multi-class classification problem or a regression prob-
lem or as an ensemble of both classification and regression
in a hierarchical manner. Another reason that could be
affecting research in age estimation is the difficulty in
collecting a large database with chronological images for
a subject. Prolific and diverse information conveyed by
faces also make special attributes of aging variations not
accurately captured [11]. Uncontrollable and personalized
age progression information displayed on faces further
complicates age estimation problem [12–14].

2 Facial aging
Aging is a stochastic, uncontrollable, inevitable, and irre-
versible process that causes variations in facial shape and
texture. Although aging is stochastic with different peo-
ple having different aging patterns, there are some general
variations and similarities that can be modeled [15, 16].
There are two stages in human life that are distinct with
regard to facial growth: formative or childhood stage and
adulthood or aging stage [17].
Aging introduces significant change in facial shape in

formative years and relatively large texture variations with
still minor change in shape in older age groups [11, 18].
Shape variations in younger age groups are caused by
craniofacial growth. Craniofacial studies have shown that
human faces change from circular to oval as one ages
[19]. These changes lead to variations in the position
of fiducial landmarks [20]. During craniofacial develop-
ment, the forehead slopes back releasing space on the
cranium. The eyes, ears, mouth, and nose expand to cover
interstitial space created. The chin becomes protrusive as
cheeks extend. Facial skin remains moderately unchanged
than shape. More literature on craniofacial development
is found in [16].
As one ages, facial blemishes like wrinkles, freckles,

and age spots appear. Underneath the skin, melanin-
producing cells are damaged due to exposure to the
suns’ ultraviolet (UV) rays. Freckles and age spots appear
due to overproduction of melanin. Consequently, light-
reflecting collagen not only decreases but also becomes
non-uniformly distributed making facial skin tone non-
uniform [1]. Parts adversely affected by sunlight are the
upper cheek, nose, nose bridge, and forehead.
The most visible variations in adulthood to old age

are skin variations exhibited in texture change. There is
still minimal facial shape variation in these age groups.
Biologically, as the skin grows old, collagen underneath
the skin is lost [11]. Loss of collagen and effect of
gravity make the skin become darker, thinner, leathery,

and less elastic. Facial spots and wrinkles appear grad-
ually. The framework of bones beneath the skin may
also start deteriorating leading to accelerated devel-
opment of wrinkles and variations in skin texture.
More details about face aging in adulthood is found
in [16]. These variations in shape and texture across
ages could be modeled and used to automatically esti-
mate someone’s age. We refer readers to [16] for more
details on facial aging. Facial aging has three unique
attributes [13]:

1. Aging is inevitable and uncontrollable. No one can
avoid aging, advance, or delay it. The aging process is
slow but irreversible.

2. Aging patterns are personalized. People age
differently. Individuals’ aging pattern is dependent on
her/his genetic makeup as well as various extrinsic
factors such as health, environmental conditions, and
lifestyle.

3. Achieved aging patterns are temporal. Facial
variations caused by aging are not permanent.
Furthermore, facial variation at a particular point in
time affects future appearance and does not affect
previous appearance of these faces.

These facial aging attributes, among other factors, make
automatic age estimation a difficult and challenging task.
Since individuals cannot voluntarily control aging, auto-
matic age estimation data collection becomes a hard task
to do. This problem was slightly alleviated by dissemi-
nation of FG-NET Aging Dataset [21] in 2002. Although
this dataset has images of subjects at different ages, there
are several missing images hence making the aging pat-
terns incomplete. Fortunately, we do not need a complete
aging face dataset since people, who computers try to
mimic, also learn how to process face image patterns from
incomplete patterns. Age estimation technique should be
capable of considering various aging patterns since each
individual has his/her own aging pattern.
Information rendered by the human face has attracted

significant attention in the face image processing research
community. Image-based age and age-group estimation
has vast application areas like age-invariant face recog-
nition, face verification across ages, commercial and law
enforcement areas [5–9], security control and surveillance
[11, 22], age-based image retrieval [23], biometrics [11,
24, 25] human computer interaction [26, 27], and elec-
tronic customer relationship management (ECRM) [11].
The main aim of studying age estimation is to find out
aging patterns and variations in facial appearance and how
to best characterize an aging face for accurate age esti-
mation. Although this problem has attracted significant
research, still automatic age estimation accuracies are far
below human accuracy.
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3 Age estimation application areas
Characterizing variations in facial appearance across age
has many significant real-world applications. Computer-
based age estimation is useful in situations where one’s age
is to be determined. There are several application areas for
age estimation including the following:

3.0.1 Age simulation
Characterization of facial appearance at different ages
could be effectively used in simulating or modeling one’s
age at a particular point in time. Estimated ages at
different times could help in learning the aging pat-
tern of an individual, which could assist in simulat-
ing facial appearance of the individual at some unseen
age. More details on facial aging simulation could be
found in [28, 29]. By observing aging patterns at dif-
ferent ages, unseen appearance could be simulated and
used to find missing persons. By observing aging pat-
terns at different ages, unseen appearance could be
simulated.

3.0.2 Electronic customer relationshipmanagement (ECRM)
ECRM [11] is the use of Internet-based technologies such
as websites, emails, forums, and chat rooms, for effec-
tive managing of distinguished interactions with clients
and individually communicating to them. Customers in
different ages may have diverse preferences and expec-
tations of a product [30]. Therefore, companies may use
automatic age estimation to monitor market trends and
customize their products and services to meet needs and
preferences of customers in different age groups. The
problem here is how to acquire and analyze substantive
personal data from all client groups without infringing
on their privacy rights. With automatic age estimation,
a camera can snap pictures of clients and automatically
estimate their age groups in addition to collection of
demographic data.

3.0.3 Security and surveillance
Age estimation can be used in surveillance and monitor-
ing of alcohol and cigarette vending machines and bars
for preventing underage from accessing alcoholic drinks
and cigarettes and restricting children access to adult web-
sites and movies [23, 31]. Age estimation can also be
significant in controlling ATM money transfer fraud by
monitoring a particular age group that is apt to the vice
[11]. Age estimation can also be used to improve accu-
racy and robustness of face recognition hence improving
homeland security. Age estimation can also be used in
health-care systems like robotic nurse and doctors expert
system for customized medical services. For instance, a
customized avatar can be automatically selected from a
database for interacting with patients from various age
groups depending on preferences.

3.0.4 Biometrics
Age estimation via faces is a soft biometric [32] that can be
used to compliment biometric techniques like face recog-
nition, fingerprints, or iris in order to improve recog-
nition, verification, or authentication accuracies. Age
estimation can be applied in age-invariant face recogni-
tion [10], iris recognition, hand geometry recognition, and
fingerprint recognition in order to improve accuracy of
hard (primary) biometric system [11].

3.0.5 Employment
Some government employments like the military and
police consider one’s age as a requirement. Age esti-
mation systems could be used to determine age of the
recruits during recruitment process. It is also a policy of
several governments that employees should retire after
reaching a particular age. Age estimation systems could
also play a significant role in finding if one has reached
retirement age.

3.0.6 Content access
With the proliferation of diverse content in televisions
(TV) and the Internet, age estimation can be used to con-
trol access to unwanted content to children. A camera
could be mounted on a TV to monitor people looking at
it such that it switches off the TV if at a particular time
unwanted content is streamed and people watching are
children.

3.0.7 Missing persons
Age estimation role in age simulation go a step further
in aiding identification of missing persons. Age simula-
tion can be used to identify old people from their previous
images for purposes of identification.

4 Factors affecting facial aging
Facial aging is affected by several factors ranging from
lifestyle, natural, occupation, psychological, and environ-
mental. Factors affecting facial aging can be categorized
as both intrinsic and extrinsic. Extrinsic factors are those
that are external to the human body like environmen-
tal and occupation factors while intrinsic are internal
factors like bone structure and genetic influence which
occur naturally over time [1, 33]. In childhood, facial
changes are mainly caused by craniofacial development
which lead to changes in facial shape [16] due to growth,
modeling, and deposition of bony tissues in the face.
This leads to changes in height and shape of the face
[34]. The forehead slopes back releasing space on the
cranium. Drifting and expansion of facial landmarks to
occupy this space causes variations in facial shape in child-
hood. In adulthood, facial aging is mainly manifested in
texture variations which are caused by a wide variety
of factors.
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Taister et al. [34] found that general exposure to wind
and arid air influences facial aging. Arid environment
and wind dehydrate the skin leading to wrinkle forma-
tion. Air pollution has also been found to affect aging by
accelerating wrinkle development [35–37]. Research on
air pollution and aging has shown that city dwellers who
are exposed to air pollution from industries develop deep
wrinkles than individuals who are not exposed to pollu-
tion. Smoking influence on aging has also been cited in
[34, 38–40] although [41] asserts that smoking has neg-
ligible effect to facial wrinkling compared to effect of
UV rays. However, smoking interrupts skin microvascu-
lature which affects elastin and collagen production and
functioning leading to wrinkles around the mouth, but
photoaging effects lead tomore facial wrinkling compared
to smoking [34, 41]. It is therefore evident that facial skin
aging does not provide objective analysis of cumulative
exposure to UV rays. Taister et al. [34] also assert that
exposure to drug and psychological stress affects skin tex-
ture and pigmentation making skin complexion spotted
and blemished.
Exposure to ultraviolet (UV) rays influences produc-

tion of collagen making the skin darker. UV rays dry and
destroy cells and underlying skin structure, giving the skin
a furrowed and thickened appearance hastening devel-
opment of wrinkles especially around the eyes due to
squinting effects [42]. Long exposure to UV rays leads
to variations in photoaging like skin wrinkling, elastosis,
actinic keratosis, and irregular pigmentation [43]. With
long exposure to UV rays, skin texture and color change
becoming blotchy, yellowish, leathery, loose, inelastic, and
hyper-pigmented. Blood veins close to the skin surface
become protrusive forming “spider vein” network in addi-
tion to overall speckled skin appearance [44]. Naturally,
with lower production of collagen and elastin, the skin
becomes leathery and less elastic. Fat cells begin to dis-
appear leading to skin sagging. Fat deposits in some areas
like the eye lobe region also affect skin texture. Force
of gravity makes the skin leathery and less elastic hence
accelerating skin wrinkling.
Internally, changes in bone structure and subsequent

variations in musculature cause skin wrinkling [16]. Loss
of skin elasticity makes the skin leathery leading to forma-
tion of wrinkles [45]. Aging was also found to be different
between males and females with female faces tending to
age faster compared to male faces [16].
Aging in males and females share many common char-

acteristics, but there are some differences. Although it
is generally acknowledged that females age faster com-
pared to men, it is not yet clear whether these gender
differences are caused by rate of aging or sexual dimor-
phism [16]. Investigation into differences in aging between
males and females is necessary [46]. Differences in male
facial aging includemanifestation of facial hair like beards,

increased thickness, facial vascularity, sebaceous content,
and potential differences in fat and bone absorption rates
[47]. Development of deeper wrinkles around the perio-
ral region is high in women compared to men [47] since
women’s skin has few appendages compared to men [48].
Some women look younger than their actual age and have
large lips and are genetically protected from wrinkle and
gray hair development [49].
Other factors affecting perceived facial aging include

diet, genetic makeup, ethnicity (race), skin infections, and
cosmetics. Cosmetics are generally used to hide perceived
age of an individual by hiding wrinkles and age spots
and brightening wrinkle shadows around the eyes, mouth,
and nose regions [50]. Chen et al. [50] found that facial
makeup significantly impacts age estimation. Guo and
Wang [51] and Nguyen et al. [52] investigated the effect of
facial expression in age estimation. By quantitative evalu-
ations on Lifespan [53] and FACES [54] datasets, Guo and
Wang [51] found that facial expression influences age esti-
mation. Same findings were reported byNguyen et al. [52].
Voelkle and Ebner [55] investigated the effect of age, gen-
der, and facial expression on perceived age. They found
that facial expression influences age estimation with faces
with happy facial expressions most underestimated. Some
facial expressions like smiling, frowning, surprise, and
laughingmay introduce wrinkle-like lines on some regions
of the face like the forehead, cheek bone area, mouth
region, and nose-bridge regions. These wrinkle-like lines
may be registered as wrinkles during age estimation hence
having an impact on age estimation performance.

5 Image representation for agemodeling
In this section, we present different approaches used
for image representation for age estimation. Age estima-
tion can be modelled using anthropometric data, active
appearance model (AAM) parameters, aging pattern sub-
space (AGES), manifold learning, appearance features, or
a hybrid of two or more modeling technique. We present
an overview of these modeling techniques in the subse-
quent sections.

5.1 Anthropometric models
Anthropometric modeling of facial aging focuses on dis-
tance measurements between facial points. Face anthro-
pometry is the study of measuring sizes and proportions
on human faces [56]. Farkas [56] defined face anthro-
pometry based onmeasurements taken from 57 landmark
points on human faces. Figure 1 shows some of the points
used to describe a face. Landmark points are identified
by abbreviation of their respective anatomical names. For
instance, the eye inner corner is en for endocanthionwhile
front of the ear is t for tragion.
Farkas defined five measurements between landmarks:

shortest distance, axial distance, tangential distance, angle
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Fig. 1 Anthropometric points on the face [56]

of inclination, and angle between locations. Figure 2 shows
sample measurements of these distances.
A total of 132 facial measurements were defined by

Farkas [56], whereby some corresponding measurements
on the left and right of the face were paired. The mea-
surements can be taken by hand by experienced anthro-
pometrists or 3D scanners [56–58].
Facial measurements could be taken at different ages

for instance from childhood to old age. Ratios of dis-
tances between facial landmarks like the eyes, nose,
mouth, ear, chin, and forehead are measured across age.
Facial measurements are used to determine the aging
pattern of an individual at a particular age and hence
used to discriminate between ages and age groups. This
approach embraces studies in craniofacial development
theory [2].
Craniofacial development theory uses cardioid strain

transformation mathematical model to describe a per-
son’s facial growth from infancy to adult age. This
model defines a circle to track facial growth by tracking

variations in radius of the circle as

R′ = R (1 + k (1 − cos θ)) (1)

where R is the initial radius of the circle, θ is the initial
angle formed with the vertical axis, k is a parameter that
increases with time, and R′ is the successive growth of the
circle over time. Figure 3 shows simulated face profiles
using cardioidal strain transformations.
The mathematical formulation in Eq. 1 is not commonly

used for age estimation because it does not encode head
profile, especially in adults [59], and head profiles are
hard to estimate from 2D facial images [11]. Furthermore,
anthropometric models cannot be used for age modeling
in adult and old age face images since there are no signifi-
cant changes in facial shape at these stages. This approach
is also only appropriate for frontal face images since dis-
tance between landmarks are sensitive to head poses. This
modeling technique has not been experimented on a large
publicly available database, with few studies reported in
the literature working on small private datasets. Another

Fig. 2 Sample of anthropometric measurements
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Fig. 3 Simulation of facial growth using cardioidal strain
transformations. The original is shown in [213]. Sequence proceeds
from infancy (innermost profile) to adulthood (outermost profile)

limitation of this approach is that it only considers dis-
tance between facial landmarks with no consideration for
facial appearance. Measurements and landmark points
defined by Farkas in [56], which often guide anthropo-
metric modeling, are from people in one ethnic group
(European) and may not be representative of all other
races.

5.2 Active shape models
Active shape model (ASM) [60] is a statistical model that
characterizes shape of an object. ASM builds a model by
learning patterns of variability from a training set of cor-
rectly annotated images. ASMs are able to capture natural
variability of images of the same class unlike active con-
tour models (ACMs) [61]. ASMs are specific to images
of the class of objects they represent. Face image shape
is denoted by a collection of landmark points. Good
choices for landmark points are points at clear corners
of the face and facial landmark boundaries. These points
can be determined by use of appropriate 2D landmark-
ing algorithm like the one proposed in [62]. The sets of
points are automatically aligned to reduce the variance in
distance between equivalent points. The number of land-
mark points must be adequate enough to show overall
shape of the face images. Each face is then represented
by a predefined number of landmark points depending
on complexity of the facial shape and the desired level

of descriptive information. A point distribution model
(PDM) is derived by examining spatial statistics of labeled
points. PDM gives mean locations of points and a set of
parameters that control main variability modes found in
the training set.
Given such a model and test image, image interpreta-

tion involves choosing values for each of the parameters
such that the best fit of the model to the image is found.
ASM allows initial rough guess of best shape, orienta-
tion, scale, and position which is refined by comparing
hypothesized model instance to image data and using dif-
ference between model and image to deform to shape.
ASM is more similar to AAM but differs in the sense that
instances in ASM can only deform according to variations
found in the training set. ASM is not commonly used in
age estimation; hence, more investigations adopting this
modeling strategy are necessary.
Active shape model has the following limitations [63]:

1. Results into poor matching of boundaries in an
image due to parametric description of shape. It is
not robust when new images are introduced. These
lead to problems during subsequent image analysis

2. Active shape model needs many landmark points and
training samples to represent shape and its
variations. Makes ASM costly and time consuming
during training

3. Active shape model segmentation results are
sensitive to local search region around landmarks

5.3 Active appearance model
Active appearance models (AAMs) [64] are statistical
facial image coding models. Using principal component
analysis (PCA), AAM learns shape model and intensity
model from a set of training images. AAMs have been
used extensively in modeling facial shape for face recogni-
tion, face verification, age estimation, and gender estima-
tion among other tasks. AAM considers both facial shape
and texture unlike anthropometric models that consider
shape parameters only. This makes AAMs appropriate for
age estimation modeling at all stages from infancy to old
age. Labeling each test image with a definite age label
from continuous age range makes AAM approaches give
precise age estimations [11].
Annotated sets of training images marked with points

defining facial main features are needed to build AAM.
Figure 4 shows a sample of annotated face and points used
for annotation.
These points can be determined by use of appropri-

ate 2D landmarking algorithm like the one proposed in
[62]. These sets of points are represented as a vector and
aligned before a statistical shape model built. Each train-
ing image is then warped so that the annotated points
match points of mean shape and obtain a shape-free
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Fig. 4 a, b Facial shape and appearance annotation

image patch. The shape-free raster is pushed into a tex-
ture vector, g, which is normalized by applying a linear
transformation, g ← (g−μg1)

σg
, where 1 is a vector of ones

and μg and σ 2
g are the mean and variance of elements of

g, respectively. After normalization, gT1 = 0 and |g| = 1.
Principal component analysis (PCA) is then used to build
a texture model. Finally, connections between shape and
texture are learned to produce a combined appearance
model as detailed in [65].
The generated appearance model has parameters, c,

controlling the shape and texture according to:

x = x̄ + Qsc
g = ḡ + Qgc

(2)

where x̄ is the mean shape, ḡ is the mean texture in a
mean-shaped patch, and Qs and Qg are matrices describ-
ing modes of variation derived from training set. AAM
are slower compared to active shape models (ASMs) [60].
Details of AAM implementation could be found in [64].
Lanitis et al. [66] extended AAM by proposing and

aging function age = f (b). In this function, age is the
real subject’s age, b is AAM-learned vector of 50 raw
model parameters, and f is aging function. The function f
describes the association between an individual’s age and
vector of parameters.
AAM face encoding considers both shape and tex-

ture unlike anthropometric techniques that only represent
shape. This makes AAM approaches appropriate for age
estimation since both texture and shape features necessi-
tate precise age estimation. However, evidence is needed
to show that aging patterns can bemodelled as a quadratic
function and highlight effect of outliers in age estima-
tion. Active appearance model is computational intensive.
Training phase requires a substantive number of images

for the model to learn robust shape and appearance fea-
tures. Active appearance model uses gray-level intensities
of the image to train an intensity model. Gray-level inten-
sities may be affected by noise hence leading to a weak
intensity model. Performance of AAM depends on the
quality of images used. Images with significantly different
background and scale inhibit model fitting, resulting in
poor performance of AAM-based systems.

5.4 Aging pattern subspace
Geng et al. [13, 26] proposed aging pattern subspace
(AGES) for automatic age estimation using appearance
of face images. A series of individual images arranged in
temporal order make up aging pattern. Aging pattern is
defined in [13] as “. . . a sequence of personal face images
sorted in time order.” All images in a pattern must come
from the same individual and must be ordered by time.
This aging pattern is called a complete pattern if images at
all ages for an individual are available or else it is referred
to as an incomplete pattern. AGES compensate missing
ages by learning a subspace representation of one’s images
when modeling a series of a subject’s aging face. To esti-
mate age, test image is positioned at each possible location
in the aging pattern to find a point that can best recon-
struct it. Aging subspace that minimizes reconstruction
error determines age of the test image. Figure 5 shows
vectorization of aging pattern with missing images in the
aging pattern vector marked withm. Available face images
in the pattern (ages 2, 5, and 8) are placed at their respec-
tive positions and ages at which images are not available if
their positions are left blank.
After vectorization of the aging pattern, face images at

ages 2, 5, and 8 are represented by feature vectors b2, b5,
and b8, respectively. Representing aging pattern using
AGES ensures that label age (I) and id (I) are integrated
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Fig. 5 Aging pattern vectorization. Age is marked at the top-left corner of the corresponding feature [13]

into the data whereby each pattern implies an ID and each
age is fixed at a particular time-ordered position in the
aging pattern.
The first step of AGES is learning, where aging pattern

is learned then followed by age estimation. Subspace rep-
resentation is obtained in the learning stage using PCA.
Due to the possibility of missing age images, reconstruc-
tion error between available age and reconstructed face
image is minimized by expectation maximization (EM)
iterative learning technique. Average of the available face
images is used to initialize values for missing faces. There-
after, mean, covariance matrix, and eigenvectors of all face
images are computed. Faces are then reconstructed using
mean face and eigenvectors. This process is repeated until
the reconstruction error is significantly small. During age
estimation, the test image finds aging pattern subspace
and position in that pattern that can minimize its recon-
struction error. The position that gives minimal recon-
struction error is returned as the estimated age of the
probe image. Ghost-like twisted faces are reconstructed
when test image is positioned at a wrong location in the
aging pattern subspace [13, 26].
AGES was evaluated on FG-NET [21] and a MAE of

6.77 years was reported [13, 26]. This performance was
superior to previously used approaches reported in liter-
ature. In AGES, face images are first encoded with AAM.
AGES undertakes existence ofmultiple images of the same
person at various ages or aging pattern of the face is
similar in a given training dataset. This assumption may
not be satisfied in aging datasets like Yamaha gender and
age (YGA) [12]. Collecting face dataset with individuals’

face images at several ages with some image quality may
not be possible. AAM cannot encode wrinkles on the
face since AAM only encodes image gray values without
spatial neighborhood information for texture pattern cal-
culation. Intensities of individual pixels cannot describe
local texture. This affects applicability of AGES for age
and age-group estimation since single pixel values can-
not represent local texture. Techniques like Gabor filter
[67] may be appropriate to encode wrinkle features on
elderly faces.

5.5 Agemanifold
In age manifold, a common aging pattern is learned from
images of many individuals and different ages. Several
face images are adopted to represent an age. Each sub-
ject may be represented by one image or several images
at different ages. These images make a set referred to as
a manifold which make up points in a high-dimensional
vector space. Age manifold learning face representation
offers flexible means of face representation as compared
to AGES [13]. Agemanifold [68] can be used to learn aging
pattern by learning low-dimensional aging pattern from
several faces at every age. Individuals may have as low as
one image at each age in the dataset which makes it sim-
pler to collect enormous facial aging dataset. Scherbaum
et al. [69] proposed statistical age estimation using mani-
fold learning on 3Dmorphable model. Isosurfaces of non-
linear support vector regression (SVR) function formed
the manifold, and aging pattern was found by identifying
a trajectory orthogonal to the isosurfaces. Discriminative
subspace learning based on manifold criterion for low-
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dimensional representation of aging manifold was pro-
posed by Guo et al. in [31]. Coded face representation and
age is learned by applying regression on aging manifold
patterns. This approach consisted of two support vec-
tor regression (SVR) with one used for rough age-group
estimation followed by refined age estimation within the
initially obtained age group.
Given age-ordered image space X = {xi : xi ∈ IRD}ni=1

with image dimension D and a vector L = {li : li ∈
IND}ni=1 of labels associated with the images in the image
space, the objective is to learn a low-dimensional manifold
in the embedded subspace, data distribution, and its rep-
resentation Y = {xi : xi ∈ IRD}ni=1 with d ≤ D, which is
a direct mapping to X. Therefore, image space to manifold
space projection can be modelled as Y = P (X, L), where
P(·) denotes the projection function which can be linear
or nonlinear. Figure 6 shows a simple nonlinear projection
function that models an image space into a 2D age man-
ifold. Respective ages are shown on the top-left corner of
each image.
The objective of manifold embedding is to find n × d

matrix P that satisfies Y = PTXX or directly find
Y where Y = {y1, y2 . . . , yn}, X = {x1, x2 . . . , xn},
P = {p1, p2 . . . , pn}, and d ≤ n . PCA, locally
linear embedding (LLE), and orthogonal locality pre-
serving projections (OLPP) are examples of techniques
used for dimensionality reduction and embedding man-
ifold. PCA finds the embedding that maximizes the
projected variance P = argmax|p|=1 PTp where
S = ∑n

i=1 (xi − x̄) (xi − x̄)T is the scatter matrix and x̄
is the mean of vector {xi}ni=1. LLE technique seeks a non-
linear embedding in a neighborhood-preserving way by
using local linear image class reconstruction symmetries
while seeking local reconstruction optimal weights. Based

on linear preserving projections (LPP), OLPP technique
produces orthogonal basis functions [70, 71] to find
additional discerning information for embedding. LPP
looks for the embedding that will preserve essential
manifold structure by measuring distance information
in local neighborhood. Affinity weights are defined as
sij = exp

( |xi−xj|2
t

)
where xi and xj are k nearest neigh-

bors of each other; otherwise, sij = 0 and sij is a
symmetric matrix. LPP similarly defines diagonal matrix
D

(
i, j

)
and a Laplacianmatrix L = D − S. LPP represents

age manifold well and performs better in age estimation
compared to traditional PCA.
There is a connection between age manifold and sub-

space analysis for aging patterns. This technique finds
embedded low-dimensional when each age is repre-
sented by many faces in the database. By using LPP for
manifold embedding, age labels can be incorporated to
the embedding process in a supervised manner which
improves results compared to PCA embedding. Age man-
ifold, unlike AGES [13], does not learn subject-specific
aging pattern; rather, it uses all available ages from dif-
ferent individuals. However, age manifold requires a large
dataset in order to satisfactorily learn the embedded
manifold.
Huang et al. [72] proposed a multi-manifold metric

learning (MMML) for face recognition based on image
sets. In MMML, several person-specific distance met-
rics in different manifolds are learned by modeling each
image set as a manifold minimizing intra-class variations
and maximizing inter-class manifold variations. Figure 7
shows the multi-manifold metric learning.
MMML could be applied to age estimation by group-

ing images at the same age into one set and learn distance

Fig. 6 Simple nonlinear age manifold
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Fig. 7Multi-manifold metric learning, originally shown in [72]

metrics between these sets. Each class (as shown in Fig. 7)
could consist of images at a particular age. The limitation
of age manifold models is that they are computationally
intensive.

5.6 Appearance models
Appearance models mainly model facial appearance using
texture, shape, and wrinkle features for age estimation,
face recognition, face verification, and gender estima-
tion among other tasks. Image is represented by vec-
toring both shape and texture [73]. Appearance models
are more like AAM [64] that builds a statistical
model using the shape and texture of the face. Both
global and local texture, shape and wrinkle features
are extracted and modelled for age estimation. Tex-
ture and shape have been used for age and gender
estimation [74, 75]. Age estimation using appearance
features can be improved by performing gender estima-
tion prior since males and females exhibit varied aging
patterns.
Given a set of facial images X = {xi : xi ∈ IR}ni=1 and

a vector of age labels X = {li : li ∈ IN}ni=1, facial features
are extracted from vector {xi}ni=1 of images at a particular
age. Every feature Fi has a one-to-one mapping with one
of the age label li. After features are extracted and associ-
ated with age label, they are used for age estimation either
using a regression model or classification. Effectiveness of
LBP [76] in texture characterization has made it popular

in extraction of appearance features for age estimation.
LBP has been used in [77] and achieved 80% accuracy in
age estimation with nearest neighbor classifier and 80–
90% accuracy with AdaBoost classifier [78]. Gao and Ai
[79] used Gabor filter [67] appearance feature extraction
technique for age estimation and reported better results
compared to LBP technique. BIF [80, 81] is also used in
appearance-based models as used in [82]. Using age man-
ifold, BIF and SVM classifier, MAE of 2.61 and 2.58 years
for females and males, respectively, can be achieved on
YGA database [11]. This shows BIFs’ superior perfor-
mance in age estimation. Spatially flexible patch (SFP)
proposed in [83, 84] is another feature descriptor that can
be used for characterizing appearance for age estimation.
Other techniques that can be used to build appearance
models for age estimation are linear discriminant analysis
(LDA) and principal component analysis (PCA). Detailed
description of these techniques is presented in Section 6.

5.7 Hybrid models
What is the best modeling approach for age estima-
tion? It is hard to certainly answer this question since
each of the modeling approaches discussed have their
inherent strengths and limitations. To get the answer to
the question, one may try different modeling approaches
on the representative images and compare their per-
formance. By comparing different modeling approaches,
strengths and limitations of each of the models can be
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found. Modeling approaches that are complementary of
each other can be combined to form a hybrid model-
ing approach. Hybrid age estimation modeling combines
several modeling techniques to take advantage of the
strengths of each technique used. By combining differ-
ent modeling techniques, age estimation accuracies are
expected to not only improve but also be robust. These
models could be combined in a hierarchical manner or
parallel and results from different models combined for
final age estimation.

6 Aging feature extraction techniques
6.1 Gabor filters
Originally introduced by Denis Gabor in 1946 [67], Gabor
filters have been extensively used for wrinkle, edge, and
texture feature extraction due to its capability of deter-
mining orientation andmagnitude of wrinkles [70]. Gabor
filter has been regarded as the best texture descriptor
in object recognition, segmentation, tracking of motion,
and image registration [71]. Gabor features have been
used in age estimation [27] and demonstrated to be an
effective texture descriptor compared to LBP. Since wrin-
kles appear as edge-like components with high frequency,
Gabor edge analysis technique has been commonly used
for wrinkle feature extraction. Sobel filter [85, 86], Hough
transform [74], and active contours [87] are among the
most commonly used texture edge descriptors. Though
edges in a face image also consist of noise such as beards,
mustache, hairs, and shadows, to reduce the effect of this
noise, [70] proposes use of predominant orientation of
wrinkles to be considered in wrinkle feature extraction.
2D spatial domain Gabor is defined as:

g (x, y) =
(

1
2πσxσy

)

exp
[

−1
2

(
x2

σ 2
x

+ y2

σ 2
y

)

+ 2π jWx
]

(3)

where σx and σy are the standard deviations of the dis-
tribution along x and y axes, respectively, and W is the
sinusoidal radial frequency.
The general equation for creating Gabor filter bank

could be expressed as:

gb (x, y) = a−mg (x̄, ȳ) (4)

where x̄ = x cos θ + y sin θ and ȳ = − x sin θ + y cos θ

where θk = π
(k−1)
n , k = 1, 2, 3 . . . n where n is

the number of orientations used and a−m is filter scale
for m = 0, 1, 2 . . . S for S scales. Redundancy in
the frequency domain is prevented by designing Gabor
wavelets as:

σu =

((
Uh
Ul

) 1
(s−1) − 1

)

Uh
((

Uh
Ul

) 1
(s−1) + 1

) √
2 ln 2

(5)

σv= tan
( π

2k

) [

Uh−2 ln
(

σ 2
u

Uh

)] [

2 ln 2− (2 ln 2)2 σ 2
u

U2
h

]0.5

where Ul and Uh denote lower and higher average fre-
quencies, respectively, andW = Uh. We refer readers to
[71] and [88] for more details on Gabor wavelets.

6.2 Linear discriminant analysis
Linear discriminant analysis (LDA) [89, 90] is a feature
extraction technique that searches for features that best
discriminate between classes. Given a set of indepen-
dent features, LDA creates a linear combination of these
features such that the largest mean differences between
classes are achieved. LDA defines two measures: within
class scatter matrix, given by

Sw =
c∑

j=1

Nj∑

i=1

(
xji − μ

) (
xji − μj

)T
(6)

where xji is ith sample of class j, μj is the mean of class j, c
is number of classes, and Nj is the number of samples in
class j, and between-class scatter matrix, given by

Sb =
c∑

j=1

(
μj − μ

) (
μj − μ

)T (7)

where μ is the mean of all classes. The LDA main objec-
tive is to maximize between-class scatter matrix while
minimizing within-class scatter matrix.
One way of doing this is maximizing the ratio det|Sb|

det|Sw| .
Given that Sw is nonsingular, it has been proven [89] that
this ratio is maximized when column vectors of projection
matrix are the eigenvectors of S−1

w Sb. Sw maximum rank is
N−cwithN samples and c classes. This therefore requires
N = t + c samples to guarantee that Sw does not become
singular, where t is the dimensionality of input data. The
number of samples N is almost always smaller than t,
making the scatter matrix Sw singular. To solve this prob-
lem, Belhumeour [91] and Swets and Weng [92] propose
projecting input data to PCA subspace, to reduce dimen-
sionality to N − c, or less, before applying LDA. PCA and
LDA are widely used appearance feature extraction meth-
ods in pattern recognition [93]. Consequently, we adopt
LDA for extraction of global face appearance features for
age-group estimation.

6.3 Local binary patterns
Texture features have been extensively used in age esti-
mation techniques [10]. Local binary pattern (LBP) is a
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texture description technique that can detect microstruc-
ture patterns like spots, edges, lines, and flat areas on
the skin [76]. LBP is used to describe texture for face
recognition, gender classification, age estimation, face
detection, and face and facial component tracking. Gunay
and Nabiyev [94] used LBP to characterize texture fea-
tures for age estimation. They reported accuracy of 80%
on FERET [77] dataset using nearest neighbor classifier
and 80–90% accuracy on FERET and PIE datasets using
AdaBoost classifier [78]. Figure 8 shows a sample of 3 × 3
LBP operation.
Concatenating all 8 bits gives a binary number. The

resulting binary number is converted to a decimal and
assigned to center pixel as its LBP code.
Ojala et al. [95] found that when using eight neigh-

bors and radius 1, 90% of all patterns are made up
of uniform patterns. The original LBP operator had
limitation in capturing dominant features with large-
scale structures. The operator was latter extended to
capture texture features with neighborhood of differ-
ent radii [95]. A set of sampling pixels distributed
evenly along the circle circumference centered at the
pixel to be labeled defines the neighborhood. Bilin-
ear interpolation of points that do not fall within the
pixels is done to allow any radii and any number of
sampling pixels.
Uniform patternsmay representmicrostructures as line,

spot, edge, or flat area. Figure 9 shows microstructure
pattern representation.
Ojala et al. [76] further categorized LBP codes as uni-

form and non-uniform patterns. LBP pattern with utmost
two bitwise transition from 0 to 1 or 1 to 0 is categorized
as a uniform pattern. For instance, 00000000, 00010000,
and 11011111 patterns are uniform while 01010000,
11100101, and 10101001 are non-uniform patterns. For
n-bit pattern representation, there is n(n − 1) + 2
uniform patterns. Figure 9 shows LBP codes for sample
uniform patterns in LBP(8, 1) neighborhood. In order to
extract rotational invariant features using LBP, the gen-
erated LBP code is circularly rotated until its minimum
value is obtained [96].

Extended LBP operator could capture more texture
features on an image but still it could not preserve spa-
tial information about these features. Ahonen et al. [97]
proposed a technique of dividing a face image into n
cells. Histograms are generated for each cell then con-
catenated to a single spatial histogram. Spatial histogram
preserves both spatial and texture descriptions of an
image. Image texture features are finally represented by
histogram of LBP codes. LBP histogram contains detailed
texture descriptor for all structures on the face image
like spots, lines, edges, and flat areas. More details on
the use of LBP on facial image analysis could be found
in [76, 96–98].

6.4 Local directional pattern
Local binary patterns (LBP) [99] were found to be unsta-
ble to image noise and variations in illumination. Jabid et
al. [100] proposed local directional pattern (LDP) which
is robust to image noise and non-monotonic variations in
illumination. Figure 10 shows robustness of LDP operator
to noise compared to LBP.
LDP computes 8-bit binary code for each pixel in the

image by comparing the edge response of each pixel
in different orientations instead of comparing raw pixel
intensities as LBP. Kirsch edge detector [101], Prewitt edge
detector [102], and Sobel edge detector [103] are some of
the edge detectors that can be used [104]. Among them,
the Kirsch edge detector has been known to detect dif-
ferent directional edge responses more accurately than
others because the Kirsch edge detector considers all eight
neighbors [105]. Figure 11 shows Kirsch edge detector
response masks (kernels) for eight orientations.
Given a center pixel in an image P

(
i, j

)
, 8-directional

responses are computed by convolving the neighboring
pixels, 3 × 3 image region, with each of the Kirsch
masks. For each center pixel, there will be eight directional
response values. The presence of an edge or a corner will
show high (absolute) response values in that particular
direction. The interest of LDP is to determine k signifi-
cant directional responses and set their corresponding bit
value to 1 and set the rest of 8 − k bits to 0. These binary

Fig. 8 a–c LBP operation with P = 8, R = 1
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Fig. 9 a–eMicrostructure pattern LBP code with P = 8, R = 1

bits are converted to decimal and assigned to the center
pixel. This process is repeated for all pixels in an image to
obtain LDP representation of the image. Figure 12 shows
the process of encoding an image using LDP operator.
Given an image region as shown in Fig. 12a, LDP

response in the east direction is obtained by convolving
the 3 × 3 image region shown in Fig. 10 with the East M0
mask shown in Fig. 11 top-left corner as:

M0 = (85 × −3) + (32 × −3) + (26 × 5) + (10 × 5) +
(45 × 5) + (38 × −3) + (60 × −3) + (53 × −3)

= − 399
(8)

The absolute values of the directional responses are
arranged in descending order. For k = 3 significant
responses, the binary response bit for each of the eight
neighboring pixels shown in Fig. 12b is calculated as:

LDPk =
i=7∑

i=0
bi

(
(mi − mk) × 2i

)

bi(a) =
{ 1, if a ≥ 0

0, if a < 0

(9)

where mk is the kth significant directional response,
example in Fig. 12 mk = | − 399|, and mi is response of
Kirsch maskMi.

Fig. 10 a, b Robustness of LDP compared to LBP
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(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)
Fig. 11 a–f Kirsch edge response masks in eight directions

For k = 3, LDP operator generates C8
3 = 8!

3!×(8−3)! = 56
distinct values in the LDP encoded image. The resultant
histogram will have values between 0 and 56. A histogram
H(i)withC8

k bins can be used to represent the input image
of sizeM × N as:

H(i) =
M∑

m=0

N∑

n=0
f (LDPk (m, n) , i)

f (p, i) =
{ 1 if p = i

0 if p �= i

(10)

where f (p, i) is a logical function that compares if the LDP
code at location p (m, n) of the LDP-encode image is equal
to the current LDP pattern i for all i in the range 0 ≤ i ≤
C8
k . The resultant histogram has dimensions 1 × C8

k and
is used to represent the image. The resultant feature has
spots, corners, edges, and texture information about the
image [106].

6.5 Local ternary patterns
LBP is sensitive to noise and illumination especially in
nearly uniform image blocks. Local ternary patterns (LTP)
[107] seek to improve robustness of image features in a
fairly uniform region. LTP extends LBP to a three-value
code by comparing pixel values of the neighboring pix-
els with a preset threshold value τ . Values that lie within
± τ are set to 0, values above τ are set to + 1 while val-
ues below τ are set to − 1. The thresholding function is
defined as

f (xi, xc, τ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if xi ≥ xc + τ

0 if |xc − xi| < τ

−1 if xi ≤ xc − τ

(11)

where τ is a preset threshold, xc is the value of the cen-
tral pixel, and xi for i = 0, 1, 2 . . . 7 are the neighboring
pixels of xc. Although this extension makes LTP robust to

Fig. 12 Process of encoding an image with LDP operator k = 3 a Result of convolving image region with masks in Figure 11. b Setting bit values of k
significant values to 1 and the rest to 0. c Resultant binary string and its decimal representation
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noise and encode more patterns, it is not easy to practi-
cally select an optimum τ for all images in a dataset or for
all datasets, and the resultant code is not invariant to pixel
value transformations. LTP can encode 38 patterns. The
LTP codes are split into its positive and negative parts and
two histograms are generated, one for the negative part
and the other for the positive part. These histograms are
concatenated and used as feature descriptor for pattern
recognition. Figure 13 shows LTP codes for a 3×3 sample
image region.

6.6 Gray-level co-occurrence matrix
Statistical moments of histogram intensities of an image
are commonly used to describe texture of an image [108].
Use of histograms to describe texture results to tex-
ture descriptors that convey information about gray-level
intensity distribution with no spatial relative information
of pixel with each other. Haralick et al. [109] introduced
gray-level co-occurrence matrix (GLCM) back in 1973.
GLCM describes image texture by comparing each pixel

with its neighboring pixel at a specified distance and ori-
entation. This technique extracts second-order statistical
texture features from grayscale images. GLCM is a square
matrix whose rows and columns are equal to the num-
ber of quantized gray levels, Ng . The entry p

(
i, j

)
is the

second-order statistical probability for changes between
gray level values i and j at a particular distance d and
orientation θ .

Fig. 13 a–d LTP code with τ = ± 5 and corresponding positive
and negative LBP codes

Supposed we have an N × N image I
(
i, j

)
, with Nx

columns and Ny rows. Ng is quantization of gray level
appearing at each pixel in the image. Let the rows of
the image be Ny = (

1, 2, . . .Ny
)
, the columns be

Nx = (1, 2, . . .Nx), and set ofNg quantized gray levels be
Gx = (

1, 2, 3 . . .Ng−1
)
. The image can be represented as

a function that assigns some gray level in G to each pixel
or pair of coordinates in Ly × Lx;G ← Ly × Lx. Texture
information is specified by GLCM matrix of relative fre-
quencies C

(
i, j

)
. The value at GLCM

(
i, j

)
represents the

number of occurrences of gray-level value i at reference
pixel and gray-level value j at a neighbor pixel, a certain
distance d, and orientation θo. The probability measure
can be defined as:

Pd,θ = p
(
i, j

)
(12)

where p
(
i, j

)
is defined as:

p
(
i, j

) = GLCM
(
i, j

)

∑N
i=0

∑N
j=0GLCM

(
i, j

) (13)

The sum in the denominator represents total number of
gray-level pairs

(
i, j

)
within the image and is bounded by

Ng × Ng . Dividing every pixel in the GLCM matrix with
the denominator results into a normalized GLCMmatrix.
Figure 14 shows an example of calculating GLCM from
an image region at distance 1 and angle θ = 0◦, and
Fig. 15 shows an example of calculating GLCM from an
image region at distance 1 and angle θ = 45o.
The orientation of the neighbor pixel from reference

pixel can be θ = (0o, 45o, 90o, 135o), and distance can vary
from d = (1, 2, 3 . . . n) where n is any reasonable distance
bounded byMx andMy.
Haralick et al. [109] defined 14 statistical features that

can be used to describe texture. Table 1 shows some of the
Haralick features used for texture description [110] where:

μx =
∑

i

∑

j
ip

(
i, j

)

μy =
∑

i

∑

j
jp

(
i, j

)

σx =
√∑

i

∑

j
(i − μx)

2 p
(
i, j

)

and

σy =
√∑

i

∑

j

(
j − μx

)2 p
(
i, j

)
(14)

Harlick features have been successfully used in brain
tumor classification [111], texture description [112], and
remote sensing [113] among other fields. GLCM has not
been investigated in aging feature extraction. Haralick fea-
tures like homogeneity, variance, and correlation could
be extracted from age-separated faces and used for age
estimation.
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Fig. 14 a, b GLCM calculation with d = 1, θ = 0o . The figure shows how GLCM at angle 0 is calculated. The figure is supplied as glcm0.jpg

6.7 Spatially flexible patch
The spatially flexible patch (SFP) proposed in [83] and [84]
is another feature descriptor that can be used for feature
extraction for age estimation. SFP is effective for captur-
ing local variations in facial appearance as one ages. SFP
encodes local appearance and its spatial information. SFP
solves the problem of local variations in appearance dur-
ing aging since SFPs similar in appearance and slightly
different in position can provide similar confidence for age
estimation. By considering local patches and their spatial
information, SFP can effectively characterize facial images
with slight disorientation, occlusion, and head pose dis-
parities. Another advantage of SFP is that it alleviates the
problem of insufficient samples by enriching the discrim-
inating characteristics of the feature vector.

6.8 Grassmannmanifold
Grassmann manifold is the space G (k, n) of all k-planes
through the origin in IRn, k ≤ n that generalizes real pro-
jective spaces [114]. It consists of a set of all k-dimensional
subspaces of IRn. To each k-plane v in IRn, a matrix n × k
can be associated with orthogonal matrix Y, such that

columns of matrix Y form an orthonormal basis vector
that spans the same subspace. Therefore, each k-plane v
in G (k, n) is connected with a correspondence class of
n × k matrices YR in IRn×k , for IR ∈ SO(k), where Y is
an orthonormal basis for the k-plane. G (k, n) is not a vec-
tor space, but points on G (k, n) can be projected onto the
tangent space at mean-point, and standard vector-space
methods can be used on tangent space. Geodesic distance
between points on the manifold are used for classification
or regression problems. Wu [115] used Grassmann mani-
fold tangent-space regression approach for age estimation.
Grassmann manifold can be used in age estimation by

representing each face by a deformation that warps an
average face to a given face. This requires defining what
an average face is and how to quantify the deformation
between the average face and the given face. Average face
can be represented by computing a mean point from all
the (landmark) points on G (k, n). This can be done by
calculating Karcher mean [116]. Age estimation can be
performed using the Grassmann nearest neighbor (GNN)
classification approach. In GNN, Karcher mean is com-
puted for every age. During testing, compare the Karcher

Fig. 15 a, b GLCM calculation with d = 1, θ = 45o . This figure shows how GLCM is calculated. The figure is supplied as glcm45.jpg file
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Table 1 Summary of Haralick features

Feature name Feature description Feature formula

Angular second moment (ASM) Shows how uniform a texture is by measur-
ing local homogeneity

ASM = ∑
i
∑

j p (i, j)2

Energy (E) Measures homogeneity E =
√∑

i
∑

j p (i, j)2

Contrast (C) Shows variation in texture C = ∑
i
∑

j |i − j|2p (i, j)

Dissimilarity (D) Variation in texture D = ∑
i
∑

j |i − j|p (i, j)

Homogeneity (H) Uniformity of non-zero entries H = ∑
i
∑

j
1

1+(1−j)2
p (i, j)

Entropy (En) Spatial disorder of texture En = ∑
i
∑

j p (i, j) log (p (i, j))

Correlation (Cr) Linear relationship of texture Cr = ∑
i
∑

j p (i, j)
(i−μx)(j−μy)

σxσy

Autocorrelation (ACr) Measure repeating patterns ACr = ∑
i
∑

j (i · j) p (i, j)

Variance (V) Measure of texture heterogeneity V = ∑
i
∑

j (i − μx)
2 · p (i, j) + ∑

i
∑

j

(
i − μy

)2 · p (i, j)

Cluster shade (Cs) Measure perceptual uniformity Cs = ∑
i
∑

j

(
i + j − μx − μy

)3
p (i, j)

Cluster prominence (Cp) Measure image symmetry Cp = ∑
i
∑

j

(
i + j − μx − μy

)4
p (i, j)

Maximum probability (Mp) Maximum co-occurrence Mp = max p (i, j)

mean of the probe image with the mean of every age using
one defined distance on Grassmann manifold. The closest
mean to the probe gives the target age.

6.9 Biologically inspired features
Biologically inspired features (BIFs) were first proposed in
1999 by Riesenhuber and Poggio (R and P model) [80].
These BIF features are derivative of primates feed-forward
model of visual object recognition pipeline, referred to as
HMAXmodel [117]. Primates are known to be able to rec-
ognize visual patterns with high accuracy. Recent studies
in computer vision and brain cognition show that biolog-
ically inspired models (BIM) improve face identification
performance [118], object recognition [119], and scene
classification [120]. Visual cortex application in age esti-
mation tasks saw some improvement in age estimation
accuracies.
The visual model of primates contains alternating lay-

ers of simple (S) and complex (C) cell units. Complexity
of these cells increase as layers advance from primary
visual cortex (V1) to inferior temporal cortex (IT). In
primary visual cortex, S units use a bell-shaped tuning
function to combine input intensities to increase scale
and orientation selectivity. UsingMAX, STD, AVG, or any
other pooling operation, C units pool inputs from S units,
thereby introducing gradual invariance to scale, rotation,
and translation.
Gabor functions [121, 122] are used to model simple

cells (S) in the visual cortex of mammalian brains. Fre-
quencies and orientation illustration in Gabor filters are
alike to frequencies and orientations in human visual sys-
tem. It is therefore thought that Gabor filter image analysis
is similar to perception in visual system of humans. BIFs
have demonstrated success in age estimation tasks [82,
123, 124]. BIF feature extraction encompass two layers of

computational units with simple cell units (S1) in layer
one followed by complex cell units (C1) in the subsequent
layer.
S1 units—simple cells: They represent the recep-

tive field in primary visual cortex (V1) [121] which
has basic attributes of multi-orientation, multi-frequency,
and multi-scale selection [125]. S1 units are commonly
described by a bank of Gabor filters [81]. Gabor filters are
appropriate for modeling of cortical simple-cell receptive
fields. 2D spatial domain Gabor is defined as:

G(x, y) = exp
(

−X2 + γ 2Y 2

2σ 2

)

× cos
(
2π
λ
X

)

(15)

where X = x cos θ + y sin θ and Y = − x sin θ + y cos θ

are angle of rotations of Gabor filters, θ varies from 0 to
π , γ and σ are aspect ratio and standard deviation of the
Gaussian envelop, respectively, and λ is the wavelength
and determines spatial frequency 1/λ.
Useful discriminating features are extracted using

Gabor filters with different orientation and frequencies
[126]. Consequently, previous studies [126, 127] suggest
that spatial frequency processing is done in primary visual
cortex. Spatial frequency analysis extracts discriminative
features that are more robust to distortions [128]. Daug-
man [129] found that visual system in primates extracts
information both in 2D spatial and frequency domains,
and Shapley [38] proved that spatial frequency analysis
help the brain understand an image.
C1 units—cortical complex cells: These units receive

responses from S1 units and perform linear feature inte-
gration. C1 units represent complex cells that are shift
invariant. Lampl et al. [130] proposed that spatial inte-
gration of complex cell in visual cortex can be described
by a series of pooling operations. Riesenhuber and Poggio
[80] demonstrated merits of using MAX pooling operator
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compared to SUM while Guo et al. [82] showed that stan-
dard deviation (STD) pooling operator outperformsMAX
operator. Cai et al. [125] improved on STD by using a cell
grid of 4 × 4 in normalization. TheMAX operator returns
maximum values at each index i of the two consecutive
scale features. Given a feature at scale Sx and scale Sx+1,
the maximum value Fi at index i is given by:

Fi =
⎧
⎨

⎩

Six, if Six ≥ Six+1

Six+1, if Six+1 < Sx
(16)

where Six and Six+1 are the filtered values at the position i
of features from scale x and x + 1 respectively.
Guo et al. [82] defined the STD operator to incorporate

mean of values in a particular neighborhood. The STD
operator was defined as:

STD =
√
√
√
√ 1

ns × ns

ns×ns∑

i=1

(
Fi − F̄

)
(17)

where maximum value at index i between two consecutive
S1 scales is represented by Fi and F̄ is the mean of filtered
values within ns×ns neighborhood. Given twoN × N fea-
tures at scales Sx and Sx+1, STD operator with ns ×ns grid
returns 
N/ns� × 
N/ns� features. STD operator captures
local texture and wrinkle variations which are significant
for subtle age estimation.
Serre et al. [81, 131] extended the HMAX model [80] to

include two layers, S2 and C2 for object recognition. In S2,
template matching is done to match patches from C1 layer
with some pre-learned patches extracted from images.
The S2 layer gets more selective intermediate features
capable of discriminating between object classes. The S2
units are convolved over an entire image, and maximum
response values of S2 are assigned to C2 units. Mutch and
Lowe [132] extended the model in [81] by reducing the
number of output units in S1 and C1 and picking fea-
tures that are highly weighted by support vector machines
(SVMs) [133].

7 Age estimation algorithms
Once aging features are extracted and represented, the
subsequent phase is age estimation. Age estimation is a
special patter recognition task where age labels can be
viewed as a class or a set of sequential value. When age
labels are viewed as classes, age estimation is approached
as a classification problem, whereas when age labels
are viewed as sequential chronological series, regression
approach is used for age estimation. Hybrid approach can
also be employed for age estimation where both clas-
sification and regression techniques integrated, mostly
hierarchically, to find the relationship between extracted
feature vectors and age labels. We present an analysis of

existing approaches and suggest an effective approach in
our opinion.

7.1 Classification
Lanitis et al. [23] explored the performance of nearest
neighbor, artificial neural network (ANN), and quadratic
function in age estimation tasks. Although the quadratic
function used to relate face representations to face labels
is a regression function, the authors referred to it as
a quadratic function classifier [23]. The quadratic func-
tion reported MAE of 5.04, which was superior to MAEs
reported by nearest neighbor. ANN and self-organizing
maps (SOMs) reported better performance compared to
quadratic function. The authors proposed clustering and
hierarchical age estimation for improving performance.
The error rates in the extended techniques reduced
although evaluations were done on small datasets. Com-
parison between humans and computers in age estimation
was also done and found that computers can estimate age
almost as reliable as humans.
Ueki et al. [134] built 11 Gaussian models in low-

dimensional 2DLDA and LDA feature space using expec-
tation maximization (EM). Age-group estimation was
determined by fitting probe image to each cluster and
comparing the probabilities. They reported a higher accu-
racy, 82% male and 74% female, with wide age groups
of 15 years as compared to 50% male and 43% female
in age groups of a 5-year range. This demonstrates that
this approach can only post better accuracies where age
groups have wide ranges and hence not applicable in a
narrow-range age-group estimation.
Fusing texture and local appearance, Huerta et al. [135]

used a deep learning classification for age estimation.
Using LBP [95], speeded-up robust features (SURF) [136],
and histogram of oriented gradients (HOG) [137], he eval-
uated the performance of deep learning on two large
datasets and achieved MAE of 3.31. Hu et al. [138] used
Kullback-Leibler/raw intensities for face representation
before using convolutional neural network (CNN) for age
estimation. Their approach achieved MAE of 2.8 on FG-
NET and 2.78 onMORPH II. This demonstrates that deep
learning (deep neural networks or CNN) achieves better
MAE compared to traditional classification methods.

7.2 Regression
Using 50 raw model parameters, Lanitis et al. [66] inves-
tigated linear, quadratic, and cubic formulation of aging
function. Genetic algorithm is used to learn optimal
model parameters from training face images of different
ages. Quadratic and cubic aging function achieved bet-
ter MAE 0.86 and 0.75, respectively, compared to 1.39
of linear function. This suggests that quadratic function
offers the best alternative since its MAE was not signifi-
cantly different from that of cubic function and it is not
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computationally intensive as cubic function. Guo et al.
[31, 139] used linear support vector regression (SVR) on
age manifold for age estimation. They reported MAE of
7.47 and 7.00 years for males and females, respectively,
on YGA dataset and MAE of 5.16 on FG-NET dataset.
Yan et al. [140] formulated a regression problem for age
estimation using semidefinite programming (SDP). The
regressor was learned from uncertain nonnegative labels.
They reported MAE of 10.36 and 9.79 years for males and
females, respectively, on YGA. They further demonstrated
that age estimation by SDP formulation achieves better
results compared to ANN. The limitation of SDP is that it
is computationally expensive especially when the training
set is large.
Nguyen et al. [141] used a regression model for age esti-

mation. The face image was represented by a multi-level
local binary pattern (MLBP). Their approach achieved a
MAE of 6.6. Guo and Mu [124] achieved a MAE of 4.0
by using BIF to model a regression model for age estima-
tion. Using manifold of raw pixel intensities to represent
face image, Lu and Tan [142] evaluated their regression
model on MORPH II dataset and obtained a MAE of 5.2
for White ethnic group and 4.2 for Black ethnic group.
Onifade et al. [143] applied a boosted regressor on age-
rank local binary patterns (arLBP). They reported a MAE
of 2.34 on FG-NET using LOPO validation protocol. Their
approach demonstrated that age ranking with correlation
of aging patterns across age groups improves performance
of age estimation. Using raw pixel features, Akinyemi
and Onifade [144] investigated ethnic-specific age group
ranking for age estimation. This approach learns ethnic
parameters in addition to the parameters learned in [143].
They evaluated this technique on FG-NET and FAGE
datasets and reported a MAE of 3.19 years. Their find-
ings show that incorporating ethnic parameters improves
performance of age estimation approaches. This could be
attributed to the fact that people in different ethnic groups
age differently.

7.3 Hybrid approach
As discussed in the preceding sections, age estimation
task can be approached as either a classification or a
regression problem. To choose between the two, one may
perform an experiment by selecting representative classi-
fiers and regressors to compare their performance on the
same dataset using the same features. Guo et al. [31, 139]
compared SVM classifier to SVR regressor. This experi-
ment showed that SVM performs better compared to SVR
on YGA dataset with SVM achieving a MAE of 5.55 for
females and 7.00 for males while SVR achieving 5.52 for
females and 7.47 for males. It was also reported that SVM
performed poorly on FG-NET compared to SVR (MAE
7.16 against 5.16 years). This experiment shows that clas-
sification approach to age estimation may perform better

or worse than regression approach depending on other
aspects like quality of images in the dataset used, fea-
ture selection and feature extraction techniques used, and
distribution of images across ages among other factors.
Combining classification and regression may result

into robust and more accurate age estimation systems.
Guo et al. [31, 139] therefore proposed age estimation
using locally adjusted robust regression (LARR). LARR
first performs regression using all existing aging images.
Regression results are then used to limit a classifier with
small search range. They demonstrated that better age
estimation performance can be achieved by combin-
ing classification and regression schemes. By combining
regression and classification, the MAE improved to 5.30
and 5.25 years for females and males, respectively, on
YGA dataset and 5.07 on FG-NET dataset. The limita-
tion of LARR method [139] is that it cannot automatically
determine local search range for a classifier. The range
is determined by heuristically trying different ranges and
requires the user to experimentally choose the best solu-
tion. To automatically determine limited search range,
Guo et al. [145] proposed a likelihood-based approach for
combining classification and regression outcomes. Using
a uniform distribution, regression results are transformed
into likelihoods, then likelihoods from classification out-
come are cut off by the uniform distribution. This further
improved accuracies by achieving MAE 5.12 and 5.11
for males and females, respectively, on YGA and 4.97 on
FG-NET.
Gunay et al. [146] represented aging face by fusing

AAM, LBP, and Gabor features. They used an ensemble
of three SVMs arranged in a hierarchical manner to build
an age estimation model. The first step of their model was
to perform age-group estimation by SVM classification.
A linear regression was then performed to estimate age
within the age group. Their approach achieved a MAE of
4.13 on FG-NET. These results show that feature and deci-
sion fusion used in a hybrid hierarchical age estimation
can improve estimation errors compared to classification
approaches.
Han et al. [147] performed hierarchical demographic

estimation and compared machine and human perfor-
mance. They extracted BIF features and demographic
informative features using a boosting algorithm. They
then perform a hierarchical age estimation using between-
group classification followed by within group regression.
Evaluating this technique on MORPH II and FG-NET,
they achieved MAE of 3.6 and 3.8 on MORPH II and
FG-NET datasets, respectively. Choi et al. 2011 [70] used
AAM, Gabor, and LBP to represent face image. Their
hybrid age estimation model achieved a MAE of 4.7 on
FG-NET, 4.3 on PAL, and 4.7 on BERC datasets.
Hybrid approach to age estimation demonstrates bet-

ter performance compared to regression and classification
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when used alone. To combine classification and regres-
sion, one may test extracted features on both techniques
separately before combining them. Arrange regression
and classification in an arbitrary hierarchical order and
compare performance when regression is done before
classification and when done after classification.

8 Facial aging databases
Precise age and age-group estimation requires a database
with good quality facial images at different ages. It is hard
to collect a large aging database with a series of chrono-
metric images from an individual. Age and age-group
estimation often uses databases early collected and pub-
lished. Brief descriptions of these databases are found in
[11]. Table 2 gives the summary of some of the aging
databases available.
FG-NET, MORPH, and web-collected Gallagher’s

databases are publicly available. Other databases can
be found by contacting the owners. MORP, Ni’s, YGA,
LHI, and Gallagher’s web-collected databases are large
databases and well suited for regression-based age esti-
mation using statistical algorithms like AAM and age
manifold. FG-NET is a suitable database for evaluations
with several age estimation methods like AGES. AI & R,
LHI, and Iranian datasets comprise comparatively high
resolution 2D face images. Other datasets stated here
were not extensively used but may be appropriate for
some application areas.

8.1 FG-NET aging database
FG-NET [21] contains 1002 both color and grayscale
images of 82 individuals from age 0 to 69 years. Each indi-
vidual has averagely 12 images. Images are collected from

multi-race subjects and have great inconsistencies in head
pose, facial expression, and illumination. Some images
have adverse condition because they were scanned. There
are 68 landmark points provided which can be used to
model facial shape. Age features can be modelled as AAM
or as appearance model using texture and wrinkle fea-
tures.

8.2 MORPH database
MORPH [148] is a publicly available aging database cre-
ated by the Face Aging Group at the University of North
Carolina. This dataset is split into two sets. Album 1
has 1724 images collected between 1962 and 1998 from
515 individuals. Images in this dataset range from 27
to 68 years. There are 1430 images for males and 294
images for females with age gap ranging from 46 days
to 29 years. Set 2 contains 55,134 images of 13,000
individuals collected over 4 years. Both albums con-
tain metadata for race, gender, date of birth, and date
of acquisition. The eye coordinates of the dataset can
be requested. A commercial version of album 2 con-
tains a larger set of images collected over a longer time
span and includes information like the height and weight
of individual.

8.3 Yamaha gender and age (YGA) database
YGA [12, 68] database has 8000 high-resolution colored
images of 1600 individuals consisting of 800 males and
800 females of Asian race, aged between 0 and 93 years.
Each subject has approximately five nearly frontal face
images at the same age and a label of his or her approx-
imated age. The images have high variations in expres-
sion, illumination, and facial expression. Haar cascade face

Table 2 Summary of facial aging databases

Database No. of subjects Database size Age range (years)

FG-NET [21] 82 1002 0–69

MORPH [148] 13,618 55,134 27–68

Yamaha gender and age (YGA) [12, 68] 1600 8000 0–93

Waseda human-computer interaction technology [134] 26,222 5500 3–85

AI & R Asian [150] 17 34 22–61

Burt’s Caucasian Face database [151] – 147 20–62

Lotus Hill Research Institute (LHI) database [152] – 50,000 9–89

Human and object interaction processing (HOIP) [11] 300 306,600 15–64

Iranian face database [153] 616 3600 2–85

Gallagher’s Web-Collected database [4] – 28,231 0–66

Ni’s Web-Collected database [154, 155] – 219,892 1–80

Kyaw’s Web-Collected Database [156] – 963 3–73

BERC database [214] 95 5910 3–83

3D morphable database [69, 157] 438 – –
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detector [149] is used to crop and resize images to 60× 60
grayscale patches.

8.4 WIT-DB database
Waseda human-computer interaction technology [134]
dataset consists of 12,008 face images of 2500 females and
about 14,214 images of 3000males from the Japanese race,
with age ranging between 3 and 85 years. The ages are
arranged in 11 non-overlapping age groups. The dataset
has wide variations in illumination on unoccluded frontal
view faces with neutral facial expression. Face images are
cropped and resized to 32 × 32 grayscale patches.

8.5 AI & R Asian face database
AI & R Asian [150] dataset contains images of different
expressions, ages, poses, and illuminations. There are 34
frontal-view images collected from 17 individuals with
ages ranging from 22 to 61 years. There are averagely two
images per individual making this database not suitable
for age or age-group estimation.

8.6 Burt’s Caucasian face database
This was collected and used in [151] by Burt and Perrett to
investigate visual cues to age by blending color and shape
of facial components. The database contains 147 images
of European males aged between 20 and 62 years. Faces
had neutral expression with beards shaved with no glasses
andmakeups. There are 208 landmark points placedman-
ually in standardized positions. These points can be used
to encode facial shape.

8.7 LHI face database
Lotus Hill Research Institute (LHI) database contains
50,000 images of Asian adults at different ages. The images
have slight dissimilarities in pose and lighting. Part of
this database was used in [152] by Suo et al. to model a
hierarchical face model for age estimation. The part used
consists of 8000 color images of individuals aged between
9 and 89 years with one image per person. This database
could not be appropriate for subject-based age estimation
since it does not provide multiple face images of the same
individual at different ages.

8.8 HOIP face database
Human and object interaction processing (HOIP)
database consists of 306,600 images of 300 individuals
aged between 15 and 64 years. The database is divided
in 10 age groups. Each age group has got 30 subjects, 15
females and 15 males [11].

8.9 Iranian face database
Iranian face database [153] has 3600 color images from
616 individuals aged between 2 and 85 years of which 487
are males and 129 females. The images have variations in

pose and facial expression. At least one image with glasses
was also taken. Majority of the images are of subjects in
the age group of 1–40 years. This database can therefore
be appropriate in modelling aging and age estimation in
formative and middle-age years.

8.10 Gallagher’s web-collected database
This database was collected by Gallagher and Chen [4]
from Flickr.com image search engine. The database has
28,231 faces in 5080 images. It divided into seven age
groups as 0–2, 3–7, 8–12, 13–19, 20–36, 37–65, and 66+.
This dataset is suitable for age-group estimation although
the age groups are wider in older ages.

8.11 Ni’s web-collected database
This database was collected from the web by Ni et al.
[154, 155] using Google.com and Flickr.com image search
engines. The database has 219,892 faces in 77,021 images
with age range between 1 and 80 years. This is the largest
aging database ever reported. The wide age range in this
database makes it suitable for age estimation in child,
adult, and old age groups.

8.12 Kyaw’s web-collected database
This database was collected from the web by Kyaw et al.
[156] using API services provided by Microsoft Search
Engine Bing. The images in the collected database are
aligned with eye corner points captured manually and
cropped to 65 by 75 patches. The database contains 963
images divided in four age groups of 3–13, 23–33, 43–53,
and 63–73. The database is not appropriate for age-group
estimation since there are missing images between age
groups.

8.13 BERC database
BERC database [70] was collected by the Biometric Engi-
neering Research Center (BERC). The database contains
images of 390 subjects with age ranging from 3-83 years.
Images are of high resolution 3648 × 2736 pixels. There
are no variations in light and facial expression on all
the images, and subjects are uniformly distributed with
respect to age and gender. These make the database suit-
able for age estimation, although it is comparatively small.

8.14 3Dmorphable database
The database contains 3D scans of 100 male adults and
100 female adults’ faces and 238 teenage faces aged
between 8 and 16 years consisting of 113 females and 125
males [69, 157]. All faces were without makeup, acces-
sories, and facial hair. In 3D morphable face models,
individual faces are represented as face vector in 3D. By
caricaturing texture and shape feature vectors, the model
can transform one’s face. As one ages, each face will trans-
form along a curved trajectory in a high dimensional
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space. Faces are represented by shape and texture vectors
such that each linear combination of different faces is a
new realistic face.

8.15 Summary
FG-NET, MORPH, and web-collected Gallagher’s
databases are publicly available. Other databases can
be found by contacting the owners. MORP, Ni’s, YGA,
LHI, and Gallagher’s web-collected databases are large
databases and well suited for regression-based age esti-
mation using statistical algorithms like AAM and age
manifold. FG-NET is a suitable database for evaluations
with several age estimation methods like AGES. AI &
R, LHI, and Iranian datasets comprise comparatively
high-resolution 2D face images. Other datasets stated
here were not extensively used but may be appropriate for
some application areas.

9 Age estimation evaluation protocols
Evaluation protocol determines system test, criteria for
test data selection, and system performance measure. A
good validation strategy should be independent of train-
ing data and representative of the population from which
it has been drawn [158]. Age estimation technique needs
to be validated using previously unseen data to avoid over-
fitting age estimation technique and improve its general-
ization capability. Cross-validation is a popular strategy
for age estimation evaluation. In cross-validation, data is
split into two subsets; one segment is used to train or learn
age estimation model and the other segment is used to
validate or evaluate the model. In classic cross-validation,
training and validation datasets must cross-over in con-
secutive rounds such that every data point has equal
chance of being validated or evaluated against the other.
The basic form of validation is holdout.
Holdout strategy is the simplest and computational effi-

cient strategy [159] used for validating age estimation
techniques. The dataset is randomly split into two sets:
training subset and validation subset. Commonly, training
subset consists of two thirds of the original data, and the
remaining one-third samples constitute validation subset.
Age estimationmodel is then fitted using the training sub-
set and validated on the test subset. In this strategy, the
model is trained and validated only once. Although this
method is preferred and takes a shorter time to compute,
its evaluation depends on the data in respective subsets
and results into high variance hence making this strat-
egy give different evaluation results depending on how the
dataset is divided [160]. Another validation strategy com-
monly used is repeated random sub-sampling (RSS) [161,
162]. In RSS validation technique, the holdout strategy
is iterated a number of times and results averaged. The
dataset is randomly split into two subsets (train and val-
idation) with a fixed number of samples for each phase

of validation. For each data split, age estimation model
is retrained on train subset and validated using test sub-
set. The advantage of this strategy over k-fold validation
is that the size of training and validation is independent
to the number of validation iterations. However, this strat-
egy has a limitation such that some samples may never
be selected for validation while other samples may be
selected repetitively leading to overlapping of validation
subsets [163]. But with a significantly large number of iter-
ations done, RSS is likely to achieve better results as k-fold
validation [164].
Cross-validation [163] is a standard statistical technique

used for model generalization ability with wide applica-
tion in classification and regression problems [165]. It
involves dividing dataset into two subsets, one subset is
used to train an estimator while the other subset is used to
test an estimator [166]. Cross-validation is used to assess
how a model generalizes to initially unseen data [163,
167]. Cross-validation strategies can be categorized into
two: (i) exhaustive (compute all possible ways of data split-
ting) and (ii) non-exhaustive (does not compute all pos-
sible ways on data splitting). Exhaustive cross-validation
algorithms include leave-one-out (LOO) and leave-p-out
(LPO) while non-exhaustive include k-fold and repeated
random subsampling (RSS) [160, 168]. Cross-validation
[169] consists of averaging multiple holdout validation
results from different subsets of data.
k-fold cross-validation is the basic form of cross-

validation. Other forms of cross-validation are just but
special cases of k-fold cross-validation or involve repeated
rounds of k-fold validation. In k-fold cross-validation
[169], original data is randomly split into k equal subsets.
Then, k iterations of training and validation are performed
such that in every iteration, a different fold of data is
reserved for validation while the remaining k − 1 are used
to learn a model. The estimated error is the mean of all
validation errors. Standard deviation of these errors can
be used to approximate the confidence range of the esti-
mate. The main advantage of k-fold cross-validation is
that eventually all samples will be used for both learn-
ing and validating models. The common value of k used
in various techniques is 10 as a compromise between
efficiency and accuracy. A stratified cross-validation is
commonly used in order to improve accuracy of the
estimation [163].
Leave-one-out (LOO) [166, 169, 170] is a special type of

cross-validation that given a dataset with C classes, C − 1
validation experiments are performed. For each experi-
ment, data from C − 1 classes is used for training and
data from one class that was left out is used for validation.
Therefore, given a dataset of S subjects from age 0 → An,
LOO cross-validation will perform S−1 validation experi-
ments. In each experiment i, facial images of subject Si are
used for validation while images of the rest S − 1 subjects
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are used for learning a model. In this approach, images
of each subject will be used for both training and vali-
dation. This way, the technique is validated in the same
way as its application scenario where the subject whose
age is to be estimated is previously unseen in the system.
Although LOO is almost unbiased, it may give unreli-
able estimates due to its high variance [171]. Leave-p-out
(LPO) [172] with p ∈ {1, 2, 3 . . . , n− 1} successively leaves
out every possible subset of p data samples to be used
for validation. In age estimation, given a set of images of
N subjects, LPO can be used by leaving out images of p
where p ≤ (N − 1) subjects to be used for validation and
use images ofN−p subjects for training. Elisseef and Pon-
til [173] showed that LPO cross-validation is less biased
compared to LOO. LPO will have

(n
k
)
iterations where n is

the number of images. These iterations are almost always
much higher compared to n − 1 iterations in LOO, lead-
ing to high computation time. LPO with p = 1 is same
as LOO. LOO and LPO are exhaustive cross-validation
strategies compared to other methods. Further informa-
tion on LPO can be found in [174]. Detailed information
on cross-validation can be found in [172] and [175].
Bootstrap is a strategy introduced by Efron and

Tibshirani [176, 177]. Bootstrap is commonly used when
working on a small dataset [159]. In this strategy, a
bootstrap set is created by uniformly sampling, with
replacement, n instances from the original data to make
a training set. The remaining samples not selected are
used as testing set. The value n of selected samples is
likely to change from fold to fold. Since data is sampled
with replacement, the probability of any data sample not
being selected is given by

(
1 − 1

n
)n ≈ e−1 ≈ 0.368.

Chances of a data sample being selected into a train set is
(1 − 0.368) = 0.632. Therefore, the expected number of
distinct samples appearing in the train set is 0.632 × n.
Since error estimate obtained by using test data will be
too pessimistic (since only 62.3% of instances are used for
training), error is calculated as error = 0.632 × e0 +
0.368 × ebs where e0 is rate of error obtained from boot-
strap sets not having the instance being predicted (test
set error) and ebs is the error obtained on bootstrap sets
themselves, both averaged over all data samples and boot-
strap samples. Estimate accuracy is directly proportional
to number of times the process is repeated. More details
on bootstrap validation technique can be found in [177].
Bootstrapping increases the variance that can occur in
each fold which makes this strategy more realistic of the
real application situation [177]. This validation strategy is
rarely used in age estimation.
In most cases, a dataset is split into three subsets: val-

idation subset, training subset, and testing subset [167].
In this approach, the validation subset is used to tune
the system to determine the termination point of the
training phase when overfitting starts occurring on the

training subset. The testing subset is used to validate
the trained model using data samples not initially in
validation and training subsets. Kiline and Uysal [164]
proposed a technique of splitting the dataset with sam-
ples from specific subjects rotationally left out of training
and validation sets. Budka and Gabrys [158] proposed a
density-preserving sampling (DPS) technique that elimi-
nates the need for repeating error estimation procedures
by dividing the dataset into subsets that are guaranteed to
be representative of the population the dataset is drawn
from. These new proposed approaches of model valida-
tion could be experimented in age estimation problem and
results compared with other common methods. Cross-
validation and bootstrap strategies are commonly used
when one has limited data such that holdout strategy
cannot be sufficient for data representativeness in both
training and test sets. With abundant data with stable dis-
tribution over time, single stratified random split is able to
provide required representativeness [158].
For purposes of comparing the performance metric of

two or more learning algorithms, Salzberg [178] proposed
the use of k-fold cross-validation followed by appropri-
ate hypothesis testing instead of comparing their average
accuracies. This strategy can be used to compare two age
estimation techniques.
In each iteration of validation, absolute error (AE) for

each estimated age is defined as:

AE = |ai − āi| (18)

where is ai is the ground truth age and āi is the esti-
mated age. After all validation iterations, mean absolute
error (MAE) is defined as the average of all absolute errors
between estimated and ground truth age as:

MAE = 1
N

N∑

i=1
|ai − āi| (19)

where N is the total number of test images, ai is the
ground truth age of image i, and āi the estimated age of
image i. Although this performance evaluation is com-
monly used, it does not give age estimation performance
for specific age but rather gives general performance of
the technique for all ages. This approach could be slightly
modified such that it gives MAE for every age and general
MAE of the technique.
Given a set of testing images an11 , an22 . . . ankk belonging to

k ages to be estimated with ni representing number of test
images known to belong to age ai, MAE for every age can
be defined as:

MAEk = 1
n

n∑

i=1
|ak − āi| (20)

where āi is the estimated age for image i of age ak and
n is the number of test images belonging to age ak . This
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will give age-specific performance of age estimation tech-
nique. Overall, MAE can be found by summing all the
MAE for all ages tested and dividing by the sum of the
number of test images in each age as:

MAETOTAL =
k∑

i=1

(MAEi × ni)
N

(21)

where N = n1 + n2 + · · · + nk .
Age estimation technique performance is evaluated

based on MAE. The smaller the MAE, the better the age
estimation performance. MAE only shows average per-
formance of the age estimation technique. MAE is the
appropriate measure of age estimation when the training
data has missing images [10]. The overall accuracy of the
estimator is given by cumulative score (CS) [12, 31] which
is defined as:

CS(x) = Ne≤x
N

× 100% (22)

whereNe≤x is the number of images on which the age esti-
mation technique makes an absolute error no higher than
x years error tolerance and N is the total number of test
images.
In age-group estimation, the age-group label represents

a range of ages; hence, the cumulative scores are compared
at error level 0, i.e., the percentage of exactly correct age-
group estimation. Therefore, the CS equation becomes:

CS(x) = nx
Nx

× 100% (23)

where nx is the number of test images correctly recog-
nized as belonging to age group x and Nx is the total
number of test images in age group x. Therefore, CS is
used as an indicator of accuracy of age-group estimator
[13]. CS is a useful measure of performance in age esti-
mation when the training dataset has samples at almost
every age [11]. MAE is a good evaluation technique when
the training set has a lot of missing ages. However, in
age estimation, both MAE and CS are used since differ-
ent techniques, datasets, and systems may be extremely
imbalanced or skewed for evaluation.

10 A review of age estimation studies
10.1 Age-group estimation
Global, local, and hybrid features have been previously
used in age and age-group estimation. Ramanathan et al.
[179] present a recent survey in automated age estimation
techniques.
Age group is a range of ages. Persons whose real age

are within the defined ranges are said to be in the same
age group. Significant amount of research has been done
to automatically extract visual artifacts from faces and
group persons in respective age groups. Kwon and Lobo
[87] estimated age group based on anthropometry and

density of wrinkles. They separated adults from babies
using distance ratios between frontal face landmarks on
a small dataset of 47 images. They also extracted wrinkle
features from specific regions using snakes. Young adults
were differentiated from senior adults using these wrinkle
indices. Baby group classification accuracy was lower than
68%, but overall performance of their experiments was
not reported. Furthermore, ratios used were mainly from
baby faces. Horng et al. [85] used geometric features and
Sobel filter for texture analysis to classify face images into
four groups. They used Sobel edge magnitude to extract
and analyze wrinkles and skin variance. They achieved an
accuracy of 81.6% on subjectively labeled age-groups.
Ramanathan and Chellappa [59] computed eight dis-

tance ratios for modelling age progression in young faces
like 0 to 18 years. Their objective was to predict one’s
appearance and face recognition across age progression.
Using 233 images of which 109 were from FG-NET
aging dataset, and the rest from their private dataset,
they reported improvement in face recognition from 8 to
15%. Dehshibi and Bastanfard [20] used distance ratios
between landmarks to classify human faces in various age
groups. Using a back propagation neural network with
distance ratios as inputs, they classified face images into
four age groups of 15, 16–30, 31–50, and above 50. Using
a private dataset, they reported 86% accuracy. Thukral et
al. [180] used geometric features and decision fusion for
age-group estimation. They achieved 70% overall perfor-
mance for 0–15, 15–30, and above 30 age groups. Farkas
et al. [181] used 10 anthropometric measurements of
the face to classify individuals in various ethnic groups.
They analyzed these measurements and identified ones
that contribute significantly to diversity in facial shape
in different ethnic groups. They also found that horizon-
tal measurements differed between ethnic groups than
vertical measurements.
Tiwari et al. [182] developed a morphological-based

face recognition technique using Euclidean distance
measurements between fiducial facial landmarks. Using
morphological features with back propagation neural
network, they reported superior recognition rate than
performance of principal component analysis (PCA) [90]
with back propagation neural network. This technique
recognized faces but it was independent of aging fac-
tor due to variations in these distances as one ages.
This signifies that distances between facial landmarks dif-
fer at different age, especially in young age-groups, and
therefore, it could be used in age estimation. Gunay and
Nabiyev [94] used spatial LBP [76] histograms to clas-
sify faces into six age groups. Using nearest neighbor
classifiers, they achieved accuracy of 80% on age groups
10 ± 5, 20 ± 5, 30 ± 5, 40 ± 5, 50 ± 5, and 60 ± 5.
In [146], Gunay and Nabiyev trained three support vector
machine (SVM) models for age-group estimation using
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AAM [64], LBP, and Gabor filter [67] features. They fuse
decisions from these classifiers to obtain final decision.
Although they reported 90% accuracy of subsequent age
estimation, overall performance of age-group estimation
was not reported.
Hajizadeh and Ebrahimnezhad [183] represented facial

features using histogram of oriented gradients (HOG)
[137]. Using probabilistic neural network (PNN) to clas-
sify HOG features extracted from several regions, they
achieved 87% accuracy in classifying face images into four
groups. Liu et al. [184] build a region of certainty (ROC)
to link uncertainty-driven shape features with particular
surface features. Two shape features are first designed to
determine face certainty and classify it. Thereafter, SVM
is trained on gradient orient pyramid (GOP) [185] features
for age-group classification. Testing this method on three
age groups, 95% accuracy was reported. They further used
GOP in [186] with analysis of variance (ANOVA) for fea-
ture selection to classify faces into age groups using linear
SVM [187] to model features from the eyes, nose, and
mouth regions. They achieved 91% on four age groups
on FG-NET dataset and 82% on MORPH dataset. It was
also found that the overall performance of age estimation
decreases as the number of age groups increase. This is
because the number of images in each age group reduces
drastically as the number of groups increase.
Lanitis et al. [66] adopted AAM to represent face image

as a vector of combined shape and texture parameters.
They defined aging as a linear, cubic, or quadratic func-
tion. For automatic age estimation, they further evaluated
quadratic function, nearest neighbor, and artificial neural
network (ANN) in [23]. They found that hierarchical age
estimation achieves better results with quadratic function
and ANN classifiers. Although AAM has been exten-
sively used, it does not extract texture information. This
problem is avoided by using hybrid feature extraction
techniques to combine both shape and texture features for
age and age-group estimation.
Sai et al. [188] used LBP, Gabor, and biologically inspired

features for face representation. They used extreme learn-
ing machines (ELM) [189] for age-group estimation. Their
approach achieved accuracy of about 70%. Using LBP and
a bank of Gabor filters, Wang et al. [190] classified images
into four age groups. They used SVM, error-correcting
output codes (ECOC) and AdaBoost for age-group esti-
mation. Table 3 shows the summary of age and age-group
estimation studies.

10.2 Age estimation
Age is a real number that signifies the number of years
elapsed since one’s birth to a point in life. Age estimation
is the process of estimation one’s actual age using visual
artifacts on the face. These visual artifacts are extracted
and used to estimate one’s age.

Lanitis et al. [66] adapted active appearance model
(AAM) for aging face by proposing aging function. They
defined age as a function age = f (b) to cater for age-
introduced variations. In this function, age is the real
estimated age of a subject, b consists of 50 AAM-learned-
parameters feature vector, and f is the aging function.
They performed experiments on 500 images of 60 indi-
viduals of which 45 subjects had images at different ages.
Focusing on small age variations, they demonstrated that
simulation of age improves performance of face recogni-
tion from 63 up to 71% and from 51 to 66% when training
and testing datasets are used interchangeably.
Adopting aging pattern subspace (AGES), Geng et al.

[13, 26] proposed automatic age estimation using appear-
ance of face images. Evaluating AGES on FG-NET aging
database, they used 200 AAM parameters to characterize
each image for age estimation. They reported 6.77 years
mean absolute error (MAE). Fu and Huang [12] used age-
separated face images to model a low-dimensional mani-
fold. Age was estimated by linear and quadratic regression
analysis of feature vectors derived from respective low-
dimensional manifold. The same approach of manifold
learning was used by Guo et al. in [31]. They extracted
face aging features using age learning manifold scheme
and performed learning and age prediction using locally
adjusted regressor. Their approach reported better perfor-
mance than support vector regression (SVR) and SVM.
Guo et al. [31] used locally adjusted robust regression

(LARR) to estimate age. Evaluating their approach on a
large dataset, they reported MAE of 5.30 and 5.07 years
on FG-NET. Guo et al [82] further proposed age esti-
mation using biologically inspired features (BIF) [80, 81].
BIF features with support vector machine (SVM) achieved
MAE of 4.77 years on FG-NET aging dataset and 3.91
and 3.47 years on females andmales, respectively, on YGA
dataset. Combining gender and age estimation, Guo et al.
[191] used BIF and age manifold feature extraction with
SVM classifier. They reported superior MAE of 2.61 for
females and 2.58 for males on YGA database. Yan et al.
[192] performed person-independent age image encod-
ing using synchronized submanifold embedding (SME).
SME considers both individuals’ identities and age labels
to improve generalization ability on age estimation. Eval-
uating this technique on FG-NET, they reported a MAE
of 5.21 years. Yan et al. [83, 84] used spatially flexible
patch (SFP) for feature description. SFP does not only
consider local patches only but also their spatial infor-
mation. With SFP, slight misalignment, pose variations,
and occlusion can be effectively handled. Furthermore,
this technique can improve discriminating characteristics
of the feature vector when limited samples are available.
Adopting Gaussian mixture model (GMM), they achieved
a MAE of 4.95 years on FG-NET aging dataset and 4.94
and 4.38 years on females and males, respectively, on
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YGA dataset. Combining BIF and age manifold features
and SVM for age estimation achieves MAE of 2.61 and
2.58 years for males and females, respectively, on YGA
dataset [11].
Suo et al. [152] designed graphical facial feature topol-

ogy based on hierarchical face model [193]. They used
particular filters to diverse features at various stages of
their hierarchical feature extraction design. Using multi-
layer perceptron (MLP), they reported MAE of 5.97 years
on FG-NET and 4.68 years on their private dataset.
Craniofacial aging model that combines psychophys-

ical and anthropometric evidences was proposed by
Ramanathan et al. [59]. The model was used to simulate
perceived age of a subject across age for improving accu-
racy of face recognition. Choi et al. [70] proposed age esti-
mation approach using hierarchical classifiers with local
and global facial features. Using Gabor filters for wrinkle
extraction and LBP for skin feature extraction, they classi-
fied face images into age groups with SVM. This approach
is error prone because it only depends on a single clas-
sifier. Wrong age group classification leads to wrong age
estimation. For accurate age estimation, age group classi-
fication must be robust, and this can be achieved by use
of an ensemble of classifiers. Chao et al. [194] determined
the relationship between age labels and facial features
by merging distance metric, learning, and dimensionality
reduction. They used label-sensitive and nearest neighbor
(KNN) and SVR for age estimation. Chang et al. [195] pro-
posed ordinal hyperplane ranker for age estimation. Using
AAM and SVM, their approach achieved 4.48 MAE on
FG-NET and MORPH II datasets. Guo et al. [123] build
a regression model using BIF and partial least squares
(PLS) for age estimation. Their approach achieved 4.43
MAE on MORPH II dataset and showed that learning
label distribution improves age estimation. Lu and Tan
[142] investigated age estimation using ordinary preserv-
ing manifold analysis approach. They found that gait can
be used as an effective cue for age estimation at a dis-
tance for purposes of enhancing understanding capabili-
ties of existing visual surveillance systems. They further
found that discriminating age information can be better
exploited in the low-dimensional manifold for achieving
better age estimation performance.
Using uniform ternary patterns (UTP) and AAM, Tan

et al. [107] and Luu et al. [196] proposed a spectral
regressor for age estimation. Evaluating their technique,
they achieved a MAE of 6.17. Further work by Luu et
al. [197] using contourlet transform achieved a MAE of
6.0 on FG-NET and PAL datasets which was better com-
pared to using UTP. Using Gabor wavelets and orthogonal
locality preserving projections (OLPP), Lin et al. [198]
developed an automatic age estimation system. They eval-
uated their technique on FG-NET dataset and SVM as
a classifier and achieved a MAE of 5.71 years. Wu et al.

[115] used 2D points to model facial shape for age esti-
mation. Choober et al. [199] proposed use of an ensemble
of classifiers for improving automatic age estimation. The
limitation of this work is that only neural network was
used to make the ensemble. An ensemble can be made
robust if different classifiers are used so as each acts as
a complimentary to the other. Guo and Mu [124] com-
pared canonical correlation analysis (CCA) and partial
least squares (PLS) performance in age, gender, and eth-
nicity estimation. Using BIF as a feature extractor, they
found that CCA performs better compared to PLS. Hadid
and Pietikainen [200] experimented manifold learning on
age and gender estimation. They reported 83.1% accuracy
age estimation on images extracted from video. Geng et al.
[201] learned label distribution and used them for age esti-
mation. Their technique was evaluated on both FG-NET
and MORPH datasets.
Guo et al. [82] first introduced BIF in image-based

age estimation domain. They reported that using Gabor
bank starting from smaller sizes like 5 × 5 can character-
ize aging. Later, Guo and Mu [123] used k-partial least
quares (KPLS) for simultaneous dimensionality reduction
of BIF features for age estimation using a regressor. They
also showed that partial least squares (PLS) performs bet-
ter in dimensionality reduction compared to traditional
dimensionality reduction techniques like principal com-
ponent analysis (PCA). They later [124] used canonical
correlation analysis (CCA) for modelling age estimation
as multiple-label regression problem. They reported that
CCA-based methods work better compared to KPLS-
based methods. Spizhevoi and Bovyrin [202] used RBF
SVM to learn BIF features for age estimation. Han et al.
[203] proposed a hierarchical age estimation and ana-
lyzed how aging affects distinct facial components. They
used SVM for both classification and regression to clas-
sify each face component. Their component localization
was not accurate, thereby affecting subsequent features
extracted from these components. They later [147] com-
pared human and machine performance on demographic
(age, gender, and ethnicity) estimation. Theymodelled age
estimation in particular as a hierarchical problem that
consists of between-class classification and within class
regression of boosted BIF and demographic informative
features extracted from a face image.
Deep learning schemes, especially convolutional neural

network (CNN), have been successfully used in face anal-
ysis tasks including face detection, face alignment [204],
face verification [205], and demographic estimation [206].
Wang et al. [207] extracted feature maps obtained in dif-
ferent layers as age features based on deep learning model.
Huerta et al. [135] provide a thorough evaluation on deep
learning for age estimation using fused features and com-
pare it with hand-crafted fusion features. CNN have been
used in different recent studies on age estimation and have
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demonstrated superior performance compared to other
methods. Niu et al. [208] used ordinal regression and
multiple output CNN for age estimation and reported a
MAE of 3.27 on MORPH II and a private Asian Face Age
Dataset (AFAD). Chen et al. [209] presented a cascaded
CNN that had 0.297 Gaussian error on age estimation.
As further demonstrated in [210–212], CNN have posted
better results in age estimation tasks. Although CNN per-
forms better than other traditional methods, their appli-
cability is limited by high processing demand required for
their implementation. Table 3 shows a summary of studies
in age-group and age estimation.

11 Conclusions
Comprehensive survey of various techniques and
approaches used for age estimation has been presented.
There has been enormous effort from both academia and
industry dedicated towards modelling age estimation,
designing of algorithms, aging face dataset collection,
and protocols for evaluating system performance. Table 3
summarizes the findings of recent studies in age esti-
mation, evaluation protocol used, dataset used, age
estimation approach used (regression, classification, or
hybrid), and feature extraction or age face representation
used.
The main issues to consider in age estimation via

faces are image representation and estimation techniques.
AAM provides a parametric modelling for face represen-
tation. A face is represented as a set of shape and texture
parameters learned from a face image. AAM can repre-
sent both young and old faces since model parameters
encode both facial shape and texture. AAM is often used
in line with regression-based age estimation approaches.
Anthropometric face representation encodes change in
facial shape. Anthropometric approaches to facial repre-
sentation can be very significant in capturing change in
facial shape in young faces. AGES can be used to extract
subjects’ aging patterns when a dataset has sequential
aging face images while age manifold is convenient when a
dataset hasmissing aging face images in a large age dataset
with wide age ranges. Age manifold learning entwines
aging feature extraction and dimensionality reduction.
Age manifold can be used both in classification- and
regression-based approaches. Appearance models often
extract facial features that can be used in regression- or
classification-based age estimation approach. These fea-
tures represent facial appearance. These features could be
texture, shape, or wrinkle. Feature extraction techniques
like LBP, Gabor, BIF, LDA, PCA, and LDP have been often
used for appearance face modeling.
Age estimation can be either approached as age-group

estimation or exact age estimation. Age-group estima-
tion approaches approximate age range in which a face
image can fall. Exact age estimation approaches estimate a

single label (value) that represents the age of a face image.
Both exact age and age-group estimations can be either
classification-based, regression-based, or hybrid of both
classification and regression. Choice between regression
and classification may be guided by face image represen-
tation and size and age distribution of the dataset. For
big datasets with sequential age labels, both classification
and regression can be used, while for datasets with only
age-group labels or significantly missing images at some
ages, classification-based approach may be more appro-
priate. Both classification and regression can be combined
in a hierarchical manner. In this hybrid approach, often
classification is used for age-group estimation followed by
exact age estimation within the age-group using regres-
sion techniques.
Age estimation techniques can be evaluated using mean

absolute error (MAE) or cumulative score (CS). MAE is
appropriate when the training set has a lot of missing ages
while CS is used when the training dataset has samples
at almost every age. Overall performance of the system is
represented by CS. In practice, bothMAE and CS are used
because different techniques and datasets may be biased
for evaluation. The most often used evaluation protocols
are LOPO and Cross-Validation.
There are a number of promising future directions for

age estimation. The following are some of the future
research directions that may see improvement in age
estimation performance:

• Fusion—Feature and decision fusion for age
estimation has not been extensively investigated.
Fusing shape, wrinkle, and texture features may result
into a rich feature set that can distinguish faces in
different ages or age groups. Decisions from multiple
classifiers or regressors could also be fused to see how
they impact age estimation performance.

• Multi-instance—Facial landmarks can be extracted
and considered as an instance for age estimation.
Which parts of the face age faster and how? A face
can be broken down into its components (eyes,
forehead, nose, nose bridge, mouth, and cheeks) and
aging investigation done on each component. Both
geometric and anthropometric appearance face
modeling can be used on each component.

• Ethnic—Faces of subjects from different ethnic
groups age differently. Incorporating ethnic
parameters as in [144] improves age estimation
performance. This approach has not been fully
investigated due to lack of large datasets with images
from different ethnic groups like African, Asian, and
Caucasian.

• Lifestyle—One’s lifestyle affects how the face ages.
Faces of individuals of the same age but with different
lifestyles will appear different. Research has shown that
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smoking has an influence in facial aging [34, 38–41].
It may be interesting to investigate aging and age
estimation among a smoking population and how it
compares to non-smoking population. Taister et al.
[34] asserts that exposure to drug and psychological
stress affects skin texture and color making skin
complexion spotted and blemished. Drug use and
stress could also be investigated to determine their
effect on age estimation.

• Environment—Taister et al. [34] found that general
exposure to wind and arid air influence facial aging.
Arid environment and wind dehydrates the skin
leading to wrinkle formation. An investigation of age
estimation in populations in different environments
is an interesting direction for further research.

• Databases—A large multi-racial database is needed
for effective investigation of aging in different ethnic
groups and gender. Collecting a large database with
well-distributed age labels is essential. Web image
collection is an efficient way of achieving this [154,
155].

• Profile face aging—How do non-frontal parts of the
face age? How to estimate age from non-frontal face
images? Investigations to answer these two questions
could be necessary though are based on availability of
such databases (non-frontal face images). 3D face
modelling could be vital in investigating profile face
aging and age estimation.

• Multi-sensor—Image collection from multiple
imaging sensors could be appropriate for mitigating
degrading factors from uncontrollable and
personalized attributes. Fusion could be done on the
image features for age estimation.
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