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Abstract

This study presents a novel noise detection algorithm which satisfactorily detects noisy pixels in images corrupted
by random-valued impulse noise of high levels up to 80% noise density. Three levels of adaptive thresholds along
with an auxiliary condition are used in this method which adequately addresses the drawbacks of existing methods,
especially the miss detection of noise-free pixels as noisy pixels and vice versa. A noise signature is calculated for
every pixel and compared with the first threshold to identify noise followed by the comparison of the central pixel
with the second and third levels of thresholds. In addition to the standard deviation and mean, the concept of
quartile has been used as another measure of dispersion. After detection, a fuzzy switching weighted median filter
is applied to restore the corrupted image. The simulation results demonstrate that the proposed method is able to
outperform the existing methods in both the detection and filtering of random-valued impulse noise in images.

Keywords: Triple Threshold Statistical Detection, Random-valued impulse noise, Quartile, High density noise, Fuzzy
switching weighted median filter and noise signature

1 Introduction
This research is aimed at designing and proposing a new
algorithm for detection and filtering of high density
random-valued impulse noise (RVIN) in images. Remov-
ing salt and pepper impulse noise (SPN) is an easy task,
but removing RVIN of high densities is a challenging
task because of the nature of RVIN. Impulse noise is
primarily caused by malfunctioning pixels in camera
sensors, faulty memory locations, and transmission in
noisy channel [1].
In RVIN, noisy pixels are randomly located between 0

and 255, and hence, it is very difficult to detect the noise
and restore the image [2]. Since the difference between a
noisy pixel and a noise-free pixel in RVIN may not be
huge, the image appears hazy and blurred. Impulsive
noise removal consists of, first, the detection of the noisy
pixels by taking into account the edges and then substi-
tution of the noisy pixels with the best approximation of
a value based on the neighborhood. Removal of RVIN at
higher noise densities is still more tedious because the

noise-free pixels available for restoration of image are
too few at high noise densities. In addition to the
removal of impulsive noise, preservation of the image
details is also a desired result of the proposed work.
Some methods only employ filtering without the detec-

tion of impulse noise whereas certain other methods first
employ the detection of the impulse noise followed by the
filtering. Over the past two decades, performance of the
nonlinear filters particularly the two-stage median-based
filters has improved multifold for the images corrupted by
RVIN [1]. The existing state-of-the-art methods have
attempted to remove the RVIN in images but are success-
ful only at lower noise densities. At higher noise densities
of RVIN, the image restoration by these methods is not
satisfactory. Hence, various applications which are based
on image denoising like medical imaging, face recognition,
satellite imaging, and fisheries are rendered ineffective.
The main focus areas of this research are quality image
restoration at higher noise densities of RVIN and achieve-
ment of lower computational cost of the proposed detec-
tion and filtering technique.
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1.1 Related work
Various algorithms have been proposed to remove RVIN
from corrupted images with different architects [3–28].
However, these algorithms have their own assumptions,
advantages, and limitations. While some algorithms mod-
ify all the pixels (whether noisy or not), other advanced
algorithms first detect the noisy pixels and then replace
them with an estimated value. Some of these algorithms
which have been considered for study and comparison
with the proposed algorithm are noise adaptive fuzzy
switching weighted median (NAFSWM) filter [14], rank
order absolute difference (ROAD) filter [25], rank order
logarithmic difference (ROLD) filter [23], triangle-based
linear interpolation detection (TBLI) filter [19], adaptive
switching median (ASM) filter [10], adaptive fuzzy infer-
ence system-based directional median (AFIDM) filter [3],
and condition-based detection (CBD) filter [9].
The NAFSWM filter [14] is a combination of the

simple adaptive weighted median filter [20] and the
fuzzy switching median filter. In ROAD, the detection
stage utilizes the absolute difference between the cen-
tral pixel and other pixels and then a predefined
threshold is employed to detect the pixel as noisy or
noise-free [25]. ROLD is similar to ROAD except that
the ROLD exploits the logarithmic function of the ab-
solute difference which results in a better detection as
compared to ROAD [23]. TBLI method uses triangle-
based linear interpolation to detect noisy pixels and
Differential Evolution algorithm for restoring the
image [19]. In ASM, detection is based on the absolute
deviation between the mean value and the central
pixel and its comparison with threshold value [10].
The CBD filter uses two conditions to differentiate be-
tween corrupted and uncorrupted pixels; first one is
based on the noise intensity level and second is based
on two predetermined threshold values [9]. The
AFIDM filter consists of two major processes namely
fuzzy inference system-based noise detection and
noise filtering [3].
When these methods are applied to the images cor-

rupted by high density RVIN, some of the noise-free
pixels are detected as noisy pixels and vice versa.
Hence, the filtering stage of these methods not only
fails to correct all the noisy pixels but also alters
some noise-free pixels which were detected as noisy
pixels. This results in lower values of peak signal to
noise ratio (PSNR) and structural similarity index
(SSIM) corroborated by poor picture restoration. This
is further elaborated in the Section 3.

1.2 Our contribution
In order to overcome the miss detection, in this paper, a
new algorithm has been designed and proposed in the de-
tection stage. This new detection algorithm is designated

as Triple Threshold Statistical Detection (TTSD). Noise
signature (NS) used in this method gives it a distinct ad-
vantage over other methods in detection of noisy pixels.
The proposed filter is compared with other filters in
terms of PSNR and SSIM, and the comparison results
show that the TTSD filter performs better than other
filtering techniques. The detection stage of TTSD
involves three main conditions (three levels of thresholds)
and one auxiliary condition [9]. These conditions must be
verified to accurately detect noisy pixels. Statistical tools
such as standard deviation, mean, and quartile help in de-
tecting outliers. The filtering stage of TTSD utilizes fuzzy
switching weighted median (FSWM).
The main contributions as compared to the existing

methods can be summarized as follows:

a) Devising a completely new method of image
processing wherein simple statistical parameters
have been utilized for detection of noisy pixels

b) Use of three levels of thresholds to detect noisy
pixels with higher accuracy than the existing
methods

c) Achieving quality picture restoration at higher noise
densities including up to 80%

d) Use of adaptive thresholds which depend upon the
values of noise density of corruption and
neighboring pixels

e) Devising a new parameter called NS which can be
used to have comparisons among different methods
of image processing

2 Proposed method
2.1 Noise model
The RVIN model of equal probability is used in this filter.
The probability density function, f (Ci, j), can be expressed as

f Ci; j
� � ¼

ND

2
0≤Ci; j < m;

1−ND Ci; j ¼ Si; j;
ND

2
255−mð Þ < Ci; j < 255

8>>><
>>>:

ð1Þ

where Ci, j is the (i, j) th pixel in the corrupted image, Si, j is
the (i, j) th pixel in the original image, ND is the noise dens-
ity, and m is the noise intensity level. The dynamic range of
the image intensity values is [0, R − 1], where R = 2n and n
is the number of bits per pixel. An 8-bit gray image is
assumed and hence, n = 8 and R = 256.
As mentioned earlier, statistical parameters such as

measures of dispersion have been utilized in setting of the
three thresholds in TTSD. The same is discussed below.

2.2 Basic concept
The basic aim of any detection process is to separate the
noisy pixels from the noise-free pixels so that they can
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be replaced with a suitable pixel value in the filtering
stage. Various existing methods for image processing
have utilized some or the other measures of dispersion
to identify the outliers. Awad [2] has demonstrated that
the detection process can be based on finding the
optimum direction by calculating the standard deviation
of different directions in the filtering window. The mea-
sures of dispersion used in this proposed algorithm for
setting different thresholds are the mean, the standard
deviation, and the quartile. The reason for choosing
three levels of thresholds is explained below.
The standard deviation is a measure which represents

the extent by which each value within a set of data varies
from the mean value. In effect, it shows how closely all
the values in the sample are bunched around the mean. It
is the best and most widely used measure of dispersion
since it takes into account every variable in the dataset.
When the values are very closely bunched together, the
standard deviation is smaller. When the values are wide-
spread, the standard deviation will be relatively large. The
standard deviation is usually applied along with the mean,
and its unit is same as that of mean.
The standard deviation of a population is denoted as σ

(sigma) and is calculated as follows:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 xi−μð Þ2
N

s
ð2Þ

where xi represents each value in the population, μ is
the mean of the population, and N is the number of
values in the population. Mean μ is calculated as follows:

μ ¼
PN

i¼1xi
N

ð3Þ

Many natural datasets follow a normal distribution. In
a normal distribution, most of the values of the dataset
are clustered around the mean while only few values are
very high or very low. For normally distributed dataset,
68% of the values lie within one standard deviation (1σ)
from the mean value, 95% of the values lie within two
standard deviations (2σ) from the mean, and 99% of the
values lie within three standard deviations (3σ) from the
mean. Figure 1 clearly depicts the standard deviation as
a measure of dispersion.
The quartiles represent the milestones in a sorted

dataset which along with the median divide the dataset
into four quarters. The first quartile is the median of the
lower half of the data set and is denoted by Q1. This also
means that the 25% of the values in the dataset lie below
Q1 and the rest 75% lie above Q1 .The third quartile is
the median of the upper half of the dataset and is
denoted by Q3. This would also mean that the 75% of

the values in the dataset lie below Q3 and the rest 25% lie
above Q3 . The first and third quartiles can be calculated as

Q1 ¼
N þ 1

4

� �th

value ð4Þ

Q3 ¼
3 N þ 1ð Þ

4

� �th

value ð5Þ

where N is the number of values in the sorted dataset.
The inter-quartile range (IQR) in a dataset indicates

the extent to which the central 50% of its values are
dispersed. IQR is calculated by subtracting the lower
quartile from the upper quartile as follows

IQR ¼ Q3−Q1 ð6Þ

Figure 2 shows the relationship of the quartiles and
IQR. The IQR provides a robust basis to identify the out-
lying values. Moreover, like the range, it is also a meas-
ure of dispersion based on only two values from the
dataset and hence it can only be used in addition to the
other conditions to detect outliers.
The three levels of thresholds are presented and

discussed as follows.

Fig. 1 Standard deviation as a measure of dispersion. Legends: σ,
standard deviation; μ, mean
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2.3 Three threshold levels
The first threshold used in this method is based on
the concept of incongruity of the noisy pixel. Owing
to its incongruity or abnormality, the noisy pixel
would leave a signature by which it can be detected.
First of all, absolute differences of all pixels with their
mean value except the central pixel (CP) are calcu-
lated. Subsequently, mean and standard deviation of
all these absolute differences are calculated. The sum
of this mean and standard deviation represents the
first threshold. It is being used as a threshold because
the absolute differences of the pixels with their mean
value would show a less deviant behavior as com-
pared to the absolute differences of the pixels with
the CP, provided that CP is a noisy pixel. Considering
mean and standard deviation of such absolute differ-
ences and adding them further eases up the deviant
behavior of the threshold and makes it comparable
with the noise-free pixel values. Now, if NS is equal
to or more than the first threshold, the CP is termed
noisy; otherwise, we move to the next level of thresh-
olds, i.e., the second level of thresholds.
After the first threshold is applied, a majority of

noisy pixels get segregated from the rest of the pixels
but it is still unknown whether the rest of the pixels
are noise-free. For ascertaining that, the second level

of thresholds is employed. The second level of thresholds
is defined as follows:

T2 min ¼ μ−K � σ ð7Þ

T2 max ¼ μþ K � σ ð8Þ

where, μ and σ are the mean and standard deviation of
all pixels of the detection window and K is the multipli-
cation factor of σ in the above equations. Optimum
value of K is derived empirically for various random sets
of pixels through simulations. A discussion on the test
of optimality of K has been presented in Section 3.1.
From that discussion, we find that for the given experi-
mental setup, optimum value of K is 0.5. If a pixel falls
beyond these thresholds, it is considered as noisy.
The reason behind taking mean and standard devi-

ation for setting these thresholds is that most of the
noise-free pixels would fall within the above thresh-
olds since they smoothen out the pixel values and gen-
erally tend towards a value resembling a noise-free
pixel. The noisy pixels (including the higher values
and the lower values) would normally tend to fall be-
yond these thresholds because of their incongruity
with the remaining pixels of the matrix. Figure 3
depicts the second level of thresholds for K = 0.5 and
K = 0.7 and the corresponding bands available for
identifying the noisy pixels in the image.

Fig. 2 Relationship of quartiles and inter-quartile range. Legends: Q1,
first quartile; Q3, third quartile; IQR, inter-quartile range

Fig. 3 Depiction of second level of thresholds for TTSD algorithm.
Legends: σ, standard deviation; μ, mean
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After the second level of thresholds is applied, few
more noisy pixels are segregated from the rest of pixels
but still it is not known whether the remaining pixels
are all noise-free. For ascertaining that, the third level of
thresholds is employed. The first quartile Q1 is taken as
the lower threshold, i.e., T3min, and the third quartile Q3

is taken as the higher threshold, i.e., T3max [29, 30].
When a CP is beyond these thresholds, the pixel is
termed as noisy otherwise noise-free.

2.4 Noise signature
The NS of a pixel denotes the possibility and ten-
dency of the pixel to be noisy. It is basically a meas-
ure of noisiness of a pixel. For a pixel, if the NS is
more than a certain threshold, the pixel may be con-
sidered as noisy. Although it is not a necessary condi-
tion for a pixel to be noisy, yet it is a sufficient
condition. The NS-based noise detection proposed in
this work segregates a large number of noisy pixels
by comparing the NS of each pixel in the image with
the first threshold itself.
To calculate the NS of a pixel in a given window, abso-

lute differences of CP with all the remaining pixels are
calculated and mean of all these absolute differences is
considered. This mean represents the NS. Since all the
absolute differences of the CP with the remaining pixels
are considered in the calculation of the NS, the probabil-
ity of correct detection of noisiness in this method
increases. If the CP is noisy, the value of the NS would
be expected to be more than the first threshold, but if
the CP is noise-free, the value of NS would be expected
to be less than the first threshold. However, the occur-
rence of the latter does not guarantee the CP to be
noise-free. In that case, the CP is to be further tested
against two more thresholds as explained later.

2.5 Proposed algorithm
The TTSD method uses a 5 × 5 sliding window to esti-
mate whether the CP is a noisy pixel or noise-free. As
the name implies, TTSD uses three levels of thresholds
as explained above. In addition to these thresholds, an
auxiliary condition based on the noise intensity level (m)
is also used in the detection stage of the proposed algo-
rithm. Firstly, the NS is compared with the first thresh-
old to segregate noisy pixels from the rest. This results
in separation of a majority of noisy pixels from noise-
free pixels. However, as the noise density increases, the
accuracy of detection by use of first threshold decreases.
Therefore, in subsequent levels of check in the proposed
algorithm, the CP is compared with the second and third
levels of thresholds to further segregate noisy pixels.
This enhances the accuracy of detection for the algorithm
as a whole. After the detection stage, the FSWM filter is
employed in the filtering stage, which replaces only the

noisy pixels with an estimated value close to the original
value while leaving noise-free pixels unaltered [14, 15].
Hence, the combination of TTSD in detection stage with
FSWM filter in the filtering stage provides better picture
restoration.
The algorithm of detection stage is summarized in

next subsection.

2.5.1 Noise detection
The detection stage is used to find out whether a pixel
is noisy or noise-free. In this paper, the detection stage
employs three main conditions and one auxiliary con-
dition. The three levels of thresholds used in TTSD are
based on three conditions explained above. In combin-
ation with the above thresholds, another auxiliary
condition should also be satisfied along with both con-
ditions for a pixel to be noisy, i.e., (0 ≤ CP ≤m) or (255
−m ≤ CP ≤ 255). This auxiliary condition is simultan-
eously applied with the above three conditions [9].
Only the pixels that are found to be noisy are proc-
essed in the filtering stage. The algorithm for detecting
RVIN is as follows:

Step I: Take a 5 × 5 window A. Then, calculate mean
(μA) and standard deviation (σA) of all pixels of matrix
A except the CP.
Step II: Calculate pij as absolute differences of μA with
all pixels of matrix A except CP and obtain 24 such
values.
Step III: Calculate μp and σp of all the above values
(i.e., pij) and define first threshold T1 as

T1 ¼ μp þ σp ð9Þ

Step IV: Now, calculate qij as absolute difference of CP
with rest of all pixels of A and obtain 24 values.
Step V: Calculate μq of all the above values (i.e., qij) and
define the NS as

NS ¼ μq ð10Þ

Step VI: Now, check if NS ≥ T1

and (0 ≤ CP ≤m) or (255 −m ≤ CP ≤ 255), then the CP
is noisy.

Step VII: But, if NS < T1, define second level of
thresholds

T2 min ¼ μA −0:5� σA ð11Þ

T2 max ¼ μA þ 0:5� σA ð12Þ
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Step VIII: Now check if (CP ≤ T2 min or CP ≥ T2max)

and (0 ≤ CP ≤m) or (255 −m ≤ CP ≤ 255), then the CP
is noisy.

Step IX: If both conditions are not satisfied, define
third thresholds

T3 min ¼ Q1 ð13Þ
T3 max ¼ Q3 ð14Þ

where Q1 and Q3 are the first and third quartiles of the
set of all pixels of A except CP.

Step X: Now, check if (CP ≤ T3 min or CP ≥ T3max)

and (0 ≤ CP ≤m) or (255 −m ≤ CP ≤ 255), then the CP
is noisy.
Otherwise, the CP is noise-free.
The flowchart of detection process is depicted in Fig. 4.

2.5.2 Filtering
Now, the filtering stage will consider only the noisy pixels
leaving the noise-free pixels untouched [17]. The filtering
stage employs the FSWM filter [14, 15]. The FSWM filter
provides better results as compared to other filters be-
cause the detected noisy pixels are replaced by the fuzzy
switching weighted median value of the noise-free pixels
in its neighborhood. The weights assigned to different
pixels contribute in achieving an appropriate value of me-
dian to replace the noisy pixels. The restoration term is
defined as a linear combination of original pixel value and
median value. The steps involved are as follows:

Step I: First, extract local information by calculating the
absolute luminance difference lx, y in a 3 × 3 window
W. lx, y is calculated as follows:

lxþk;yþl ¼ Wxþk;yþl−Wx;y

�� �� ð15Þ
where (x + k, y + l) ≠ (x, y) and −N ≤ k, l ≤N

Step II: Then, calculate the maximum absolute
luminance difference in the filtering window as follows:

Lx;y ¼ max lxþk;yþl
� 	 ð16Þ

where Lx, y denotes the local information of the sliding
window considered.

Step III: Then apply Fuzzy Reasoning to the defined
local information Lx, y. The fuzzy membership function
ffx, y is defined as follows:

ff x;y ¼
0 Lx;y < T1;

Lx;y−T1
� �
T2−T1ð Þ T1≤Lx;y < T2

1 Lx;y≥T2;

8>><
>>:

ð17Þ

where T1 and T2 are constants taken as 10 and 30
respectively in this paper.

Step IV: The next step searches for noise-free pixels
and if not even a minimum of one noise-free pixel is
identified in the current filtering window W, then the
filtering window is expanded by one pixel at each of its
four sides. This procedure is repeated until minimum
of one noise-free pixel is identified.
Step V: Then, find the median (MED) by using the
noise-free pixels. For filtering the image, a weighted
median filter of 3 × 3 window is employed. The weight
of a pixel is decided on the basis of the gradient of the
surrounding pixels.

ws;t ¼
3 if l < 5;
2 if 5 < l < 10;
1 if l > 10

8<
: ð18Þ

and

MED ¼ median ws;t �Wxþs;yþt
� 	 ð19Þ

with Wx + s, yj + t as noise-free pixel.
The idea behind choosing only the noise-free pixels is

to avoid selection of a noisy pixel as the median pixel.

Step VI: Now, at uniform image, regions having same
intensities as noisy pixels the noise-free pixels might
get detected as noisy pixels. Consequently, the filtering
window is expanded continuously and the selected me-
dian pixel may not be appropriate to be used as a cor-
rection term. Considering this probability, the search
for noise-free pixels is stopped when the filtering win-
dow has reached a size of 7 × 7 even though no noise-
free pixel is detected. In such case, the first four pixels
in the 3 × 3 filtering window are used to compute the
median pixel as follows:

MED ¼ median ws;t � Wx−1;y−1 þWx;y−1 þWx−1;y þWx;y
� �� 	

ð20Þ

The first four pixels chosen, which made up the
upper-left diagonal of the 3 × 3 filtering window, can be
justified by the recursive nature of the FSWM filter [14].
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Step VII: For all the noisy pixels, the median value
is computed by using only the noise-free pixels
surrounding it.

The restoration term is thus defined as linear combin-
ation of original pixel value and median value, i.e.,

rx;y ¼ 1−ff x;y

 �

�Wx;y þ ff x;y �MED ð21Þ

In this process, the pixels which are marked noisy are
replaced in the filtering stage and the noise-free pixels
are retained the same without any modification.

Fig. 4 Flowchart of detection process of TTSD algorithm. Legends: NS, noise signature; m, noise intensity level
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3 Results and discussions
3.1 Experimental setup
In order to demonstrate the effectiveness of the pro-
posed method, we initially considered three standard test
images (Lena, Boat, and Cameraman) of size 256 × 256
and JPEG format which are extensively used in literature
to measure the performance of the existing methods.
Then, we considered TID2008 database of 25 images of
size 256 × 256 and BMP format to further demonstrate
the effectiveness of the TTSD algorithm over a variety of
images.
These images are corrupted with RVIN of equal prob-

ability with a noise intensity level (m) as 4. Simulations
have been carried out in MATLAB R2013a. We evalu-
ated the performance of the proposed method for a
noise density varying from 75 to 95% RVIN and com-
pared it with that of different filters like NAFSWM [14],
ROAD [23], ROLD [21], TBLI [17], ASM [8], AFIDM
[3], and CBD [9].

Restoration performances are quantitatively measured
by the mean square error (MSE) and PSNR in decibels
which are defined as:

MSE ¼ 1
MN

� � XM

i¼1

XN

j¼1
Y i; jð Þ−S i; jð Þð Þ2

h i
ð22Þ

PSNR ¼ 10� log10
2552

MSE

� �
dB ð23Þ

where M and N are the total number of pixels in the hori-
zontal and vertical dimensions of the image and Y(i, j) and
S(i, j) are the pixel values in the (i, j)th locations of the
restored image and the uncorrupted image, respectively.
Another performance index, widely known as SSIM

index is used for measuring the similarity between the
original and restored images. It is designed to improve on
traditional methods like MSE and PSNR which provide re-
sults in mere numbers and fail to represent visual perform-
ance. For two images, x and y, the SSIM index is defined as

SSIM x; yð Þ ¼ l x; yð Þ½ �a: s x; yð Þ½ �β: s x; yð Þ½ �γ ð24Þ
where l(x, y), c(x, y), and s(x, y) are the luminance, contrast,
and structure components of the index respectively. Typ-
ical values of the constants α = β = γ = 1. MATLAB imple-
mentation of Eq. (24) has been used to calculate the SSIM.
Main parameters used in the proposed algorithm are

mean, standard deviation, absolute difference, and quar-
tiles. As explained already in Section 2.3, these parame-
ters are able to detect the outliers when employed in a
particular combination, i.e., the three levels of thresholds
applied one after the other along with the auxiliary con-
dition. These thresholds form a band of upper and lower
limits against which the CP is tested for noisiness. We
carried out an analysis of the optimality of multiplication
factor K used in the second level of threshold of the
proposed algorithm for TID2008 database at various

Table 1 Variation in average values of PSNR and SSIM with
variation in multiplication factor K for TID2008 database at 80%
noise density

Multiplication factor K PSNR SSIM

0.1 31.32 0.291

0.2 31.95 0.420

0.3 32.55 0.516

0.4 33.08 0.611

0.5 33.71 0.784

0.6 33.19 0.658

0.7 32.09 0.534

0.8 31.21 0.383

0.9 30.27 0.188

1.0 29.30 0.104

ba

Fig. 5 Graph of variation of PSNR and SSIM with variation in multiplication factor K. Legends: a PSNR vs. K and b SSIM vs. K
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Fig. 6 Restoration results of different methods for Lena image corrupted with 80% noise density. Legends: a Lena (original image); b noisy image
(80%); c NAFSWM; d ROAD; e ROLD; f TBLI; g ASM; h CBD; i AFIDM; and j TTSD

Fig. 7 Restoration results of different methods for Boat image corrupted with 80% noise density. Legends: a Boat (original image); b noisy image
(80%); c NAFSWM; d ROAD; e ROLD; f TBLI; g ASM; h CBD; i AFIDM; and j TTSD
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noise densities. The results of this analysis at 80% noise
density are presented in the Table 1 and Fig. 5.
From Table 1 and Fig. 5, we see that the highest values of

performance parameters PSNR and SSIM (in italics) are
achieved when value of K is 0.5. For values below and
above 0.5, the values of PSNR and SSIM are lower than
what they are at K = 0.5. Hence, the value of K has been

considered as 0.5 in the proposed algorithm. The rest of
the parameters used in the proposed algorithm assume dif-
ferent values depending upon the value of noise density.

3.2 Results on simulated images
Figures. 6, 7, and 8 show the restoration results of differ-
ent filters, i.e., NAFSWM, ROAD, ROLD, TBLI, ASM,

Fig. 8 Restoration results of different methods for Cameraman image corrupted with 80% noise density. Legends: a Cameraman (original image);
b noisy image (80%); c NAFSWM; d ROAD; e ROLD; f TBLI; g ASM; h CBD; i AFIDM; and j TTSD

Table 2 Restoration results in PSNR (dB) for Lena, Boat, and Cameraman images corrupted by RVIN

Noise density (%) Image NAFSWM [14] ROAD [25] ROLD [23] TBLI [19] ASM [10] CBD [9] AFIDM [3] TTSD

75 Lena 30.82 28.65 29.81 30.05 31.57 31.33 31.12 34.87

Boat 30.39 27.70 29.61 29.18 29.57 31.68 30.41 33.52

Cameraman 31.27 28.68 30.27 30.61 30.84 33.12 31.32 35.06

80 Lena 30.66 27.96 29.12 29.13 30.26 31.57 30.63 34.15

Boat 30.23 27.91 29.15 29.96 29.15 30.81 29.81 32.99

Cameraman 31.40 28.30 29.46 29.43 29.45 32.26 31.13 34.63

85 Lena 30.70 27.63 28.33 28.48 29.51 30.31 29.85 33.46

Boat 30.21 27.56 28.45 28.41 28.17 29.76 29.11 32.68

Cameraman 31.13 27.97 28.63 28.65 28.50 31.13 30.43 34.03

90 Lena 30.47 27.27 27.85 27.84 28.26 29.70 29.14 32.77

Boat 30.08 27.43 27.93 27.88 27.72 29.63 28.27 31.99

Cameraman 30.97 27.54 27.94 28.05 27.96 29.92 29.94 33.46

95 Lena 30.29 27.17 27.36 27.33 27.72 29.49 28.42 31.98

Boat 29.90 27.35 27.44 27.48 27.37 29.40 27.61 31.14

Cameraman 30.69 27.36 27.45 27.52 27.65 28.38 28.84 32.69
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CBD, AFIDM, and TTSD for “Lena,” “Boat,” and “Cam-
eraman” images corrupted by 80% of RVIN respectively.
Tables 2 and 3 show the PSNR and SSIM values of vari-
ous filters for these images corrupted with different
levels of RVIN. The highest values are given in italics.
In addition to the three standard test images, i.e.,

Lena, Boat, and Cameraman, simulations have also
been carried out on the TID2008 database of 25 images
of size 256 × 256 for validating the proposed method.
The average values of PSNR and SSIM have been calcu-
lated for all methods and compared for the TID2008
database in Tables 4 and 5 below. The highest values
are given in italics. Figures 9 and 10 show the graphs of
comparison of PSNR and SSIM of various methods for
TID2008 database, respectively. The image restoration
results of TID2008 image database for 80% noise density
are shown in the Fig. 11.

3.3 Discussions
From the results of existing methods, we observe that
there is miss detection of noisy pixels as noise-free and
vice versa. However, in case of the NS-based TTSD, miss
detection is substantially minimized till 80% noise dens-
ity and some miss detection occurs in TTSD at high

noise densities of more than 80%. As already mentioned,
the TTSD method uses the concept of noise signature
and multiple thresholds to detect noisy pixels. A level-
by-level verification is performed to avoid miss detection
of noise-free pixels as noisy pixels.
From Figs. 6, 7, 8, 9, 10, and 11 and Tables 2, 3, 4, and 5,

we observe that the NAFSWM [14] filter does not
yield good restoration results at 80% noise density
because it utilizes the histogram of the corrupted
image to identify noise pixels as the noise detection
algorithm which produces satisfactory results till 50%
noise density only. Similarly, ROAD [25] is also good
only up to 50% noise density beyond which miss de-
tection is very high. The performance of ROLD [23]
is better than that of the ROAD because it uses the
logarithmic difference for detection, but after 60%
noise density, it also does not provide good results.
TBLI [19] detection algorithm is based on triangle-
based linear interpolation which is used to detect
noisy and noise-free pixels. TBLI [19] is also good
only up to 60% noise density beyond which miss
detection increases and picture quality worsens. In
ASM’s detection stage, noisy pixels are detected using
the absolute deviation between the mean value and

Table 3 Restoration results in SSIM for Lena, Boat, and Cameraman images corrupted by RVIN

Noise density (%) Image NAFSWM [14] ROAD [25] ROLD [23] TBLI [19] ASM [10] CBD [9] AFIDM [3] TTSD

75 Lena 0.196 0.030 0.074 0.076 0.118 0.661 0.563 0.861

Boat 0.161 0.023 0.078 0.050 0.125 0.601 0.531 0.789

Cameraman 0.159 0.027 0.074 0.067 0.112 0.723 0.571 0.859

80 Lena 0.161 0.023 0.052 0.043 0.083 0.589 0.502 0.829

Boat 0.136 0.019 0.056 0.079 0.088 0.559 0.488 0.748

Cameraman 0.138 0.024 0.048 0.049 0.076 0.692 0.529 0.832

85 Lena 0.129 0.016 0.031 0.030 0.050 0.497 0.474 0.782

Boat 0.116 0.015 0.034 0.033 0.059 0.471 0.453 0.701

Cameraman 0.107 0.014 0.030 0.034 0.046 0.609 0.483 0.792

90 Lena 0.108 0.015 0.022 0.018 0.032 0.382 0.314 0.718

Boat 0.088 0.016 0.020 0.020 0.042 0.401 0.294 0.628

Cameraman 0.087 0.012 0.021 0.021 0.031 0.534 0.318 0.746

95 Lena 0.071 0.009 0.012 0.012 0.018 0.330 0.263 0.656

Boat 0.074 0.006 0.008 0.010 0.017 0.357 0.244 0.579

Cameraman 0.059 0.011 0.010 0.012 0.021 0.482 0.274 0.685

Table 4 Restoration results in average PSNR (dB) for TID2008 database corrupted by RVIN

Noise density (%) NAFSWM [14] ROAD [25] ROLD [23] TBLI [19] ASM [10] CBD [9] AFIDM [3] TTSD

75 30.98 27.64 29.96 29.85 30.07 32.02 30.58 34.18

80 30.84 27.47 29.21 29.16 29.43 31.17 30.12 33.71

85 30.68 27.28 28.83 28.76 28.75 30.65 29.47 33.12

90 30.35 27.14 28.13 28.09 28.11 29.86 28.78 32.54

95 30.11 27.05 27.52 27.52 27.59 29.42 27.83 31.80
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the CP which is then compared with threshold value.
ASM [10] though provides better value of PSNR; it
does not give good quality picture restoration because
of miss detection at higher noise densities.
The CBD [9] and AFIDM [3] are two methods among

the existing methods which provide relatively better re-
sults till high noise densities. In these methods also, the
detection is satisfactory up to 60% and miss detection
occurs beyond that which results in blurring and hazi-
ness. In contrast to CBD, the NS-based TTSD is based
on adaptive thresholds and hence the algorithm used is
very effective. Further, in contrast to AFIDM, the TTSD
algorithm uses three levels of thresholds which provide
high quality of detection. The detection in TTSD is
satisfactory up to 80% with some miss detection. This
results in better restoration of image and better contrast
as compared to the CBD.
From Table 4 and Fig. 9, we see that the TTSD filter

achieves higher PSNR values even when the noise level
is very high, e.g., at 95%. This is mainly because of the
relatively better noise detection and efficient fuzzy
switching weighted median filtering compared to the dif-
ferent kinds of median filtering used in other methods.
Further, from Table 5 and Fig. 10, it is evident that the
restoration performance of the TTSD filter is better in
terms of SSIM than that of the other filters even when
the noise density is higher than 80%. The higher values

of SSIM produced by TTSD are also in consonance with
the visual performance of the three restored images in
Figs. 6, 7, and 8, whereby it is evident that the TTSD
filter is able to preserve the contrast when compared
with the other filters.
We also observed consistency in effectiveness of the

proposed algorithm at high noise densities as compared
to that of existing algorithms. For high noise densities
beyond 75%, the proposed method TTSD consistently
provides higher PSNR and SSIM values as compared to
those of NAFSWM, ROAD, ROLD, TBLI, ASM, CBD,
and AFIDM. As is evident from Fig. 9, the rate of
decrease in PSNR is lower for TTSD as compared to
those of other existing methods except NAFSWM and
ROAD. Further, we observe from Fig. 10 that the rate of
decrease in SSIM for TTSD is lower than those of CBD
and AFIDM which are the other two significant algo-
rithms so far as SSIM is concerned. This shows that the
deterioration in the effectiveness of the proposed
method with increase in noise density is not as steep as
it is in case of other existing methods.
Further, the picture quality of TTSD is better than all

other methods for high noise densities. This is because
the TTSD filter satisfactorily addresses miss detection

Table 5 Restoration results in average SSIM for TID2008 database corrupted by RVIN

Noise density (%) NAFSWM [14] ROAD [25] ROLD [23] TBLI [19] ASM [10] CBD [9] AFIDM [3] TTSD

75 0.156 0.022 0.071 0.068 0.115 0.645 0.545 0.821

80 0.127 0.018 0.046 0.044 0.096 0.582 0.493 0.784

85 0.105 0.015 0.034 0.031 0.061 0.502 0.443 0.748

90 0.086 0.013 0.024 0.022 0.039 0.428 0.332 0.675

95 0.062 0.011 0.011 0.011 0.016 0.341 0.252 0.621

Fig. 9 Graph of comparison of PSNR of different methods for
TID2008 database at 80% noise density

Fig. 10 Graph of comparison of SSIM of different methods for
TID2008 database at 80% noise density
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80%, whereas the miss detection in other methods in-
creases very sharply with the increase of noise density.
Beyond 80%, miss detection also increases in TTSD at a
slow rate.

3.4 Rational for using three levels of thresholds
There are various existing algorithms which use one or
two thresholds for detection of noisy pixels. The pro-
posed method TTSD uses three levels of thresholds to

further refine the detection process. To improve the ac-
curacy of the detection process, one can go on adding
the levels of thresholds; however, it will result in high
computational complexity. By carrying out extensive
simulations on different images, the TTSD could arrive
at the optimal level of three thresholds which is pro-
posed in this study. It not only yields higher level of
accuracy in detection but also provides the low compu-
tational complexity.

Fig. 11 Restoration results of TTSD algorithm for TID2008 database corrupted with 80% noise density. Legends: a TID2008 database (25 original
images); b TID2008 noisy images (80%); c TID2008 database images restored by TTSD algorithm
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Each level of threshold in TTSD acts as a filter to
separate noisy pixels from the rest and passes only
those pixels to the next levels which are not de-
tected as noisy pixels. Therefore, TTSD keeps on
separating the noisy pixels after each level and
probes the noise-free pixels level by level unless the
three proposed statistical conditions of noisiness are
verified. For every central pixel in a sliding window,
unique threshold value is determined based on the
surrounding pixel values. Therefore, the performance
of detection in TTSD enhances.

3.5 Speed comparison
To carry out speed comparison of the proposed method
with the existing methods and to study their computa-
tional complexities, we calculated the computation time
taken by these methods for noise densities varying from
75 to 95%. Table 6 and Fig. 12 show the comparison of
average computation time taken by various algorithms
for the TID2008 database from 75 to 95% noise dens-
ities. The highest values are given in italics.
From Table 6 and Fig. 12, it is evident that the TTSD

takes less computation time than NAFSWM, TBLI,
ASM, and AFIDM and more computation time than
ROAD, ROLD, and CBD. We also see that the computa-
tion time increases with the increase in the noise density
in all methods. However, the rate of increase in compu-
tation time for TTSD is lower than the existing methods.

To avoid miss detection, TTSD uses three levels of
thresholds along with an auxiliary condition which in-
volve various calculations. Therefore, the PSNR and
SSIM values of TTSD are better than those of the exist-
ing methods and the computation time taken is higher
than ROAD, ROLD, and CBD. This again demonstrates
the effectiveness of the TTSD algorithm as against the
existing methods. Our future work will concentrate on
further reducing the computation time as well as reduc-
tion of the miss detection above 80% RVIN. This can be
achieved by use of parallel processing architect in place
of series processing [31, 32].
These simulations demonstrate that the proposed

method achieves better results at higher noise densities
than the existing methods for a wide range of images.
Since the restored picture quality is comparably good in
TTSD, its average SSIM values at higher noise densities
are far better than those of NAFSWM, ROAD, ROLD,
TBLI, ASM, CBD, and AFIDM.

4 Conclusions
In this paper, a new method based on noise signature
is presented for effective removal of random-valued
impulse noise in images. It is extremely difficult to re-
store images corrupted with very high noise densities.
Most of the existing algorithms provide good results
only up to low noise densities. Some of them use pre-
defined thresholds for detection which may not be

Table 6 Average computation time of various algorithms for TID2008 database corrupted by RVIN (unit: seconds)

Noise density (%) NAFSWM [14] ROAD [25] ROLD [23] TBLI [19] ASM [10] CBD [9] AFIDM [3] TTSD

75 5.87 1.93 1.69 17.79 8.82 1.56 9.12 5.62

80 5.98 1.99 1.76 18.18 8.90 1.60 9.54 5.81

85 6.28 2.02 1.90 18.54 9.06 1.64 9.89 6.12

90 6.83 2.09 2.04 19.04 9.17 1.72 10.21 6.38

95 7.39 2.32 2.15 19.72 9.33 1.97 10.65 6.64

Fig. 12 Average computation time of various algorithms for TID2008 database corrupted by RVIN
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effective in case of randomly picked up images at
higher noise densities. In contrast, the proposed noise
signature-based triple threshold statistical detection
method promises better results in the case of highly
corrupted random images too. This is possible because
it does not use any predefined threshold values. Simu-
lation results demonstrate the efficacy of this method
in removing high density random-valued impulse
noise while preserving image details. The proposed
method is able to suppress up to 80% of noise with a
considerable level of satisfaction due to effective use
of noise signature. Further, the results reveal that the
method performs better than the existing state-of-the-
art filtering approaches. Thus, the proposed triple
threshold statistical detection method is an adaptive
filtering approach which can be considered as a high-
performance method in its class.
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