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Abstract

Depression is the most prevalent mood disorder and a leading cause of disability worldwide. Automated video-based
analyses may afford objective measures to support clinical judgments. In the present paper, categorical depression
assessment is addressed by proposing a novel variant of theMotion History Image (MHI) which considers Gabor-inhibited
filtered data instead of the original image. Classification results obtained with this method on the AVEC’14 dataset are
compared to those derived using (a) an earlier MHI variant, the Landmark Motion History Image (LMHI), and (b) the
original MHI. The different motion representations were tested in several combinations of appearance-based
descriptors, as well as with the use of convolutional neural networks. The F1 score of 87.4% achieved in the proposed
work outperformed previously reported approaches.

Keywords: Depression assessment, Affective computing, Machine learning, Image processing, Facial image analysis,
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1 Introduction
Major depressive disorder (MDD) is the most prevalent
mood disorder, currently reported as the prime cause of
disability worldwide [1]. With rising frequency, MDD is
also a major factor associated with suicidal behavior. The
gold standard for MDD diagnosis is a clinical interview
conducted by a specially trained and experienced men-
tal health professional evaluating the presence of widely
accepted criteria, such as those specified in the Diagnos-
tic and Statistical Manual of Mental Disorders [2, 3]. In
clinical practice, diagnosis can be supported by self-report
scales, such as the Beck Depression Inventory (BDI) [4].
Self-ratings of depressive symptomatology are affected by
several biasing factors (e.g., subjective and social accep-
tance). Therefore, additional, objective measures able to
support MDD diagnosis could be proven advantageous in
both clinical and research settings [5].
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A variety of non-verbal manifestations of MDD have
been established in the clinical literature [6, 7]. Some
of the visual signs of MDD include head movements,
facial expression variability, smiles, and frowns [5]. The
present work evaluates the accuracy of automatic, video-
based detection of such visual signs. More specifically,
the proposed work is based on the hypothesis that indi-
viduals suffering from depression display less motion
and lower motion variability in their facial expressions
than non-depressed persons. The methods presented are
derived from the Motion History Image (MHI), an algo-
rithm more commonly employed for action recognition
[8]. The performance of three MHI variants is contrasted,
combined with appearance-based descriptors and deep
learning methods. Algorithm performance is tested on
the benchmark dataset provided by the 2014 Audio/Visual
Emotion Challenge (AVEC’14). The main contribution
of the proposed work lies in the improvement of clas-
sification performance for the given dataset, as well as
introducing a novel variant of MHI, the Gabor Motion
History Image (GMHI).

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-017-0212-3&domain=pdf
http://orcid.org/0000-0002-6874-9769
mailto: anastasia.pampouchidou@gmail.com
http://creativecommons.org/licenses/by/4.0/


Pampouchidou et al. EURASIP Journal on Image and Video Processing  (2017) 2017:64 Page 2 of 11

The current manuscript is organized in six sections.
Section 2 presents existing algorithmic implementa-
tions and applications on the same dataset. The current
methodology is outlined in Section 3, and experimental
results are reviewed in Section 4. Discussion and inter-
pretation of results is undertaken in Section 5, with con-
cluding remarks and recommendations for future work
included in Section 6.

2 Related work
Related work is summarized in this section in terms of
(a) the employed dataset and (b) algorithms involved in
the proposed method. In the first subsection, previous
work using AVEC datasets, for categorical assessment of
depression based on visual cues, is briefly reviewed. The
second subsection presents a review of the algorithms
and methods which were combined to realize the pro-
posed approach, namely MHI, Gabor filtering, and deep
learning.

2.1 Audio/visual emotion challenge
Although decision support systems based on visual cues
have not been incorporated into standard clinical prac-
tice, several approaches for developing such systems can
be found in the literature. The majority of published
approaches materialized within the AVEC “Depression
Recognition Sub-challenge” (DSC) [9–11].

2.1.1 AVEC: challenge and dataset
AVEC’13 and AVEC’14 addressed the problem of estimat-
ing the severity of depressive symptomatology as a con-
tinuous variable as indexed by (self-reported) BDI scores.
The dataset consisted of video feeds of undiagnosed vol-
unteers performing the following tasks: vowel pronun-
ciation, solving a task out loud, counting from 1 to 10,
reading novel excerpts, singing, and describing a specific
scene displayed in pictorial form. During AVEC’13, the
complete recording was used for testing the performance
of the different approaches, while in AVEC’14, two tasks
were selected: the Northwind (reading excerpt) and the
Freeform (answering to questions) [10]. AVEC’16 [11] uti-
lized a different dataset (DAIC-WOZ [12]) and provided
only the features extracted with the OpenFace software
[13], instead of the original video recordings.
Despite the AVEC’13 and AVEC’14 datasets being

focused on continuous depression assessment, different
approaches have utilized it to address classification of
portrayed persons into high- and low-depression sever-
ity groups according to the following standard BDI score
cut-offs [4]:

• 0–13: Minimal depression
• 14–18: Mild depression
• 19–28: Moderate depression
• 30–63: Severe depression

2.1.2 Categorical depression assessment with AVEC
datasets

For the purposes of their participation in AVEC’14,
Senoussaoui et al. [14] attempted classification of video
feeds into “absence” (as indicated by BDI points ≤13)
versus “presence” (as indicated by BDI points >13) of sig-
nificant depressive symptomatology. They used the Local
Gabor Binary Patterns in Three Orthogonal Planes, pro-
vided by the challenge organizers [10], achieving 82%
accuracy. Similar results were obtained in the cross-
cultural study of Alghowinem et al. [15] who focused on
geometrical features derived from eye activity to achieve
81.3% classification accuracy utilizing one subset of the
AVEC’13 dataset, among other datasets. Pampouchidou
et al. [16] reported 74.5% accuracy with the Local Curvelet
Binary Patterns in Pairwise Orthogonal Planes, while
Pampouchidou et al. [17] employed geometrical features
to achieve an F1 score of 58.6% in the single-modality (i.e.,
visual) approach and 72.8% when taking into account both
audio and visual features.

2.2 Motion history image
MHI is a robust, yet relatively straightforward, algorithm
developed to represent the motion that occurs in the
course of a complete video recording with a single image
[18]. The algorithm produces a grayscale image, in which
the white pixels correspond to the most recent move-
ments and the darkest gray correspond to the earliest
motion elements. Black pixels indicate absence of move-
ment. It is a popular algorithm for motion analysis [18]
and has been extensively used in the field of human action
recognition [8].
An early approach of MHI to facial image analysis was

that of Valstar et al. [19], who employed MHI in facial
action recognition from videos. Meng et al. [20] pub-
lished a continuous depression assessment approach in
their participation to the DSC of AVEC’13; they proposed
an extension of MHI, the Motion History Histograms
(MHH), which considers patterns of movement. In the
DSC of AVEC’14, Pérez Espinoza et al. [21] employed
MHI, and for the same challenge, Jan et al. [22] proposed
the 1-D MHH, an extension of MHI, which is computed
on the feature vector sequence instead of the inten-
sity image. As part of their DSC-AVEC’16 participation,
Pampouchidou et al. [23] introduced Landmark Motion
History Images (LMHI), which instead of considering
intensities from image sequences, considers sequences of
facial landmarks.

2.3 Gabor filtering and inhibition
Gabor filters have been frequently used in both facial
expression analysis and emotion recognition [24, 25].
In relevant approaches, the feature vector is extracted
from the convolution of the original image with a 2D
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Gabor wavelet function at different orientations and
wavelengths. This describes the spatial frequency struc-
ture around each pixel. In [26], the Gabor energy was used
for facial emotion recognition, which gives a smoother
response to an edge or a line of appropriate width with
a local maximum exactly at the edge or in the center of
the line. The authors also applied background texture sup-
pression on the response of the filter, by removing an
image filtered by the difference of Gaussians (DoG) from
the original response for each orientation. This approach,
also known as anisotropic inhibition [27], removes noise
and provides a sharper representation of facial features.

2.4 Deep learning
Deep learning, which has become increasingly popular
during recent years, is a self-learning tool designed to
identify patterns in several sets of data samples, extracted
from multiple processing layers. Each layer is composed
of representation learning methods and is processed in a
higher and more abstract level [28]. Convolutional Neural
Network (CNN) is a particular deep feedforward network
with higher generalization efficiency than other fully con-
nected networks. There are typically two types of layers:
the convolutional (conv.) layer and the pooling layer. In
the conv. layer, all units are arranged in a feature map
and connected to the weights (also known as filter banks),
while the weighted sum is inserted to the Rectified Linear
Unit (ReLU). The CNN architecture used in the present
work was employed in the participation that won the 2012
ImageNet competition (ILSVRC) [29, 30].
Deep learning approaches have been widely tested in

the field of facial expression recognition [31]. In the field
of depression assessment from visual cues, however, we
could find only two published reports. Dibeklioğlu et al.
[32] employed Stacked Denoising Autoencoders in a mul-
timodal context to perform video classification according
to three levels of depressive symptomatology on the
Pittsburgh dataset. Moreover, Zhu et al. [33] employed
Deep Convolutional Neural Networks to achieve the
highest performance among the unimodal (visual)
approaches addressing the aim of AVEC’13 and AVEC’14
competitions.

3 Methodology
The analysis pipeline employed in the current approach
is presented in Fig. 2. The first step entails preprocessing,
followed by motion representation and feature extraction
from the motion images. Dimensionality reduction is per-
formed next, to provide the classifier with the appropriate
feature descriptors.

3.1 Preprocessing
Meaningful processing of video frames requires, first,
extraction of the region of interest (face). Detection of 2D

facial landmarks (c.f. Fig. 1) and extraction of aligned facial
images, of size 112×112 pixels, were accomplished using
OpenFace, an open source application [13]. A binary “suc-
cess” score is provided for each frame, with “0” and “1”
indicating unsuccessful and successful detection, respec-
tively. In the present work, only successfully detected
frames were retained for further processing.

3.2 Motion representation
It is well supported in clinical literature that most of the
non-verbal signs of depression are dynamic by nature
[6, 7]. Therefore, the use of video-based methods
(dynamic), as opposed to frame-based (static), is prefer-
able. In the proposed work, three different motion his-
tory images were implemented: (a) the Motion History
Image (MHI) as derived from the basic algorithm, (b) the
Landmark Motion History Image (LMHI) which relies on
facial landmarks, and (c) the GaborMotion History Image
(GMHI). More details regarding the specific motion rep-
resentation algorithms are presented below with imple-
mentation examples illustrated in Fig. 4.

3.2.1 Motion History Image
The MHI is a grayscale image, where white pixels corre-
spond to the most recent movement in the video, inter-
mediate grayscale values to corresponding less recent
movements, and black pixels to the absence of movement.
The MHI algorithm, with slight variations as explained
next, is applied on the aligned face image sequences
derived from the preprocessed data using OpenFace as
described in Section 3.1.
The MHI H, with a resolution equal to the one of the

aligned faces, is computed based on an update function
�(x, y) as follows:

Hi(x, y) =
⎧
⎨

⎩

0 i = 1
i · s �i(x, y) = 1

H(i−1)(x, y) otherwise
(1)

where s = 255/N , N is the total number of video frames,
(x, y) is the position of the corresponding pixel, and i is the
frame number. �i(x, y) represents the presence of move-
ment, derived from the comparison of consecutive frames,
using a threshold ξ :

�i(x, y) =
{
1 Di(x, y) ≥ ξ

0 otherwise (2)

where Di(x, y) is defined as a difference distance:

Di(x, y) = ∣
∣Ii(x, y) − I(i−1)(x, y)

∣
∣ (3)

Ii(x, y) is the pixel intensity value in (x, y) at the ith frame.
The final MHI is the HN (x, y).

3.2.2 LandmarkMotion History Image
The LMHI originally proposed in Pampouchidou et al.
[23] considers the landmarks derived fromOpenFace. The
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Fig. 1 2D facial landmarks as detected by OpenFace

landmarks considered are the ones which correspond to
the facial features (eyes, eyebrows, nose-tip, and mouth),
while the face outline is excluded.
This step was taken in order to emphasize inner facial

movements and ignore the overall head movements. This
is achieved by co-registering the involved landmarks
using affine transformation before computing the LMHI,
through alignment of the points corresponding to the
temples, chin, and inner and outer corners of the eyes
(landmarks {1, 9, 17, 37, 40, 43, 46}).
LMHI differs from the conventional MHI in that image

intensities are not considered, but only the facial land-
marks, which are detected in each frame. The adopted
LMHI algorithm is similar to MHI, by maintaining the
same Hi as in (1) and modifying �i as follows:

�i(x, y) =
{
1 (x, y) ∈ Li
0 otherwise (4)

where Li corresponds to the selected landmarks as
detected in the ith frame.

3.2.3 GaborMotion History Image
GMHI is another variant of MHI, where Gabor-inhibited
images substitute original image intensities. The motiva-
tion for implementing this variant is that it focuses on the
important details of the facial features and thus extracts
themost relevant information. Themotion representation
algorithm is identical to the one described in Section 3.2.1,
but the input image I is the result of the Gabor inhibi-
tion. The process of obtaining the Gabor-inhibited image
is explained in detail below.
The Gabor wavelet at position (x, y) is given by:

�λ,θ ,φ,σ ,γ (x, y) = exp
(

−x′2 + γ 2y′2

2σ 2

)

cos
(

2π
x′

λ
+ φ

)

(5)

with

x
′ = x cos θ + y sin θ

y
′ = −x sin θ + y cos θ

(6)

where λ stands for the wavelength, θ for the orientation,
φ for the phase offset, σ for the standard deviation of the
Gaussian, and γ for the spatial aspect ratio [34].
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Fig. 2 Process flow of the proposed algorithm. Dashed arrows in feature extraction indicate that features are considered individually or in
combination with feature fusion. MHI: Motion History Image, LMHI: Landmark Motion History Image, GMHI: Gabor Motion History Image, HOG:
Histogram of Oriented Gradients, LBP: Local Binary Patterns, LPQ: Local Phase Quantization, PCA: Principal Components Analysis, SVM: Support
Vector Machine

The input image is usually filtered with many wavelets
for multiple orientations and wavelengths. The energy
filter response is obtained by combining the convolu-
tions obtained from two different phase offsets (φ0 = 0
and φ1 = π/2) using the L2-norm. Background tex-
ture suppression is applied on the filter response, by
removing a DoG-filtered image from the original response
for each orientation [27]. Finally, the mean response of

Gabor filtering is used to combine the responses across
the different orientations, resulting in the pseudo-image
used to compute the GMHI. An example of applying the
common Gabor and the Gabor-inhibited algorithms to
an aligned face image is illustrated in Fig. 3, where the
Gabor-inhibited image appears to be sharper and with
less texture in uniform regions than the original Gabor
response.
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Fig. 3 Example of the Gabor-inhibited image process. a Original aligned face image, b Gabor reponse, c Gabor inhibited

3.3 Feature extraction
Feature extraction was implemented in the present work
using two alternative approaches. The first employs
appearance-based descriptors, popular in facial image
analysis, while the second presents a preliminary attempt
to address the problem based on deep learning methods.
In both cases, the features were extracted from motion
images, instead of the original video recordings.

3.3.1 Appearance-based descriptors
The appearance-based descriptors employed in the
present work include the Histogram of Oriented
Gradients (HOG), the Local Binary Patterns (LBP), and
the Local Phase Quantization (LPQ). Additionally, the
combined histogram, mean. and standard deviation of
the motion-image gray values are also considered as a
single descriptor [Hist-Mean-Std]. Specifically for the
histogram, zero values (absence of movement) are dis-
regarded, and only the bins of the remaining 255 gray
values are considered, resulting in a 1×257 feature vector
in addition to mean and standard deviation. The rest of
the descriptors are explained next and illustrated in Fig. 4
for each motion image.

Histogram of oriented gradients (HOG) [35] entails
counting gradient orientations in a dense grid. Each image
is divided into uniform and non-overlapping cells; the
weighted histogram of binned gradient orientations for
each cell is computed and subsequently combined to form
the final feature vector. HOG results in a 1×6084 feature
vector.

Local Binary Patterns (LBP) [36] entails dividing the
image into partially overlapping cells. Each pixel of the
cell is compared to its neighbors to produce a binary
value (pattern). The resulting descriptor is a histogram

which represents the occurrence of different patterns. LBP
for two sets of {radius, neighborhood} results to feature
vectors of size 1×59 for {1,8} and size 1×243 for {2,16}.

Local Phase Quantization (LPQ) [37] is computed in
the frequency domain, based on the Fourier transform, for
each pixel. Local Fourier coefficients are computed, while
their phase information results in binary coefficients after
scalar quantization. The final descriptor corresponds to
the histogram of the binary coefficients, and it consists of
1×256 features.

3.3.2 Visual Graphic Geometry
Visual Graphic Geometry (VGG) is a CNN variant pro-
posed by Simonyan and Zisserman [38]. Using VGG,
they achieved 92.7% top-5 test accuracy on the ImageNet
Dataset, which comprises of over 14 million images in
1000 classes. The microarchitecture of VGG16 can be
seen in Fig. 5.
The RGB image, with pixel values ranging between 0

and 255, is normalized by subtracting the mean pixel
value. The input to VGG (a fixed-size 224×224 RGB
image) passes through a stack of conv. layers, where
the very small filters are of receptive field size 3×3 to
capture the notion of left/right, up/down, and center.
The convolution stride is fixed to 1 pixel; the spatial
padding of a conv. layer input is such that the spa-
tial resolution is preserved after convolution, i.e., the
padding is 1 pixel for 3×3 conv. layers. Spatial pool-
ing is carried out by five max-pooling layers, which
follow some of the conv. layers (not all the conv.
layers are followed by max-pooling). Max-pooling is
performed over a 2×2 pixel window, with stride 2.
A stack of conv. layers (which has a different depth in
different architectures) is followed by three fully con-
nected (FC) layers: the first two have 4096 channels each
and the third performs 1000-way ILSVRC classification
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Fig. 4 Different motion representations with corresponding feature responses. a.1MHI, a.2MHI-HOG, a.3MHI-LBP, a.4MHI-LPQ, b.1 LMHI, b.2
LMHI-HOG, b.3 LMHI-LBP, b.4 LMHI-LPQ, c.1 GMHI, c.2 GMHI-HOG, c.3 GMHI-LBP, c.4 GMHI-LPQ

Fig. 5Microarchitecture of VGG16. BFCL: Before fully connected layer, AFCL: After fully connected layer
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and thus contains 1000 channels (one for each class). The
final layer is the soft-max layer. The configuration of the
fully connected layers is the same in all networks. All hid-
den layers are characterized by non-linearity afforded by
ReLU [30].
In the present work, a pre-trained VGG16 network was

employed at different VGG layers, for each motion his-
tory image separately as well as combined in the form of
an RGB image. The proposed method involves transfer
learning, by employing the pre-trained VGG. It is applied
on the motion history images in order to extract features
before the 1st fully connected layer, as well as after the 1st,
2nd, and 3rd fully connected layers. Specifically, the D ver-
sion of the network was chosen, as it has shown excellent
results in related medical applications. The extracted fea-
tures are subsequently used for classification purposes in
the exact same manner as the appearance-based descrip-
tors. The different implementations are explained in what
follows.

Before fully connected layer (BFCL) provides the fea-
tures to the fully connected layer of the VGG16, as shown
in Fig. 5. Filter size is 14×14 with 512 kernels. Mean and
max values are calculated from each filter, each resulting
in a matrix of size 1×512 for each image.

After fully connected layer (AFCL) is the second
approach. There are three fully connected layers in
VGG16. Layers 1 and 2 operate on a feature matrix of size
1×4096, and layer 3 on a feature matrix of size 1×1000.

3.4 Dimensionality reduction and classification
In the present work, principal component analysis (PCA)
was employed to achieve dimensionality reduction. PCA
is one of the most popular methods for this purpose
and is based on the linear transformation of the original
feature vector, into a set of uncorrelated principal compo-
nents. For a dataset of size N × M (i.e., N samples and
M features), PCA identifies a M × M coefficient matrix
(component loadings) that maps each data vector from
the original space to a new space of M principal com-
ponents. However, by properly selecting a smaller set of
K < M components, the dimensionality of the data can be
reduced while still retaining much of the information (i.e.,
variance) in the original dataset.
In the present work, classification was based on a super-

vised learning model using Support Vector Machines
(SVMs). SVM is a non-probabilistic binary linear classifier
which, based on the training samples, attempts to iden-
tify an optimal hyperplane that maximizes the distance
between the two classes.

4 Experimental results
In this section, the configuration of corresponding param-
eters of the employed algorithms is explained and their
performance is evaluated.

4.1 Configuration of parameters
The analysis pipeline proposed here was tested on
the benchmark dataset provided by AVEC’14. As men-
tioned in Section 2, AVEC’14 included data from two
tasks: FreeForm and NorthWind and the dataset was
partitioned into three subsets: training, development,
and test. The BDI scores for each video-clip were
provided only for the training and development sets,
comprising 200 labeled recordings in total. In order
to address the categorical depression assessment, a
cutoff of 13/14 points on the BDI-II was set as
in [14]. After applying the cutoff, the dataset was
fairly balanced consisting of 96 individuals who scored
high and 104 persons who scored low on BDI-II,
henceforth labeled as “depressed” and “non-depressed”
groups.
Regarding specific parameters of the motion represen-

tation algorithms, the value of ξ was set to 25 for MHI and
to 8 for GMHI. These thresholds were chosen empirically,
so that the static background did not present movement
in the motion image. This effect was noted at lower ξ val-
ues, where differences in pixel intensity were attributed
to illumination variations. Setting the appropriate thresh-
old ensures that the movement represented by the motion
images is meaningful and can be attributed solely to
movements. LBP was tested with two sets of [radius,
neighborhood], namely [1,8] and [2,16]. TheGaussian ker-
nel was chosen for the SVM classifier, with the expected
proportion of outliers in the training data set to 10%.
The log(x/(1 − x)) transform function was applied. The
number of principal components retained was selected
empirically: k = 100 for the appearance-based descrip-
tors and k = 60 for VGG. A variant of Leave-One-Out
(LOO), the Leave-One-Subject-Out (LOSO), was used for
cross-validation. LOSO was selected instead of LOO as a
non-biased and person-independent method, given that
the dataset contained more than one recordings of the
same subject (ranging from 2 to 6).

4.2 Performance evaluation
Performance of the different configurations of the pro-
posed algorithm is summarized in Tables 1, 2, 3, 4, and 5.
Table 1 presents performance of the various appearance-
based descriptors for each of the three different motion
images. The descriptors were tested individually and com-
bined with feature level fusion (concatenated). Table 2
presents the performance of VGG for the different con-
figurations as explained in Section 3.3.2. The confu-
sion matrix corresponding to the best-performing model
(VGG feature fusion) is presented in Table 3.
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Table 1 Experimental results employing appearance-based
descriptors (F1-score %)

LBP{1,8}a LBP{2,16}a HOG LPQ Hist + Mean + Std Feature fusion

MHI _b _b 81.9 59.3 81.9 36.6

LMHI _b 66.4 64.9 45.8 64.8 72.7

GMHI _b _b 80.0 69.8 80 74.0

The bold values corresponded to the highest performing approach
aLBP parameters in brackets correspond to {radius, neighborhood}, respectively
bDash represents unavailable F1-score due to zero depressed individuals classified
correctly

Additional performance metrics for the best performing
model are reported in Table 4, whereas Table 5 compares
the present findings to previously published results using
similar datasets. It should be noted that the results pre-
sented by Senoussaoui et al. [14] and Alghowinem et al.
[15] were obtained using different organizations of the
AVEC datasets; thus, a direct comparison with the present
results is not possible. In the cross-corpus approach of
Alghowinem et al. [15] the used set was carefully selected
from the original dataset (AVEC’13) in terms of the total
number and duration of recordings per participant, in
order to match the other two datasets. On the other hand,
in [14], the algorithm was applied to the training dataset
provided by the challenge organizers (AVEC’14) and
tested on the development dataset. Although the AVEC
dataset has been widely employed in approaches for
continuous depression assessment, the aforementioned
approaches, to the best of the authors’ knowledge, are the
only ones attempting categorical depression assessment
on the specific dataset.
Results are reported for F1-score, unless indicated oth-

erwise, which is given by:

F1 = 2 · precision · recall
precision + recall

(7)

where precision is given by:

precision = TP
TP + FP

(8)

and recall by:

recall = TP
TP + FN

(9)

Table 2 Experimental results employing VGG features, before
and after fully connected layer (F1-score %)

Before After
Feature fusion

Max Mean 1st 2nd 3rd

MHI 87.1 63.0 51.5 84.8 70.1 87.4

LMHI 64.0 67.7 56.6 18.2 66.4 64.0

GMHI 85.7 62.7 55.6 76.0 65.5 84.3

Combined 64.6 52.1 51.8 74.7 46.3 65.1

The bold values corresponded to the highest performing approach

Table 3 Confusion matrix for the best F1-Score of the proposed
approach (VGG-MHI feature fusion)

Self-reported predicted Non-depressed Depressed

Non-depressed 102 2

Depressed 20 76

The bold values correspond to the correctly classified samples

for the confusion matric C:

C =
[
TP FN
FP TN

]

(10)

5 Discussion
In summary, the MHI approach outperformed the other
motion images with 87.4% F1-score with the VGG feature
level fusion, as it can be observed throughout Tables 1
and 2. Comparable classification results were obtained
with the MHI (87.1%) and GMHI (85.7%), both for VGG
before fully connected max (c.f. Table 2). The deep learn-
ing approach outperformed the appearance-based one
as indicated by an improvement of the F1 score in the
order of 5.5%. Given that GMHI performed only slightly
lower than MHI, it remains promising for further explo-
ration. Combination with different features, testing on a
richer dataset, or other relevant applications, such as facial
expression recognition, may provide more comprehensive
insights on the true value of the GMHI algorithm.
The best performance achieved by appearance-based

descriptors, as shown in Table 1, corresponded to an F1
score of 81.9% for HOG as well as for the combination of
[Hist+Mean+Std] which, again, is comparable to previous
reports. Although LMHI did not perform as well as other
methods (72.7%), there may be room for improvement by
supplementing it with additional feature descriptors and
using different classifiers. It should be noted that head
movements were not formally considered in the present
work, although changes in the outline of the face dur-
ing such movements may have been captured by both
MHI and GMHI. Moreover, LMHI requires significantly
less information (image frames vs. selected landmarks)
and ensures participant anonymity by retaining only facial
landmarks—an important attribute in studies with clinical
samples.

Table 4 Additional performance metrics for the best-performing
approach (VGG-MHI feature fusion/%)

F1 87.4

Accuracy 89.0

Sensitivity 79.1

Specificity 98.1

Precision 97.4

Cohen’s Kappa 77.8

.95 Confidence interval ±8.6
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Table 5 Comparison with previous published results (%)

Approach Accuracy Average recall F1

Sennoussaoui et al. [14] 82.0 – –

Alghowinem et al. [15] – 81.3 –

Pampouchidou et al. [16] 74.5 – –

Pampouchidou et al. [17] – – 58.6

Proposed (VGG feature fusion) 89.0 88.6 87.4

The bold values corresponded to the highest performing approach

Further, LBP did not perform well, for the given set
of parameters, presenting null recognition. A potential
improvement could include testing it for bigger radius
and neighborhood, as the ones selected here may rep-
resent only micro-movement patterns. HOG and [Hist-
Mean-Std] performed equally well and best, among
the appearance-based descriptors, with the latter being
preferable between the two due to its lower dimensionality
(6084 versus 257). It should also be taken into consid-
eration that the aligned images were of lower resolution
than the original frame due to OpenFace preprocessing.
Thus, representation in higher dimensions may improve
performance.
The improvement of VGG-Max from 87.1 to 87.4% F1-

score with VGG feature fusion (c.f. Table 2) is minor in
comparison to the steep rise in dimensionality (from 512
to 10216 features); although eventually only 60 princi-
pal components were selected, PCA was performed on
the full feature vector which is of higher computational
cost. Along the same lines, appearance-based descriptors
performed lower than VGG, but with significantly fewer
features; [Hist+Mean+Std] for example comprised 257
(81.9%) features as compared to the 10216 features (87.4%)
involved in the feature fusion of VGG. However, given
that only the generic VGG was employed in the proposed
work, based on its previously reported performance, it is
highly probable that after training and tuning the network,
the rate of correct depression assessment could improve
significantly.

6 Conclusions
The present work introduced the GMHI, a novel vari-
ant of MHI and reported on the first application of
LMHI [23] on the AVEC dataset. Another novelty of the
proposed work is that categorical assessment of depres-
sive symptomatology was performed using deep learning
methods, for the first time on this dataset. Although per-
formance achieved here outperforms related work, there
is still room for significant improvements. Future work
may attempt training and tuning the VGG, testing differ-
ent versions of the network, assessing the performance
of additional classifiers, as well as attempting decision
fusion [39] for the different motion representations and

feature combinations. Moreover, combining audio-based
features [40] could potentially improve overall perfor-
mance. Testing the two tasks (NorthWind and FreeForm)
independently is also of interest. Furthermore, one of
the greatest challenges is to test the performance of the
proposed pipeline across different benchmark datasets,
as well as on the dataset recently collected by our
research team.
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