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Abstract

In this paper, we propose a new variational model for image restoration by incorporating a nonlocal TV regularizer
and a nonlocal Laplacian regularizer on the image. The two regularizing terms make use of nonlocal comparisons
between pairs of patches in the image. The new model can be seen as a nonlocal version of the CEP-L2 model.
Subsequently, an algorithm combining the alternating directional minimization and the split Bregman iteration is
presented to solve the new model. Numerical results verified that the proposed method has better performance for
image restoration than CEP-L2 model, especially for low noised images.
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1 Introduction
Variational and PDE-based image restoration methods
play an important role in image processing. Their goal
is to recover an image u from the noisy version f . This
is a typical example of inverse problem. The classical
way to overcome inverse problem is to use regularization
techniques. That is to say, images can be reconstructed
by means of minimizing a variational energy functional.
Many techniques for image restoration based on energy
minimization have been presented [1–5]. The total varia-
tion (TV) regularization has become a well-known model
in inverse problems because it enables sharp edges and
fine details to be recovered.
The TVmodel proposed by Rudin et al. [1] is formulated

as:

min
u

∫
�

[|∇u| + λ(u − f )2
]
dx

Here, f : � → R represents a noisy gray scale image. u is
the recovered image. λ > 0 is a tuning parameter. The first
term in the energy is a regularizing term, and the second
one is a fidelity term. Existence and uniqueness results for
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this minimization problem can be found in [1]. The Euler-
Lagrange equation for the TV minimization is (formally)

u = f + 1
2λ

div
( ∇u

|∇u|
)

The model works very well for image denoising, deblur-
ring, and decomposition. However, it cannot completely
separate the cartoon part from the textural part and also
produces staircase effects. There have existed plenty of
variants and numerical attempts to overcome the prob-
lem.
In [4], Meyer proposed a space of G to model the textu-

ral patterns, which is in some sense the dual of BV space.
We would also like to refer the reader to [4]. Meyer’s
model is

inf
u

{∫
�

|∇u|dx + λ‖v‖G, f = u + v
}

Where the space G denotes the Banach space consisting
of the functions with

v = div(−→g ),−→g = (g1, g2) ∈ L∞(�) × L∞(�)

The norm of G is defined as the lower bound of all L∞
norms of |−→g |. This model is suitable to capture texture,
however, it is not easy to handle in practice because the
G norm is involved a term coming from an L∞ norm.
Subsequently, several related problems approximating the
Meyer’s model are introduced in [5–7].
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Vese and Osher [5, 6] proposed the following image
restoration model as an approximation of Meyer’s model:

inf
u,v

{∫
�

|∇u|dx + λ‖f − u − v‖22 + μ‖v‖Lp
}

(1)

In this minimization problem, the term ‖v‖G is approxi-
mated by ‖v‖Lp when p → ∞.
Osher et al. [7] investigated a simplified and modified

version corresponding to the case p = 2 and λ → ∞ in
(1). We call it the OSV model:

inf
u

{∫
�

|∇u|dx + |f − u|2H−1

}

Where the semi-norm |v|H−1 is defined by |v|2H−1 =∫
�

|∇�−1v|2. The model can be solved by the steepest
descent method efficiently.
TV regularization technique is used in the aforemen-

tioned methods for image restoration to preserve edge.
However, the use of the classical TV norm in the func-
tional causes staircase effects in the smooth regions. One
way of reducing staircasing in image restoration from
TV regularization is to combine higher-order derivatives.
Chambolle and Lions (CL) incorporated higher-order
derivatives into the image restoration model [8]. Thus, the
minimization problem is:

inf
u1,u2

{∫
�

|∇u1|dx + α

∫
�

|∂2u2|dx + λ

∫
�

(
f − u1 − u2

)2 dx
}

Chan et al. proposed a modified version of the CL
model for fast staircase reduction in denoising problems
[9]. Specifically, the higher-order derivatives term was
replaced by the following energy:

∫
�

|�u2|2. Their model
(CEP-L2) has the following formulation:

inf
u1,u2

{∫
�

|∇u1|dx + α

∫
�

|�u2|2dx + 1
2λ

∫
�

(
f − u1 − u2

)2 dx
}

Another kind of denoising model called nonlocal means
filter, which is based on the assumption that natural
images have mutually similar patches, is attracting more
and more attention. Nonlocal means filter was first pro-
posed by Buades et al. [10, 11]. Gilboa and Osher defined
a nonlocal variational framework by embedding the non-
local means into a variational formulation [12, 13]. After
the work of Gilboa and Osher, many further research on
image processing based on nonlocal variational methods
have been obtained. See for example [14–19]. Meanwhile,
many nonlocal regularizing models were proposed, for
example, the nonlocal TV model, the nonlocal H1 model,
the nonlocal Meyer’s model [13], and the nonlocal OSV
model [19].
In this paper, we shall focus on a new model which

uses nonlocal TV and nonlocal laplace operator to regu-
lar an image, thus, it can effectively exploit the available
information of the input image. Then, we formulate a non-
local variational functional for image restoration which

performs adaptive smoothing but also preserves edges.
The rest of the paper is organized as follows. Section 2
recalls some results on nonlocal operators and split
Bregman method. The proposed variational bi-regula-
rized model for image restoration and its split Bregman
algorithm are presented in Section 3. In Section 4, we
demonstrate the experimental results on natural images
and textured images which show the validity of the new
model, and the conclusion is given in Section 5.

2 Preliminaries
2.1 Nonlocal operators
Nonlocal means filter was introduced by Buades et al. for
image denosing, which takes advantage of the self sim-
ilarity of the images [10, 11]. The idea is to restore an
unknown pixel using other similar pixels. The nonlocal
means filter is effective to deal with textures and fine
details. Kindermann et al. used variational methods to
understand the nonlocal means filter [20]. Gilboa-Osher
introduced nonlocal operators to interpret the nonlocal
means filter and formalized a systematic and coherent
variational framework for nonlocal operators [13, 14].
In this paper, it is interesting to interpret the nonlo-

cal means filter from the view of variational methods. We
introduce some definitions and notations regarding non-
local operators which are borrowed from Zhou-Scholkopf
in [21, 22] and Gilboa-Osher in [12]. Let � ⊂ R2, x, y ∈ �

and w(x, y) be a weight function which is symmetric and
non-negative. For a function u : � → R, the nonlocal
gradient ∇NLu(x, y) : � × � → R is defined by

∇NLu(x, y) = (u(y) − u(x))
√
w(x, y), x, y ∈ �

It is not a vector field in the standard sense but a map from
� × � to R. The map from � × � to R is called an NL
vector. For a pair of NL vectors p and q, the scalar product
is defined by

〈p, q〉(x) =
∫

�

p(x, y)q(x, y)dy : � → R

The norm of an NL vector p at x is as the following:

|p|(x) = √〈p, p〉(x) : � → R

Thus, the norm of the nonlocal gradient of u at x is defined
by |∇NLu|(x) =

√∫
�
(u(y) − u(x))2w(x, y)dy. The nonlo-

cal divergence operator divNLv(x) : � → R is defined
by

divNLv(x) =
∫

�

(v(x, y) − v(y, x))
√
w(x, y)dy

which is an adjoint of the nonlocal gradient in the sense
that∫

�
〈∇NLu, v〉(x)dx =−

∫
�
u(x)divNLv(x)dx,u : �→R, v : �×� → R
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The nonlocal Laplace of u can now be defined by

�NLu(x) = 1
2
divNL∇NLu(x) =

∫
�

(u(y) − u(x))w(x, y)dy

Here, we outline the discrete nonlocal operators which
will be used in the numerical computation. The weight
w(x, y) is denoted by wi,j in the discrete setting. wi,j =
exp(−[ ‖ f (Ni) − f (Nj) ‖22,a] /h2), where Ni and Nj are
called the neighbourhood centered at i and j. The discrete
gradient and Laplace operators are given by (∇NLDu)i,j =
(uj−ui)

√wi,j and (�NLDu)i =∑j(uj−ui)wi,j. The discrete
version of the divergence operator is represented as

(divNLDv)i =
∑
j

(vi,j − vj,i)
√
wi,j

2.2 Split Bregman iteration
Split Bregman method [23–26] has received a lot of atten-
tion recently because of its high efficiency in solving
l1-regularized problems. It is a practical algorithm for
large-scale problems with fast computational speed. In
[26], Goldstein and Osher introduced the split Bregman
iteration to solve the general optimization problem of the
form

min
u

{|φ(u)| + J(u)} (2)

where | · | denotes the l1 norm. Both |φ(u)| and J(u) are
convex functions. We shall assume φ(·) to be differen-
tiable. The problem (2) can be rewritten as the following
equivalent constrained minimization problem

min
u,d

{|d| + J(u)}

such that d = φ(u). Then, we relax the constraints and
convert it into an unconstrained problem:

min
u,d

{|d| + J(u) + λ

2
‖d − φ(u)‖22} (3)

where λ > 0 is a constant. The solution of (3) via split
Bregman iteration is
(
uk+1, dk+1

)
= min

u,d

{
|d| + J(u) + λ

2
‖d − φ(u) − bk‖22

}

bk+1 = bk +
(
φ
(
uk+1
)

− dk+1
)

3 Image restorationmodel
In this section, we shall give a description of the new
nonlocal image restoration model and present the corre-
sponding algorithm via alternating directional minimiza-
tion and split Bregman method.

3.1 New bi-regularized image restoration model
Inspired by [17, 19], we use nonlocal operators to CEP-L2
model in [9]. We obtain a nonlocal version of the image
restoration model which we call NLCEP-L2. The new

model for image restoration is characterized by means of
the bi-regularization variational functional:

min
u,v

E(u, v) =
∫

�

|∇NLu|dx + α

2

∫
�

|�NLv|2dx

+ 1
2λ

∫
�

(
f − u − v

)2 dx
(4)

where α and λ are regularization parameters. This model
can also be interpreted as a decomposition model f =
u + v + w. Here, u, v, and w are respectively the dis-
continuous, piecewise smooth, and noise components.
To solve the variational problem (4), we first employ an
alternating minimization technique which alternatively
minimizes one variable while fixing the other ones. So, we
should consider the following two coupled minimization
subproblems:

(1) v being fixed, we search for u as a solution of

min
u

∫
�

[
|∇NLu| + 1

2λ
(
f − u − v

)2] dx (5)

(2) u being fixed, find v which satisfies:

min
v

∫
�

[
α

2
|�NLv|2 + 1

2λ
(
f − u − v

)2] dx (6)

The v-subproblem
For u fixed, the minimizer v of v-subproblem (6) is given
by solving the corresponding Euler-Lagrange equation:
(
1
λ
I + α�2

NL

)
v = 1

λ
(f − u)

where I is identity matrix. The linear elliptic equation can
be solved efficiently by Gauss-Seidel iteration.

The u-subproblem
For v fixed, the u subproblem (5) is the minimization of
nonlocal total variation (NLTV) regularization energy in
essence. In 2005, Kindermann et al. established nonlocal
bounded variation (NLBV) space and proved the exis-
tence of a minimizer for the denoising functional with
the NLBV regularization [20]. In [27], Bresson gave a split
Bregman method of NLTV energy minimization. Accord-
ing to their work, split Bregman iteration can be used
directly in our paper since the new nonlocal functional in
our paper is convex.We first replace∇NLu by d. This turns
to a constrained problem as

min
u

∫
�

[
|d| + 1

2λ
(
f − u − v

)2] dx
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such that d = ∇NLu. We solve this problem by transform-
ing it into an unconstrained one.

min
u,d

{∫
�

|d|dx + 1
2λ

∫
�

(f − u − v)2dx + μ

2

∫
�

(d − ∇NLu)2dx
}

(7)

Then the split Bregman iteration for (7) is described as

uk+1 = argmin
u

{
1
2λ

‖f − u − v‖22 + μ

2
‖dk − ∇NLu − bk‖22

}

(8)

dk+1 = argmin
d

{∫
�

|d|dx + μ

2
‖dk − ∇NLu − bk‖22

}

(9)

bk+1 = bk +
(
∇NLuk+1 − dk+1

)

To find the optimal value of u, the subproblem (8) can
be solved. The Euler-Lagrange equation of (8) is given by(

1
λ
I − μ�NL

)
uk+1 = 1

λ

(
f − v

)+ μdivNL
(
dk − bk

)

Because the system is diagonally dominant, the solution
of (8) can be obtained by the Gauss-Seidel method.

uk+1 = K−1rhsk

where

K = 1
λ
I − μ�NL

rhsk = 1
λ

(
f − v

)+ μdivNL
(
dk − bk

)

The optimal value of d can be computed by using
shrinkage operators [26].

dk+1 = shrink
(
∇NLuk+1 + bk , 1/μ

)

where

shrink(x, γ ) = x
|x| · max(|x| − γ , 0).

To obtain the optimal value of u and d, the subproblem
(8) and (9) are supposed to be solved to full conver-
gence, however, it is found unnecessary in practice. For
many applications, we have found that optimal efficiency
is obtained when only one iteration of the inner loop is
performed.

3.2 Algorithm of the newmodel
The alternating minimization method and split Bregman
method are combined to obtain the algorithm for our
new model. We summarize the algorithm for the bi-
regularized model (4) as follows:

Algorithm 1 Bregmanized nonlocal bi-regularized image
restoration method
(1) Initialization: Choose u0 = 0, v0 = 0, b0 = d0 = 0, Set
k = 0
(2) Iterations:

uk+1 = K−1rhsk

dk+1 = shrink
(
∇NLuk+1 + bk , 1/μ

)

bk+1 = bk +
(
∇NLuk+1 − dk+1

)

vk+1 = (I + λα�2
NL
)−1 (f − uk+1

)

(3) Stopping criterion: ‖uk−uk−1‖2
|uk |2 < tol

To implement the algorithm 1 for the new image
restoration model (4), we give the discrete version of the
Algorithm 1.

Algorithm 2 Discretization of Algorithm 1
Initialization: Choose u0 = 0, v0 = 0, b0 = d0 = 0, Set
k = 0 and wi,j = e−

[
‖uki (Ni)−uki (Nj)‖22,a

]
/h2 .

While ‖uk−uk−1‖2
|uk |2 < tol

uk+1 = 1
1/λ + 2μ

∑
j wi,j

⎡
⎣2μ∑

j
wi,jukj + 1

λ

(
fi − vi

)

+μ
∑
j

√
wi,j
(
dki,j − dkj,i − bki,j + bkj,i

)⎤⎦

dk+1
i,j =

(
uk+1
j − uk+1

i

)√wi,j + bki,j√∑
j

[(
uk+1
j − uk+1

i

)√wi,j + bki,j
]2 ·

max

⎛
⎜⎝
√√√√∑

j

[(
uk+1
j −uk+1

i

)√
wi,j + bki,j

]2− 1
μ
, 0

⎞
⎟⎠

bk+1
i,j = bki,j +

√
wi,j
(
uk+1
j − uk+1

i

)
− dk+1

i,j

vk+1
i = 1

1 + λα
∑

j
∑

l wi,jwi,l

⎡
⎣f − uk+1

i +
∑
j

∑
l

(
vkl
(
wj,l − wi,l

)
wi,j − vkj wj,lwi,j

)⎤⎦
k = k + 1;

End
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4 Numerical experiments
In this section, we demonstrate several numerical results
for image denoising. We also compare with the CEP-L2
model to show the effectiveness of our new model. In
our experiments, we choose a squared window centered
in i of size 11 × 11 pixels and a similarity square neigh-
bourhood Nj of 5 × 5 pixels. The iteration termination
condition is ‖uk−uk−1‖2

|uk |2 < tol, where tol is a small positive
number defined by the user. Note that in our algorithm,
we set tol = 2.5 × 10−3 . The parameter α controls the
smoothness of the component v in the geometric part of
the image. The larger the value of α, the more the stair-
case effect will be. In our experiments, we found that
0.5 ≤ α ≤ 50 is appropriate for gray scale images with

intensities from 0 to 255. The amount of noise removed
from a given image is controlled by the parameters λ and
μ. The larger they are, the more geometric features will be
averaged.
Let f = u0 + n be the noisy version of the ordinary true

image u0 of size M × N and n stand for an additive white
Gaussian noise. Generally speaking, n is a random noise
with mean zero and standard deviation σ . To characterize
the noise level, we shall use the peak signal to noise ratio
(PSNR) to quantify how good a denoised image u is. The
peak signal to noise ratio is defined by

PSNR = 10log10
(
2552

MSE

)
.

Fig. 1 Denoising of the Lena image using different methods. Top left: the original image. Top right: a noisy image with Gaussian noise (σ = 10).
Middle left: the denoised image by CEP-L2 with PSNR = 32.3446.Middle right: by NLCEP-L2 with PSNR = 33.0145. Bottom left: the detail of Lena image
denoised by CEP-L2 (magnified by 1.5 times). Bottom right: the detail of Lena image denoised by NLCEP-L2 (magnified by 1.5 times)
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Fig. 2 Denoising of the Lena image using different methods. Top left: a noisy image with Gaussian noise(σ = 15) . Top right: the denoised image by
CEP-L2 with PSNR = 29.7321. Bottom: by NLCEP-L2 with PSNR = 30.8995

Fig. 3 Denoising of the Cameraman image using different methods. Top left: the original image. Top right: a noisy image with Gaussian noise
(σ = 10). Bottom left: the denoised image by CEP-L2 with PSNR = 31.4397. Bottom right: by NLCEP-L2 with PSNR = 32.3308
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Fig. 4 Denoising of the Woman image using different methods. Top left: the original image. Top right: a noisy image with Gaussian noise (σ = 10).
Bottom left: the denoised image by CEP-L2 with PSNR = 29.0179. Bottom right: by NLCEP-L2 with PSNR = 29.2275

MSE is the mean squared error defined by

MSE = 1
MN

M∑
i=1

N∑
j=1

(u(i, j) − u0(i, j))2.

In Figs. 1 and 2, we show the denoising results from
our new model and the CEP-L2 model performed on the
Lena image with additive Gaussian white noise of σ = 10
and σ = 15 respectively. In our experiments, we choose
the parameters λ = 2,α = 1,μ = 6 in Fig. 1 and

λ = 2,α = 2,μ = 10 in Fig. 2. From the results, we can
see that our method performs better than CEP-L2 model.
To illustrate the advantages of our method, we give the
details of Lena image denoised in Fig. 1. Comparing these
details, we can conclude that there is a certain amount of
staircase effect which is still remained in the Lena image
denoised by CEP-L2. The details of Lena image denoised
by our method (NLCEP-L2) are preserved well and have
less staircase effect. In Fig. 3, we apply our new denois-
ing model to the Cameraman image with Gaussian noise

Fig. 5 The noise image f − u − v of the Lena image with Gaussian noise (σ = 10). Left: the noise image obtained by CEP-L2. Right: by NLCEP-L2
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Fig. 6 The noise image f − u − v of the Lena image with Gaussian noise (σ = 15). Left: the noise image obtained by CEP-L2. Right: by NLCEP-L2

Fig. 7 The noise image f −u−v of the Cameraman image with Gaussian noise (σ = 10). Left: the noise image obtained by CEP-L2. Right: by NLCEP-L2

Fig. 8 The noise image f − u − v of the Barbara image with Gaussian noise (σ = 10). Left: the noise image obtained by CEP-L2. Right: by NLCEP-L2
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Table 1 Comparison of SNR and PSNR between TV, CEP-L2 and NLCEP-L2

Image Noise σ TV CEP-L2 NLCEP-L2

SNR PSNR SNR PSNR SNR PSNR

Cameraman 10 18.5077 30.7430 19.2044 31.4397 20.0955 32.3308

Lena 10 17.3721 31.9383 17.7784 32.3446 18.4483 33.0145

Lena 15 15.0388 29.6050 15.2907 29.8569 16.3500 30.9162

Cameraman 20 14.5561 26.7914 15.1091 27.3444 16.4166 28.6519

Barbara 15 11.6077 25.7100 12.2180 26.3203 12.4654 26.5676

Barbara 5 18.8485 32.9508 19.3232 33.4252 20.1640 34.2663

of standard deviation σ = 10 and compare it with the
CEP-L2 model. We choose λ = 2,α = 2,μ = 3 in our
algorithm. In Fig. 4, we present our results for the Barbara
image with highly textured patterns. The parameters are
chosen as λ = 0.2,α = 0.5,μ = 3.
From the Figs. 1, 2, 3 and 4, we can know that the image

denoised by the new NLCEP-L2 method is smoother. The
newmethod produces sharper edges and suppresses jaggy
artifacts better than CEP-L2 method. It provides slightly
better quality of denoised images than those of CEP-L2
method.
To display the capability of denoising of the new model,

we illustrate the noise image f −u−v in Figs. 5, 6, 7 and 8.
We also show the efficiency of the new model by com-

paring with the classical TVmethods.We did experiments
for the Lena, Cameraman and Barbara images respec-
tively with different noise deviation σ(σ = 5, 10, 15, 20).
Table 1 displays the signal-to-noise ratio and peak signal
noise ratio of the experiments. We can see that our new
model obtains quite good results and performs better than
the CEP-L2 model and TV method, especially for small
σ(σ = 5, 10). It is effective for low noised image, not only
for the natural images representing many sharp edges but
also the images with much texture.

5 Conclusions
In this paper, we present a new nonlocal variational bi-
regularized model for image restoration, which is the
nonlocal version of the CEP-L2 model. We apply the alter-
nating minimization technique and the split Bregman
algorithm to solve the variational bi-regularized mini-
mization problem. By applying the new model to image
denoising problems, we show that it is an effective tech-
nique that can produce satisfactory denoised image. The
experimental results have verified that it can obtain better
results compared to some previous methods.
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