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Abstract

We consider joint estimation of carrier frequency offset (CFO) and channel impulse response (CIR) for orthogonal
frequency division multiplexing (OFDM) with pilot symbols. A new method based on compressed sensing is
proposed. It has been shown that the CIR can be represented as a 1-block sparse signal by using a dictionary
constructed by concatenating subspaces of CFO values taken from a search space. Recovery of both CFO and CIR is
accomplished by the block orthogonal matching pursuit algorithm. The proposed method uses only one OFDM
training block and does not require any initialization. The performance of the proposed method is compared against
the well-established pilot based estimators: Moose, Classen, the maximum likelihood estimator, and the p-algorithm.
Numerical results show that the performance of the proposed method does not depend on the value of the CFO. We
also give worst-case upper bounds for the mean squared error of the CIR estimate for a sparse multipath channel.
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1 Introduction
Orthogonal frequency division multiplexing (OFDM) has
become a standard multi-carrier modulation technique
for broadband wireless communication networks due
to its resistance to interblock interference (IBI) caused
by frequency-selective multipath fading channels. The
success of OFDM systems relies on the orthogonality
property of its chosen subcarriers which transforms the
frequency selective channel into a set of frequency flat
fading channels simplifying the equalization task. How-
ever, it is known that OFDM is very sensitive to both
frequency synchronization and channel estimation errors.
The oscillator mismatches and/or Doppler shifts intro-
duce carrier frequency offset (CFO) which destroys the
orthogonality amongst the subcarriers. As a result, the sig-
nal constellation is rotated and inter-carrier interference
(ICI) occurs. The quality of the channel estimates, which
is vital for coherent data detection, is also affected nega-
tively under CFO. All of these effects reduce the effective
signal-to-noise ratio (SNR) at the receiver and degrade the
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performance of the OFDM system. Thus, accurate CFO
and channel estimation is essential for exploiting the full
potential of OFDM systems.
CFO and channel estimation can be done separately

by first estimating the CFO and then performing chan-
nel estimation in the second step. Both training symbol-
based and blind CFO estimators have been proposed in
the literature [1–5]. The estimator proposed by Moose
uses repeated data symbols [1]. Classen’s method inserts
pilot subcarriers in OFDM blocks for CFO estimation
and assume that the channel does not change for two
consecutive OFDM blocks [2]. Both methods assume
a sufficiently small CFO and also a not high SNR so
that the ICI is much smaller than the noise and can
be ignored. They are sensitive to the value of the CFO
and are valid for small CFO values. The blind estima-
tor developed by Beek exploits the redundancy in the
cyclic prefix (CP) [3]. A blind estimator based on MUSIC
subspace method is developed in [4] using the virtual
subcarriers (VC). The p-algorithm in [5] considers both
VC and pilot carriers in each OFDM block but assumes
that the channel remains constant for two OFDM blocks
like the Classen method. Channel estimation can be
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performed after applying these well-established CFO syn-
chronization methods. However, since perfect synchro-
nization is not possible, the residual CFO will degrade
the performance of the channel estimate significantly.
Thus, better performance can be obtained when CFO
and channel are estimated jointly. There exists a num-
ber of joint CFO and channel estimators that use pilot
symbols [6–9]. Both [6] and [7] use the framework of
the expectation-maximization (EM) algorithm. While [6]
directly computes the channel parameters, [7] estimates
the parameters of a basis expansion-based parametric
channel model assuming the channel delays are known.
The initialization of [6] requires a coarse CFO estimate
such as provided by the Beek’s method [3]. A joint max-
imum likelihood estimate (MLE) of CFO and channel
impulse response (CIR) using a training symbol is given in
[8]. The estimator in [9] is an approximate MLE since the
received signal samples of the OFDM system are assumed
to be Gaussian. Also, both [6] and [9] require the second-
order statistics of the channel and noise. For [9], an initial
estimate of both the channel and CFO is necessary to
initialize the joint MLE.
A joint estimator of CFO and CIR using the compres-

sive sensing (CS) framework is proposed in this paper. The
framework of CS coined in [10] deals with the recovery
of an unknown signal from an underdetermined sys-
tem of linear equations. By exploiting the key property
that the unknown signal is sparse, only a few entries of
the signal are nonzero, the perfect reconstruction of the
unknown signal is possible even if the system is under-
determined. Sparse signals may have additional structure
in the form of nonzero coefficients occurring in clusters
(such as in [11, 12]). Such signals are referred to as block-
sparse signals [11, 12]. A similar structure can be created
by concatenating dictionaries of OFDM training symbols
perturbed by CFO values taken from a search space and
with such a structure the CIR can be represented as a
1-block sparse signal. The proposed framework allows
solving for both CFO and CIR simultaneously by using the
CS recovery algorithms for block-sparse signals. To the
best of our knowledge, the proposed method is the first
CS-based approach towards the joint estimation of both
CFO and CIR for an OFDM system. There exist numer-
ous implementations of the CS-based block sparse signal
recovery methods for the estimation of the CIR of the
OFDM systems [13–15]. In these works, block sparsity
is achieved by either assuming that the several channel
instantiations are group-sparse, locations of the nonzero
channel coefficients are same, [15] or concatenating mul-
tiple CIRs of different antennas with common support
in a block sparse structure [13, 14]. However, frequency
offset is not considered in these papers, which assume per-
fect synchronization for the OFDM system and so only
CIR can be estimated using these methods. The block

orthogonal matching pursuit (BOMP) algorithm which
has a computational complexity of O(dNNg), d is the
length of the search space, N is the number of subcarri-
ers, and Ng is cyclic prefix length, is used as the recovery
algorithm. The MLE makes use of an FFT-based search
of complexity d(5β log2 d + 1) in flops, where β denotes
the saving for skipping operations on the zeros in the
FFT. However, the input of this implementation requires
a matrix inversion step which cannot always be precom-
puted if the channel and noise statistics are not available
[9]. As a result, the complexity of the MLE is determined
by the most costly computation step that is the matrix
inversionO(N3). The p-algorithm does not involvematrix
inversion and can be implemented in twoways: FFT-based
search and polynomial rooting [5]. The complexity of the
polynomial rooting which is recommended for smaller N
and Ng is approximated as O

((
2N + Ng

)3) [5].
The main contributions of our work are the following:

• The proposed method only needs one OFDM block
of training symbols unlike Moose, Classen, and the
p-algorithm. The use of multiple blocks makes the
estimation susceptible to changes in the channel or
the CFO. Also, the use of more blocks means an
increase in pilot overhead.

• The proposed method does not require any
initialization or the second-order statistics of the
channel and noise unlike EM-based methods. Apriori
knowledge about either the channel or the noise may
not be available for every case.

• The performance of the proposed method does not
depend on the value of the CFO.

• Our work makes use of the worst-case bounds of the
perturbed CS recovery for sparse multipath channel
estimation. These bounds provide a way to observe
how the performance of the sparse channel
estimation methods scales with the perturbation due
to frequency offset.

2 Systemmodel
Information is transmitted in blocks of symbols in an
OFDM system. An OFDM block consists of N transmit-
ted symbols Xm[k] , k = 0, . . . ,N − 1, each chosen from a
signal constellation. Time domain samples of the OFDM
block is obtained after performing inverse discrete Fourier
transform (IDFT) on the transmitted symbols

xm[n]= 1
N

N−1∑
k=0

Xm[k]w
k(n−Ng)
N , n = Ng , . . . ,Nt − 1,

(1)

where m denotes the OFDM block index, wN = ej2π/N ,
and Nt is the total number of samples in a OFDM block
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including the CP samples, Nt = N + Ng . CP samples
required to ensure that no IBI occurs and so the first Ng
samples of the OFDM block, {xm[0] , . . . , xm[Ng − 1] }, are
taken same as the last Ng samples of the OFDM block
{xm[Nt − Ng] , . . . , xm[Nt − 1] }.
When the oscillator of the receiver is not perfectly

matched to the carrier of the received signal, CFO denoted
as�f occurs. CFO can be normalized as ε = �fNT where
1/(NT) is the subcarrier bandwidth and T is the sam-
pling period. The received signal after transmitting xm[n]
through a channel hm[n] can be written in terms of the
normalized CFO as

ym[n]= cm(ε, n)(hm[n] ∗xm[n] ) + zm[n] , (2)

where ∗ is the convolution operator, i.e., hm[n] ∗xm[n]=∑Ng
l=0 hm[ l ] xm[n− l], and zm is zero mean complex addi-

tive white Gaussian noise with variance σ 2
z , and

cm(ε, n) = ej2πεn/Nej2πεm(Nt/N). (3)

After performing discrete Fourier transform (DFT) on
the received samples, frequency domain-received samples
are given as

Ym[k]= Cm(ε, k) ∗ (Hm[k]Xm[k] ) + Zm[k] , (4)

where Cm(ε, k), Hm[k] and Xm[k] are DFT of cm(ε, n),
hm[n] and xm[n], respectively. Cm(ε, k) is expressed as

Cm(ε, k) =
(

sin(π(ε − k))
N sin(π(ε − k)/N)

ejπ(ε−k)N−1
N

)
ej(2πεm(Nt/N))ej(2πε(Ng/N)).

(5)

When the relative frequency offset is greater than |ε| ≥
0.5, the frequency offset introduces a cyclic shift of Ym[k]
[16]. When |ε| ≥ 0.5, the integer frequency offset cor-
rection algorithms such as [17, 18] are employed. In this
letter, the relative frequency offset is assumed to be |ε| <

0.5. The received symbol at the k-th subcarrier can be
written as

Ym[k]= Cm(ε, 0)Hm[k]Xm[k]+Im[k]+Zm[k] , (6)

where Im[k] is given as

Im[k]=
N−1∑
r=1

Cm(ε, r)Hm[k − r]Xm[k − r] . (7)

As it is seen from (6), the received signal is affected by
the CFO. While the magnitude of the signal Hm[k]Xm[k]
is attenuated by

∣∣∣ sin(πε)
N sin(πε/N)

∣∣∣, its phase is increased by
πε(1 − 1/N) + 2πε[m(Nt/N) + (Ng/N)]. In addition to
noise Zm[k], ICI denoted as Im[k] is added to the signal.
We derive our proposed estimator by using the frequency
domain model given in Eq. (6), as detailed below.

3 Compressive sensing-based joint frequency
offset and channel estimation

Fixing the OFDM block index m, the DFT applied
received signal samples can be represented in matrix form
as

ỹ = C(ε)XF

⎡
⎢⎣

h[0]
...

h[N − 1]

⎤
⎥⎦ +

⎡
⎢⎣

Z[0]
...

Z[N − 1]

⎤
⎥⎦ , (8)

where F denotes the N-point DFT matrix, ỹ =
[Y [0] · · ·Y [N − 1] ]T , X = diag{X[0] , . . . ,X[N − 1] }, and
C(ε) is given as

C(ε) =

⎡
⎢⎢⎢⎣

C(0) C(N − 1) · · · C(1)
C(1) C(0) · · · C(2)
...

. . . . . .
...

C(N − 1) C(N − 2) · · · C(0)

⎤
⎥⎥⎥⎦ . (9)

Assuming that channel length is smaller than the num-
ber of subcarriers L � N and the number of cyclic prefix
is chosen as Ng ≥ L, the channel coefficient vector is
zero-padded as h =[h[ 0] · · · h[Ng − 1] , 01×N−Ng ]T . The
zeros can be removed by using the first Ng columns of the
N-point DFT matrix F that is FNg

ỹ = C(ε)XFNg

⎡
⎢⎣

h[0]
...

h[Ng − 1]

⎤
⎥⎦ + z

= Ãh + z, (10)

where Ã = C(ε)XFNg , z =[Z[0] · · ·Z[N − 1] ]T , and h =[
h[0] · · · h[Ng − 1]

]T .
A search space for the fractional frequency offset can be

created by a set of d values {ε̃0, ε̃1, . . . , ε̃d−1} ∈[−0.5, 0.5].
Each value ε̃i corresponds to a C(ε̃i) and the received
samples can be rewritten as

ỹ =[C(ε̃0)XFNg · · ·C(ε̃d−1)XFNg ] h̃ + z

= Dh̃ + z, (11)

where the vector h̃ is built by stacking d blocks of Ng ×
1 channel vectors, h̃ =[h0 . . .hd−1], and the matrix D
is constructed by concatenating d matrices each corre-
sponding to a C(ε̃i). Each block of h̃ is represented as
h̃[i]= hi =[h[ 0] , . . . , h[Ng − 1] ]T . In this representation,
h̃ can be considered as a 1-block sparse vector.
The problem of finding a sparse representation which

uses the minimum number of blocks of D is given as the
following optimization problem

minimize
d−1∑
i=0

I
(
‖h̃[i] ‖q

)

subject to ỹ = Dh̃, (12)
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where q ≥ 0 and I(·) is the indicator function which is
zero when its argument is zero and is one otherwise. The
indicator function counts the number of nonzero blocks
of a solution. However, solving (12) is an NP hard problem
since it involves searching over all choices of a few blocks
ofD [11, 12]. A number of algorithms such as Group Lasso
[19], mixed �2/�1 program [20], block orthogonal match-
ing pursuit (BOMP) algorithm [11], block sparse Bayesian
learning [21], block iteratively reweighted least squares
(BIRLS) [22], and block iterative support detection (block-
ISD) [14] have been shown to recover block sparse signals.
In this paper, the BOMP algorithm [11] is implemented
for the recovery of the block sparse channel vector.
BOMP algorithm is an extension of the orthogonal

matching pursuit (OMP) algorithm [23, 24] used in con-
ventional sparse recovery. The steps of the BOMP algo-
rithm are shown in Algorithm 1.

Algorithm 1 Pseudo-code of BOMP Algorithm
Input: D, ỹ, K
Initialization: l = 1, index set I = ∅ and r0 = ỹ
for l = 1 : K iterations

Identification: il = arg max
i=1,...,d

‖DH [i] rl−1‖2
Reconstruction: I = I ∪ {il}, ĥl = D†

I ỹ
Residual Update: rl = rl−1 − Dĥl
l ← l + 1

Output: recovered sparse signal ĥ

First step of the BOMP is to initialize the residual r0 = ỹ
[11]. At the lth iteration the block that is best matched to
rl−1 is chosen according to

il = arg max
i=1,...,d

‖DH [i] rl−1‖2. (13)

Once the index il is chosen, the CFO estimate ε̂ = ε̃il
is the value corresponding to the chosen index within the
search grid {ε̃0, ε̃1, . . . , ε̃d−1}. The channel estimate ĥl is
computed as

ĥl = argmin

∥∥∥∥∥ỹ −
∑
i∈I

D[i] h̃l[i]

∥∥∥∥∥
2

= D†
I ỹ = (

DH
IDI

)−1DH
I ỹ,

(14)

where I is the set of indices I = {i1, . . . , il} chosen up to
iteration l. Then the residual is updated as

rl = ỹ − Dĥl. (15)

For 1-block sparsity, the BOMP algorithm runs only
l = 1 iteration. The computational complexity of the algo-
rithm for 1-block sparse signals is O(dNNg). The BOMP
method [11] selects the block that is most correlated with
the current residual and then applies LS. So at any given

iteration, l, of the BOMP method, the solution is guaran-
teed to be l block-sparse. The performance of the BOMP
method is shown to be better than the performance of
the BIRLS method when the block sparsity is small [22].
BIRLS method [22] applies weighted LS in each iteration
and depends on the weight matrix to make the solution
sparse. In the first iteration of BIRLS method, the weight
matrix is initialized to the identity matrix which means
a regular LS is applied. In [14], block-ISD algorithm is
implemented to estimate the CIR of a MIMO OFDM sys-
tem with multiple transmit antennas and no CFO. Block
sparse equivalent CIR is generated by assuming that the
CIRs from different antennas share a common support. As
it can be seen from Eq. (11), the block sparsity structure
of our method is exploited by concatenating matrices cor-
responding to different frequency offsets and so does not
use the common support assumption. The proposed dic-
tionary (11) allows the joint estimation of both CFO and
CIR while the dictionary generation shown in [14] does
not allow the estimation of CFO. Block-ISDmethod [14] is
based on the iterative support detection (ISD) reconstruc-
tion algorithm [25]. Like the matching pursuit methods,
i.e., OMP [23, 24], a support set containing the locations of
the detected nonzero elements is maintained in each iter-
ation of the ISDmethod. At each iteration, this support set
is used to solve a truncated basis pursuit (BP) problem by
�1 minimization. Unlike OMP, the support set of the ISD
method can be updated with more than one elements in a
given iteration.
The BOMP algorithm is shown to recover any K-block

sparse vector h̃ if the following condition is satisfied [11]

Kb <
(
μ−1
B + b − (b − 1)νμ−1

B

)
/2, (16)

where b represents the block length for D and μB denotes
the block-coherence

μB = max
l,r 
=l

1
Ng

σmax
(
D[l]H D[r]

)
, (17)

and ν represents the subcoherence of D

ν = max
i

μi, μ = max
l,r 
=l

|dHl dr|, dl,dr ∈ D[l] . (18)

If the columns of D[ l ] are orthonormal for each l,
then the subcoherence is zero. Since the dictionary of the
OFDM system consists of orthonormal blocks that are
products of orthonormal matricesD[ l ]= C(ε̃l)XFNg , ν =
0. According to Eq. (16), the block length of 1-block sparse
OFDM system, which is the cyclic prefix length b = Ng ,
must satisfy

Ng ≤ 1
μB

. (19)
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4 Perturbation analysis for sparse multipath
channel

A K-sparse multipath channel is a channel of which the
channel coefficient vector h has K nonzero coefficients
while the rest of Ng − K tap values are equal to zero. For
such a channel, the case of no frequency offset can be
expressed as

ỹ = y + z = Ah + z = XFNgh + z. (20)

CS theory deals with the recovery of the signal h given
the observations ỹ using the a priori information that the
signal h is K-sparse in the representation dictionary or
matrix A. In CS theory, the matrix A is called the sensing
matrix for the K-sparse signal that is the channel coef-
ficient vector h. The stability of the CS based recovery
methods depend on a property called the restricted isom-
etry property (RIP). The RIP for the matrix A is defined
as the smallest nonnegative number called the restricted
isometry constant (RIC), δK , for each integer K = 1, 2, . . .
such that

(1 − δK )‖h‖22 ≤ ‖Ah‖22 ≤ (1 + δK )‖h‖22 (21)

holds for any K-sparse vector h. It is observed that
‖A‖(K)

2 = σ
(K)
max(A) ≤ √

1 + δK and σ
(K)
min(A) ≥ √

1 − δK ,
where ‖A‖(K)

2 denotes the largest spectral norm, the
largest singular value, taken over all K-column subma-
trices of A while σK

min(A) denotes the smallest nonzero
singular value over all K-column submatrices of A.
For the case of nonzero frequency offset, system of

equations is given as

ỹ = C(ε)XFNgh + z = Ãh + z. (22)

The sensing matrix for this case, Ã = C(ε)XFNg , is a
perturbed sensing matrix that can be written in terms of
the sensing matrix for no frequency offset as

Ã = A + Z. (23)

When (23) is substituted in (22), the received signal can
be written as

ỹ = Ãh + z = (A + Z)h + z = Ah + Zh + z, (24)

the extra noise term, Zh, can be interpreted as multiplica-
tive noise. The perturbation matrix Z can be explicitly
expressed as

Z = Ã − A = C(ε)XFNg − XFNg = (C(ε) − I)XFNg .
(25)

The total perturbation term, Zh+ z, can be bounded by
using a total noise parameter, ε′

A,K ,y, as in [26]

‖Zh‖2 + ‖z‖2 = ‖Zh‖2 + ‖z‖2
‖y‖2 ‖y‖2 =

( ‖Zh‖2
‖Ah‖2 + ‖z‖2

‖y‖2
)

‖y‖2

≤
(

‖Z‖(K)
2√

1 − δK

‖h‖2
‖h‖2 + εy

)
+ ‖y‖2

≤
(

‖Z‖(K)
2√

1 + δK

√
1 + δK√
1 − δK

+ εy

)
+ ‖y‖2

≤
(

‖Z‖(K)
2

‖A‖(K)
2

κ
(K)
A + εy

)
+ ‖y‖2

≤
(
ε
(K)
A κ

(K)
A + εy

)
+ ‖y‖2 = ε

′
A,K ,y,

(26)

where A is assumed to satisfy RIP (21), ‖A‖(K)
2 ≤√

1 + δK , and the following relative bounds are used
‖z‖2/‖y‖2 ≤ εy, ‖Z‖(K)

2 /‖A‖(K)
2 ≤ ε

(K)
A . κ

(K)
A is defined

as the ratio of κ
(K)
A = √

(1 + δK )/(1 − δK ). For sensing
matrices with very small δK which means that every K
column submatrice is approximately orthonormal, then
κ

(K)
A ≈ 1. In the completely perturbed scenario (24) where
z 
= 0 andZ 
= 0, CS theory is concerned with the solution
of the BP problem

h� = argmin
ĥ

‖ĥ‖1 subject to ‖Ãĥ− ỹ‖ ≤ ε
′
A,K ,y.

(27)

For the perturbed sensing matrix, Ã = A + Z, of the
completely perturbed problem (27), the RIC, δ̂K , is defined
as the smallest nonnegative number such that(

1 − δ̂K
)

‖h‖22 ≤ ‖Ãh‖22 ≤
(
1 + δ̂K

)
‖h‖22 (28)

holds for any K = 1, 2, ... sparse vector h [26]. The relation
of the RIC δ̂K for Ã to the RIC δK forA (21) and the relative
perturbation ε

(K)
A is shown in [26] as

δ̂K ≤ (1 + δK )
(
1 + ε

(K)
A

)2 − 1. (29)

Let e denote the perturbation from the true solution h
of the BP problem (27) induced byZ and z. Then, the min-
imizer of the BP problem can be given as h� = h+e. Using
the steps in [27], the perturbation from the true solution,
e, can be decomposed into a sum of vectors eS0 and eS1

‖h� − h‖2 = ‖e‖2 ≤ ‖e(S0∪S1)‖2 + ‖e(S0∪S1)c‖2

≤
4
√(

1 + δ̂2K
)

1 −
(
1 + √

2
)

δ̂2K
ε

′
A,K ,y,

(30)

where S0 corresponds to the locations of the K largest
coefficients of h, and S1 corresponds to the locations
of the K largest coefficients of eSc0 . Using (29) and
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substituting 2K in place of K , it is shown in [26] that
the solution of the completely perturbed problem (27) is
bounded by

‖h� − h‖2 ≤
4
√
1 + δ2K

(
1 + ε

(2K)
A

)
1 −

(√
2 + 1

) [
(1 + δ2K )

(
1 + ε

(2K)
A

)2 − 1
]

× ε
′
A,K ,y = C1ε

′
A,K ,y,

(31)

provided that the sensing matrix A satisfies the RIP prop-
erty (21) for

δ2K <

√
2(

1 + ε
(2K)
A

)2 − 1. (32)

In order for A to satisfy Eq. (32), the RIC must be non-
negative 0 < δ2K and so the relative perturbation must be
less than ε

(2K)
A <

4√2 − 1 ≈ 0.1892.
The upper bound given in (31) can be considered the

worst instance of the worst-case scenarios. CS recovery
methods are known to achieve much better performance
in practice [26]. A lower bound or the best of the worst-
case scenarios can be analyzed if the support set S of h,
the locations of the K nonzero coefficients, is provided by
an oracle. Let AS denote the submatrix consisting of the
columns of A indexed by the elements of the support set
S. Given the completely perturbed observation, the least-
squares problem of the channel estimation

h#S = argmin ‖ÃShS − ỹ‖2. (33)

Golub and Van Loan’s model in Theorem 5.3.1 of [28]
formulates the perturbed LS problem by subtituting ÃS =
AS + (t/ε)ZS and ỹ = y + (t/ε)z as
(
AS+ t

ε
ZS

)H(
AS+ t

ε
ZS

)
hS(t)=

(
AS+ t

ε
ZS

)H(
y+ t

ε
z
)
,

(34)

where the solution is assumed to be continuously differ-
entiable for all t ∈[ 0, ε]. With the solution given as h#S =
hS + εḣS(0) + O(ε2) [28], the error can be bounded as

‖h#S − hS‖2 = ε‖ḣS(0)‖2 + O
(
ε2

)
. (35)

Differentiating Eq. (34) and setting t = 0 yields

ḣS(0) = 1
ε

(
AH
S AS

)−1AH
S (z − ZShS) . (36)

The solution is bounded above by inserting (36) into
(35)

‖h# − h‖2 ≤ ‖A†
S‖2

(‖ZShS‖2
‖Ah‖2 + εy

)
‖y‖2, (37)

where the complete solution, h#, is obtained by extending
h#S with zero-padding on the complement of the support
set S and A†

S = (
AH
S AS

)−1AH
S is the pseudoinverse of

AS [26].

5 Numerical results
Numerical results are presented for three scenarios: time-
invariant sparse multipath channel, time-varying sparse
multipath channel, and time-varying sparse multipath
with varying CFO. The number of carriers of the OFDM
system is chosen as N = 128. The length of the sparse
multipath channel is fixed to L = 20 with K = 6 nonzero
coefficients for all cases. The nonzero coefficients of the
channel are generated from independent complex Gaus-
sian with variances set according to an exponential decay-
ing power delay profile. The CP length is set to Ng = 25
to prevent IBI. The mean squared error of the frequency
estimates (MSE CFO) and channel estimates (MSE CIR)
are given for 1000Monte Carlo iterations. The pilots sym-
bols are randomly chosen from 16-QAM constellation
and then are fixed for each Monte Carlo iteration.

5.1 Time-invariant sparse multipath channel
The sparse multipath channel is assumed to be fixed
between two consecutive OFDM blocks. The magnitude
of the generated sparse multipath channel is shown in
Fig. 1, and it can be seen that only K = 6 coefficients of
the CIR are nonzero.
MSE obtained using the BOMP algorithm is compared

to pilot symbol-based Moose [1], Classen [2] methods,
the approximate MLE [9], and the p-algorithm [5] for
CFO value ε = 0.03. The search space of the BOMP, the
approximate MLE, and the p-algorithm is assigned to the
set of 500 uniformly sampled values within the interval

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

|h
|

Fig. 1 Impulse response of the time-invariant sparse multipath
channel
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[−0.5, 0.5]. The actual CFO value, ε = 0.03, is included
in the search grid to prevent error floors in the MSE of
the CFO estimates. The block coherence of the dictio-
nary built using the search grid μB(D) = 0.04 satisfy the
recovery condition given in Eq. (19) for Ng = 25. MSE
of the CFO estimates are illustrated in Fig. 2. Moose and
Classen methods perform better than the BOMP and the
MLE for SNR levels below 15 dB. Moose and Classen
methods ignore the ICI and so when the SNR is low,
ignoring the ICI term does not degrade the performance
significantly. However, as the SNR increases beyond 15
dB, the Moose and Classen methods reach an error floor.
The performance of the BOMP algorithm is close to the
performance of the MLE which is implemented by using
the actual channel and noise statistics. Since in practice
it will also be neccessary to estimate both the channel
and noise statistics, the performance of the MLE given
in Fig. 2 can be considered an ideal case. It is seen that
the best performance is achieved by the p-algorithm [5].
Although the p-algorithm makes use of two consecutive
OFDM blocks like the Moose and Classen methods, it is
based on cost function minimization using a search space
and so it performs better than the Moose and Classen
methods. The Cramer-Rao bound (CRB) (Fig. 2) given in
[29] represents a lower bound for themaximum likelihood
estimation using one OFDM block of pilot symbols. CRB
is used as a benchmark for evaluating different CFO esti-
mators and the closest performance to CRB belongs to the
p-algorithm.
Figure 3 shows the MSE of CIR estimates. The per-

formance of the least-squares (LS) CIR estimate can
be improved by first applying a CFO synchronization
method. LS method combined with the p-algorithm can
be considered a two step joint CFO and CIR estimator.
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Fig. 2 Comparison of MSE of CFO estimates versus SNR for the time
invariant sparse channel with ε = 0.03
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Fig. 3 Comparison of MSE of CIR estimates versus SNR for the time
invariant sparse channel with ε = 0.03

Figure 3 indicates that the two step LS estimator gives
the best performance and the BOMP method performs
closely to the two step LS estimator. The best possible
channel estimate is represented by the oracle which is
computed using the actual CFO value and the support
of the channel. The closest performance to the oracle is
achieved by the two step LS estimator and the BOMP
method. Using the perturbation analysis (Section 4), two
upper bounds for the channel estimation performance of
the OFDM system with CFO ε = 0.03 can be obtained.
These bounds are plotted as WWCB and BWCB (Fig. 3)
which stands for worst worst-case upper bound given in
Eq. (31) and best worst-case upper bound given in Eq. (37),
respectively. The coefficients for the WWCB are com-
puted as ε

(K)
A = 0.1545, ε(2K)

A = 0.1601, C1 = 25.06 and
κ

(K)
A = 1. Since the exact computation of the RIC δK and

δ2K is not possible, σ (K)
max(A) and σ

(K)
min(A) are computed to

obtain a bound for the RIC. The bound obtained is on the
order of 10−15 making the RIC practically zero. WWCB
shows the worst possible channel estimation performance
for a OFDM system with CFO ε = 0.03 and a sparse mul-
tipath channel with K = 6 nonzero coefficients. BWCB
gives a much tighter bound than WWCB since it makes
use of the channel tap values in its computations. The
advantage ofWWCB is that its computation only requires
the sparsity level of the multipath channel.
In order to demonstrate that the performance of the

proposed joint estimator does not depend on the CFO
value, the SNR is fixed at 15 dB and the CFO is varied
in a set of 30 uniformly spaced values within the inter-
val [−0.5, 0.5]. As the value of CFO increases, MSE of the
Moose and Classen methods increase due to their sensi-
tivity to the value of the CFO while MSE of the BOMP
method does not increase as seen in Fig. 4. Classen’s
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Fig. 4 Comparison of MSE of CFO estimates versus CFO range of
[−0.5, 0.5] for the time-invariant sparse channel at 15 dB SNR

method assumes a sufficiently small CFO in order for
ICI to be neglected so the performance of the Classen’s
method degrades as the CFO increases. Only for very
small CFO values, ε ∈[−0.0172, 0.0172], the perfor-
mances of the Moose and Classen methods are better
than the BOMP method. The BOMP method and the p-
algorithm do not exhibit any sensitivity to the value of
the CFO and their performances do not depend on the
value of the CFO. The p-algorithm gives the closest per-
formance to the CRB but needs at least two OFDM blocks
like the Moose and Classen methods.
MSE of CIR estimates are given first for a smaller CFO

range of [−0.03, 0.03] as seen in Fig. 5. WWCB cannot be
computed for ε > 0.0306 since the relative bound on the
perturbation must satisfy ε

(2K)
A < 0.1892 and so the CFO

range is assigned to the set of 12 uniformly sampled values
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Fig. 5 Comparison of MSE of CIR estimators versus CFO range of
[−0.03, 0.03] for the time-invariant sparse channel at SNR = 15 dB

within the interval [−0.03, 0.03]. For this range of smaller
CFO values, it is observed that theWWCBbecomesmuch
looser as the CFO increases. Thus the WWCB can be
considered much more sensitive to CFO value than the
BWCB. The best performance is achieved by the two-step
LS estimator, while the performance of the BOMPmethod
is close. As expected, the oracle bound is the lower bound
for the sparse channel estimation and is not subject to any
change by CFO value since it is provided with the actual
CFO value and support of the sparse channel.
Figure 6 gives the MSE of CIR estimates versus the

extended range of CFO values, [−0.5, 0.5]. Of the two
upper bounds, only the BWCB can be shown for the CIR
estimate within this range since it is not possible to cal-
culate the WWCB for ε > 0.0306. Although the BWCB
is a much tighter bound and can be computed for the full
CFO range, the computation of the BWCB requires the
prior knowledge of the channel. On the other hand, the
computation of the WWCB does not require the channel
information. Best performance is achieved by the two-step
LS estimator combined with the p-algorithm while the
proposed BOMP is very close.

5.2 Time-varying sparse multipath channel
Depending on the mobility of the receiver, the channel
may remain essentially constant over the duration of the
block, or may be slowly time varying. For time-varying
channels, the CIR cannot be assumed to be static over two
consecutive OFDM blocks.

5.2.1 Correlated time-varying sparsemultipath channel
When the channel is time varying, the nonzero channel
coefficients may vary slowly and are temporally corre-
lated. The parameters of the channel may remain constant
over several OFDM blocks. Consequently, the locations
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Fig. 6 Comparison of MSE of CIR estimates versus CFO range of
[−0.5, 0.5] for the time-invariant sparse channel at SNR = 15 dB
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of the nonzero channel coefficients coincide in successive
channel instantiations. The temporal variations of such a
channel can be captured by an autoregressive (AR) state
space model. It is shown in that the local behaviour of
fading wireless channels is accurately represented by the
first order ARmodel [30]. The temporally correlated time-
varying sparse channel is generated using a first-order AR
model given as

hm+1 = ρ hm + um m = 1, 2, . . . (38)

where um denotes the driving noise and ρ is calculated
using the zeroth order Bessel function of the first kind,
ρ = J0(2π�fT) [15]. Each entry of the driving noise is
generated independently from zero mean complex white
Gaussian distribution with variance (1 − ρ2)γ (l) [15, 31].
The sparse channel is initialized using multivariate com-
plex white Gaussian distribution with covariance matrix
� = diag (γ (1), . . . , γ (L)) where variances γ (l) are set
according to the same exponential power decay profile
used in Section 5.1. MSE of CFO estimates for the cor-
related time carying sparse channel are shown in Fig. 7.
For SNR=-5 dB the p-algorithm yields lowerMSE than the
MLE and the BOMP methods. As SNR increases beyond
-5 dB, the performance of the the p-algorithm stays the
same. The performances of the Moose, Classen and the p-
algorithm cannot be improved with increasing SNR due
to the time varying channel. The p-algorithm performs
better than the Moose and Classen methods. The per-
formances of the MLE and the BOMP methods are not
affected by the time-varying channel.
Figure 8 shows the MSE of CIR estimates for the corre-

lated time-varying channel. The pure LS estimator with-
out any CFO synchronization performs closely to the
BOMP method for SNR below 10 dB. As SNR increases
beyond 10 dB, the MSE of the pure LS estimator reaches
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Fig. 7 Comparison of MSE of CFO estimates versus SNR for correlated
time-varying sparse channel with ε = 0.03
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Fig. 8 Comparison of MSE of CIR estimates versus SNR for correlated
time varying sparse channel with ε = 0.03

an error floor seen in Fig. 8. As in Fig. 3, the BWCB
becomes much tighter bound as the SNR increases for the
time varying sparse channel. The upper bounds WWCB
and BWCB exhibit an error floor as the SNR increases
for the time-varying sparse channel. Degradation due to
the time-varying channel is not observed for the BOMP
method since the BOMP method does not use a channel
model.
MSE of CFO estimates versus the CFO range of

[−0.5, 0.5] are presented in Fig. 9. The p-algorithm no
longer holds the performance advantage but manages to
perform better than the Moose and Classen methods. As
the CFO increases, the performance of the Moose and
Classen methods degrades severely. Figure 9 shows that
the Moose and Classen methods are prone to greater per-
formance degradation for larger CFO values when the
sparse channel is time varying. The p-algorithm does not
show sensitivity to CFO value.
WWCB for the correlated time varying sparse chan-

nel is illustrated in Fig. 10. When the sparse channel is
time varying, it is seen that the performance the pure LS
method can perform better than the two-step LS esti-
mator combined with the p-algorithm for smaller CFO
values. MSE of CIR estimates versus the extended CFO
range [−0.5, 0.5] are presented in Fig. 11. For smaller
CFO values, the pure LS channel estimate is better
than the two-step LS estimate using the p-algorithm
synchronization.

5.2.2 Uncorrelated time-varying sparsemultipath channel
The support, the nonzero taps, of the sparse multipath
channel are generated from uniform distribution while
the nonzero coefficients are generated from standard
Gaussian distribution for each OFDM block. MSE of
CFO estimates for this case are shown in Fig. 12. The
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Fig. 9 Comparison of MSE of CFO estimates versus CFO range of
[−0.5, 0.5] for correlated time varying sparse channel at SNR=15 dB

performances of the Moose, Classen, and the p-algorithm
does not improve as the SNR increases if the sparse chan-
nel changes between two consecutive OFDM blocks. All
of the three methods which rely on consecutive OFDM
blocks, yield the worst performance. The performances of
the MLE and the BOMPmethods stay consistent with the
performances given for the time invariant channel since
they use only one OFDM block and are not affected by the
changing channel.
Figure 13 shows the MSE of CIR estimates for the time-

varying channel. It is observed that the performance of the
two-step LS estimator using the p-algorithm is worse than
the pure LS estimate which does not use any CFO syn-
chronization. The performance of the two-step LS estima-
tor is observed to be even worse than the BWCB for SNR
greater than 0 dB. The pure LS estimator without any CFO
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Fig. 10 Comparison of MSE of CIR estimates versus CFO range of
[−0.03, 0.03] for correlated time-varying sparse channel at 15 dB SNR
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Fig. 11 Comparison of MSE of CIR estimates versus CFO range of
[−0.5, 0.5] for correlated time-varying sparse channel at 15 dB SNR

synchronization performs closely to the BOMP method
for SNR below 10 dB. As SNR increases beyond 10 dB, the
MSE of the pure LS estimator reaches an error floor as
seen in Fig. 13. Figure 13 indicates that the upper bounds
WWCB and BWCB exhibit an error floor as the SNR
increases for the time-varying sparse channel. Figure 13
shows that the performance of the BOMP method does
not exhibit any degradation for the time varying chan-
nel as a consequence of not relying on a channel model.
The BOMP method gives the closest performance to the
oracle bound for the time-varying sparse channel. MSE
of CFO estimates versus the CFO range of [−0.5, 0.5]
are presented in Fig. 14. The Moose, Classen, and the p-
algorithm give the worst performance as seen in Fig. 14.
The closest performance to the CRB bound is achieved by
the BOMP method.
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Fig. 12 Comparison of MSE of CFO estimates versus SNR for
uncorrelated time-varying sparse channel with ε = 0.03
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Fig. 13 Comparison of MSE of CIR estimates versus SNR for
uncorrelated time-varying sparse channel with ε = 0.03

WWCB for the time-varying sparse channel is illus-
trated in Fig. 15. When the sparse channel is time varying,
it is seen that the performance the pure LS method is
much better than the performance of the two-step LS
estimator combined with the p-algorithm. MSE of CIR
estimates versus the extended CFO range [−0.5, 0.5] are
presented in Fig. 16. For smaller CFO values the pure LS
channel estimate yields lower MSE than the two-step LS
estimate using the p-algorithm synchronization. The clos-
est performance to the oracle bound versus the whole
CFO range is achieved by the BOMP method.

5.3 Uncorrelated time-varying sparse multipath channel
with varying CFO

CFO may also be subject to change between each suc-
cessive OFDM block. In order to give numerical results
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Fig. 14 Comparison of MSE of CFO estimates versus CFO range of
[−0.5, 0.5] for uncorrelated time-varying sparse channel at SNR=15 dB
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Fig. 15 Comparison of MSE of CIR estimates versus CFO range of
[−0.03, 0.03] for uncorrelated time-varying sparse channel at 15 dB
SNR

for this case, CFO is assumed to be uniformly distributed
in the interval ε ∼ U(−0.03, 0.03) for each successive
OFDM block as in [29]. The sparse multipath channel is
time varying as in Section 5.2. Figure 17 gives the MSE of
CFO estimates versus SNR for varying channel and CFO.
TheMoose, Classen, and p-algorithm perform worse than
the MLE and the BOMP methods since both CFO and
CIR is changing for each OFDM block. The BOMP and
the MLE methods give the same performance and are not
affected by the changing CFO and CIR. Figure 18 shows
the MSE of CIR estimates. The pure LS method and the
LS method combined with the CFO estimate provided by
the p-algorithm produces the sameMSE. They are subject
to the same error floor as the BWCB for SNR levels above
25 dB. The closest performance to the oracle estimator is
achieved by the BOMP method.
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Fig. 16 Comparison of MSE of CIR estimates versus CFO range of
[−0.5, 0.5] for uncorrelated time-varying sparse channel at 15 dB SNR
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Fig. 17 Comparison of MSE of CFO estimates versus SNR for
time-varying sparse channel with ε ∼ U(−0.03, 0.03)

6 Conclusions
We introduced a novel CS based framework for the joint
estimation of CFO and CIR in OFDM systems. It is shown
that the CIR can be represented as a 1-block sparse sig-
nal if a dictionary is built by concatenating subspaces of
CFO values within a search grid. CS theory allows the
recovery of signals that are given in such representation.
The BOMP algorithm is used to reconstruct the CIR coef-
ficients. The proposed estimator uses only one block of
training symbols and no initialization is needed. Worst
case analysis using perturbation bounds from CS the-
ory are applied to sparse channel estimation. Numerical
results show that the proposed estimator gives the same
performance as the MLE.
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Fig. 18 Comparison of MSE of CIR estimates versus SNR for
time-varying sparse channel with ε ∼ U(−0.03, 0.03)
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