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Abstract

With an explosive growth of Mobile Cloud and Internet of Things (IoT) technologies, the Mobile Cloud IoT (MCIoT)
concept has become a new trend for the future Internet. MCIoT paradigm extends the existing facility of computing
process to different mobile applications executing in mobile and portable devices. In this research, we provide a new
nested game model to design an effective MCIoT computation offloading algorithm. First, each mobile device
determines the portion of remote offloading computation based on the Rubinstein game approach. Then, a
computation resource in the cloud system is dynamically assigned for the requested offloading computation.
Based on the nested game principle, our proposed scheme can approach an optimal solution for the
offloading computation in the MCIoT system. The simulation results show that our game-based method is
effective in distributed IoT environments while supporting application executions timely and ubiquitously.

Keywords: Mobile Cloud Computing; Computation offloading; Dynamic resource allocation; Game theory;
Nested game; Rubinstein game; Internet of Things

1 Introduction
Recently, rapid technology development makes it
possible for connecting various smart mobile devices
together while providing more data interoperability
methods for application purpose. Therefore, the diverse
nature of applications has challenged communication and
computation mechanisms to look beyond conventional
applications for effective network policies, quality of
service (QoS), and system performance. The Internet of
Things (IoT) paradigm is based on intelligent and self-
configuring mobile devices interconnected in a dynamic
and global network infrastructure. It is enabling ubiqui-
tous and pervasive computing scenarios in the real
world [1, 2].
In the current decade, a growing number of researches

have been conducted to acquire data ubiquitously,
process data timely, and distribute data wirelessly in the
IoT paradigm. To satisfy this requirement, mobile de-
vices should have the capacity to handle the required
processing and computation work. Unfortunately, the
desire for rich, powerful applications on mobile devices
conflicts with the reality of these devices’ limitations:

slow computation processors, little memory storage, and
limited battery life. For this reason, mobile devices still
lag behind desktop and server hardware to provide the
experience that users expect [3, 4].
The Mobile Cloud (MC) is emerging as one of the

most important branches of cloud computing and is ex-
pected to expand mobile ecosystems. Usually, cloud
computing has long been recognized as a paradigm for
big data storage and analytics; it has virtually unlimited
capabilities in terms of storage and processing power.
MC is the combination of cloud computing, mobile
computing, and wireless networks to bring rich compu-
tational resources to mobile users and network opera-
tors, as well as cloud computing providers. With the
explosive growth of multimedia mobile applications, MC
computing has become a significant research topic of
the scientific and industrial communities [5–7].
The two fields of MC and IoT have been widely popu-

lar as future infrastructures and have seen an independ-
ent evolution. However, MC and IoT are complementary
technologies, and several mutual advantages deriving
from their integration have been identified [3]. There-
fore, a symbiosis has developed between mobile devices
and MC and is expected to be combined for the future
Internet. Generally, mobile devices can benefit from the
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virtually unlimited capabilities and resources of MC to
compensate its storage, processing, and energy con-
straints. Specifically, MC can offer an effective solution
to implement IoT service management. On the other
hand, MC can benefit from the IoT system by extending
its scope to deal with real-world things in a more dis-
tributed and dynamic manner [2]. Nowadays, the exten-
sion of MC over dynamic IoT environments has been
referred as a next generation communication and com-
puting paradigm [5].
In this paper, we focus our attention on the integration

of MC and IoT, which we call the MCIoT paradigm.
MCIoT should support a wide variety of multimedia ap-
plications with different QoS requirements; these appli-
cations need different system resources. Therefore, the
MCIoT platform can benefit from implementing QoS-
aware service management algorithms to match applica-
tion demand to IoT services, while guaranteeing to meet
the respective QoS requirements. Such algorithms must
take into account that mobile devices are generally char-
acterized with limited storage and processing capacity. A
possible way to dealing with this problem is to remotely
execute some computation tasks on a more powerful
cloud system, with results communicated back to the
mobile devices. This method is the computation offload-
ing [8]. Therefore, the synergy of MC and IoT lies at the
junction of mobile devices, different wireless network
providers, and cloud computing systems. As far as we
know, there is no intensive research work considering
the multi-interaction aspect of the MCIoT paradigm.
Although the computation offloading approach can

significantly augment the computation capability of mo-
bile devices, the task of developing a comprehensive and
reliable computation offloading mechanism remains
challenging. A key challenge is how to efficiently coord-
inate multiple mobile devices and the MCIoT system.
Usually, individual mobile devices locally make control
decisions to maximize their profits in a distributed man-
ner. This situation leads us into the game theory. The
game theory is a conceptual and procedural tool to cap-
ture the interaction among selfish players and has been
successfully applied to typical network management
problems, like resource allocation, routing, pricing, and
load balancing. In particular, it has been largely applied
in mobile and wireless network scenarios in the context
of competition in the access to shared communication
and computation resources [9].
In 1988, an American political scientist, George Tsebelis,

introduced an important new concept, called nested
games, to rational choice theory and to the study of com-
parative politics [10]. Using the notion of nested games,
he showed that game players are involved simultaneously
in several games. He argued that the “nestedness” of the
principal game explains why a player confronted with a

series of choices might not pick the alternative which ap-
pears to be optimal. In other words, what seems to be ir-
rational in one arena becomes intelligible when the whole
network of games is examined. Originally, the nested
game has been used by anyone interested in the effects of
political context and institutions on the behavior of polit-
ical actors. Nowadays, the nested game approach can be
used to analyze a systematic, empirically accurate, and
theoretically coherent account of apparently irrational ac-
tions [11–13].
In this paper, we adopt a nested game approach to ad-

dress the computation offloading algorithm in the
MCIoT platform. The nested game model is a useful
framework for designing decentralized mechanisms,
such that the mobile devices can self-organize into the
mutually satisfactory computation offloading decisions.
Usually, different mobile devices may pursue different
interests and act individually to maximize their profits.
This self-organizing feature can add autonomics into
MCIoT systems and help to ease the heavy burden of
complex centralized control algorithms. The main con-
tributions of our work are (i) the ability to analyze the
interactions among multiple mobile devices, (ii) the abil-
ity to effectively assign an available resource for the re-
quested offloading computations, and (iii) the ability to
respond to the current MCIoT system conditions while
maximizing the performance.

A. Related work

In modern times, a lot of state-of-the-art work on
cloud-based IoT management schemes has been con-
ducted. In [14], an effective approach to intelligent plan-
ning for mobile IoT applications was presented. This
approach included a learning technique for dynamically
assessing the users’ mobile IoT application and a Markov
decision process planning technique for enhancing effi-
ciency of IoT device action planning. In [15], a highly lo-
calized IoT-based cloud computing model was proposed.
This model allowed clients to create ad hoc clouds using
the IoT and other computing devices in the nearby phys-
ical environment, while providing the flexibility of cloud
computing. It also provided localized computation cap-
ability from untapped computing resources. In [16], a
novel framework for software-defined IoT cloud systems
was developed. With feasibility and practical applicabil-
ity, this framework handled two main tasks: (i) perform
dynamic, on-demand provisioning of governance cap-
abilities and (ii) remotely invoke such capabilities in IoT
cloud resources remotely, via dynamic APIs.
Recently, related work on an efficient computation off-

loading mechanism design is reviewed in [11] and [7].
The nested two-stage game-based optimization (NTGO)
scheme [11] was developed for an MC computation
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interaction system. This scheme provides a nested two-
stage game model for the computation offloading. To
maximize the network system performance, all the mo-
bile devices compete for the allocated resources, which
becomes a normal-form game. Based on the backward
induction principle, the NTGO scheme can derive the
near-optimal strategy for all the mobile devices using a
convex optimization approach. Nash equilibrium always
exists and is unique in the NTGO scheme. The decentra-
lized computation offloading game (DCOG) scheme [7]
was envisioned as a promising approach for an MCC algo-
rithm. This scheme formulated a decentralized computa-
tion offloading mechanism as a decentralized computation
offloading game. As game players, mobile devices make
computation offloading decisions locally, which can sig-
nificantly reduce the controlling and signaling overhead of
the cloud. The DCOG scheme also can achieve a Nash
equilibrium of the game.
All of the abovementioned solutions in [7, 11] have

attracted a lot of attention and introduced unique chal-
lenges to efficiently solve the computation offloading
decision problems. However, there are several disadvan-
tages. First, these existing schemes rely on high complexity
and extra overhead; this increased overhead can exhaust
the computation capacity. Second, these schemes cannot
adaptively estimate the current system conditions. Third,
these schemes operate systems by fixed-system parame-
ters. Under dynamic MCIoT environments, control mech-
anisms by using static thresholds can cause potential
erroneous decisions. Compared to these schemes [7, 11]
in Section III, the proposed scheme attains a better system
performance.
This paper is organized as follows. Section II explains

the basic concept of the network model for computation
offloading. Section III describes our proposed nested
game-based computation offloading scheme in detail. In
Section IV, performance evaluation results are presented
along with comparisons with the schemes proposed in
[7, 11]. Through simulation, we show the ability of the
proposed scheme to achieve high accuracy and prompt-
ness in dynamic network environments. Finally, con-
cluding remarks are given in Section V.

2 Network model for computation offloading
Under competitive or cooperative environments, the be-
haviors of game players have a direct influence on each
other. Based on rational assumptions, the game theory is
to study the decision-making mechanism and the bal-
ance of decision-making interactions [9]. However, game
players seem to act irrationally, but if treating the game
as a part of a larger game, we can see their behaviors are
rational [12]. From the view of a small independent
game, each player’s strategy is not the optimal solution.
However, from the view of a big game, players’ reactions

are the best responses. Such games are called as nested
games, and small games may be used as sub-games
nested in the sequential game of a larger game [11–13].
In multiple fields of a nested game, game players try to
optimize their payoffs in the principal game field which
also involves a game about the rules of the game. It can
lead to apparently suboptimal payoffs as the game player
fails to see the other fields that provide context for the
small game in the principal field. Several studies use nested
game theory to explain political party behavior, budget ne-
gotiations, electoral systems, and public policy [13].
In this work, we specify the nested game to design a

new computation offloading algorithm. The key point of
the MC offloading mechanism hinges on the ability to
achieve enough computing resources with small energy
consumption. In recent years, this technique has received
more attention because of the significant rise of offload-
available mobile applications, the availability of powerful
clouds and the improved connectivity options for mobile
devices. The main challenges to design an effective com-
putation offloading algorithm lies in the adaptive division
of applications for partial offloading, the mismatch control
mechanism between how individual mobile devices de-
mand and access computing resources, and how cloud
providers offer them. To decide what, when, and how to
be offloaded, we should consider the offload overhead and
current MCIoT system conditions.
In the resource-rich MC environment, a mobile device

must pay the price to take advantage of computation off-
loading. To gain an extra benefit, idle computation re-
sources in the MCIoT system compete to get the
requested offloading task. Therefore, mobile devices can
select the most adaptable computation resource to exe-
cute their offloaded computations. In this work, our
MCIoT environment can be described as follows:

1. D ¼ D0;D1; …; Dnf g is the set of mobile devices,
and Ai, i ∈ [1, n] is an application, which belongs
to the mobile device Di.

2. Mobile device applications are elastic applications
and can be split. For example, Ai ¼

XL
k¼1

aik , where a
i
k is

the kth module of Ai, and some parts (i.e., coded
modules) of Ai can be offloaded.

3. ℝ = {R0, R1, …, Rm} is the set of idle cloud
computing resources in the MCIoT environment,
and Rj, j ∈ [1, m] has a computation capacity (ℱR

Rj
;

CPU cycles per second) and expected price (ψRj ;
price per CPU cycle of the Rj) to accomplish the
offloaded computations.

4. Price in each Rj,1 ≤ j ≤m can be dynamically adjustable
according to the auction mechanism.

5. For simplicity, we assume that there is no
communication noise and uncertainties in
MCIoT environments.
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In this paper, we develop a two-stage nested game
model comprised of elastic applications, mobile de-
vices, and computation resources in the MC. In the
first stage, applications of mobile devices are divided
into two parts: one part runs locally and the other
part is run on the MC side. In the second stage, off-
loaded tasks are matched to computing resources in
the MCIoT system. Based on the auction mechanism,
computation resources submit different offers to get
the requested offload task, and the most adaptable
offer is selected. According to the two-stage sequen-
tial nested game approach, we can make decisions
about whether to perform computation offloading,
which portion of the application should be offloaded
to the cloud, and which resource is selected to ac-
complish the requested offload.

3 Proposed computation offloading algorithms
In this section, we introduce our proposed computation
offloading scheme in detail. The computation offloading
technique has been widely popular as the future infra-
structure of utility computing and becomes an attract-
ive tool to overcome the inherent limitations of
mobile devices. Based on the nested game model, our
proposed scheme consists of the Rubinstein game and
auction game to approximate a globally desirable sys-
tem performance while ensuring QoS for mobile ap-
plication services.

A. Offloading communication and computation process

By taking into account both communication and
computation aspects of MCIoT environments, we
formulate a new decentralized computation offload-
ing algorithm. In each mobile device, applications
can be computed either locally on the mobile device
or remotely on the cloud via computation offloading.
For the local computing approach, each mobile de-
vice (e.g., Di) can execute some computation part of
Ai individually. The local computation execution
time (L CTAi Di

comp ) of the application Ai on the mobile

device Di is given as

L CTAi Di
comp ¼

XL

k¼1
U aik
� �� aik
ℱL
Di

; s:t:; U aik
� �

¼ 1; if aik is locally computed
0; otherwise aik is offloaded

� ��
ð1Þ

where ℱL
Di

is the computation capability of mobile de-

vice Di. The local computation cost (L CCAi Di
comp ) of the

application Ai on the mobile device Di is calculated
based on the L CTAi Di

comp and consumed local computa-

tion energy (ρ).

L CCAi Di
comp ¼ ρDi � ℱL

Di
� L CTAi Di

comp

� �
ð2Þ

where ρDi is the coefficient denoting the consumed en-
ergy cost per CPU cycle. The evaluation of the total local

computation overhead (T OAi Di
local ) of the application Ai

on the mobile device Di is a non-trivial multi-objective
optimization problem. It is addressed as a weighted sum
by considering normalized time and energy cost.

T OAi Di
local ¼ λAi

Di
� L CTAi Di

comp

1
ℱL
Di

�
XL

k¼1
aik

0B@
1CAþ 1−λAi

Di

� �

� L CCAi Di
comp

ρDi �
XL

k¼1
aik

0@ 1A ð3Þ

where λAi
Di

is a parameter to control the relative weights
given to execution time and energy consumption. To

satisfy Ai’s demand, λAi
Di

is adaptively decided. In Eq. (7),

the λAi
Di

value decision process is explained in detail.
Next, we estimate the remote computation overhead

through the MC offloading mechanism. Generally, the
communication and computation aspects play a key role
in MC offload. In this paper, we consider a delay-
sensitive Wi-Fi model for offloading services; mobile de-
vices are sensitive to delay and their payoff decreases as
delay increases. As a wireless access base station (BS), a
Wi-Fi access point manages the uplink/downlink com-
munications of mobile devices. For the computation off-
loading, the mobile device Di would incur the extra
overhead in terms of time and energy to submit the
computation offload via wireless access. Based on the
communication model in [7], the offloading commu-

nication time O CTAi Di
off

� �
and energy O CEAi Di

off

� �
of

the application Ai on the mobile device Di are com-
puted as follows.

O CTAi Di
off Dð Þ ¼

XL

k¼1
T aik
� �� aik

ℬ � log2 1þ Pi �Hi; BS

ωþ
X

agk∈Ag = Aif g:T agkð Þ¼1
Pg � Hg; BS

0@ 1A
s:t:; g ∈ 1; n½ �;Dg ∈DandT aik

� � ¼ � 1; if aik is offloaded
0; otherwise

O CEAi Di
off Dð Þ ¼

Pi �
XL

k¼1
T aik
� �� aik

ℬ � log2 1þ Pi � Hi;BS

ωþ
X

agk∈Ag = Aif g:T agkð Þ¼1
Pg � Hg; BS

0@ 1A
ð4Þ

where ℬ is the channel bandwidth and Pi is the trans-
mission power of device Di. Hi, BS denotes the channel
gain between the mobile device Di and the BS, and ω de-
notes the interference power [7]. From the Eq. (4), we
can see that if too many mobile devices choose to off-
load the computation via wireless access simultaneously,
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they may incur severe interference, leading to low data
rates. It would negatively affect the performance of MC
communication. Therefore, offloading decisions among
mobile devices are tightly coupled to each other [7]. To
address this conflicting situation, game theory can be
adopted to achieve efficient computation offloading
decisions.

After the offloading, the computation time C T
Ai Rj
remote

� �
and payment P

Ai Rj
remote

� �
of remote computation taskXL

k¼1

T aik
� �� aik

 !
on the assigned computation resource

Rj can be then given as

C T
Ai Rj
remote ¼

XL

k¼1
T aik
� �� aik
ℱR
Rj

and P
Ai Rj
remote

¼ ψRj � ℱR
Rj
� C T

Ai Rj
remote ð5Þ

where ℱR
Rj

is Rj’s computation capability and ψRj is the

coefficient denoting the price per CPU cycle of Rj. Ac-
cording to Eqs. (4) and (5), the total offload overhead

T OAi
off

Rj
� �

of application Ai on the computation re-
source Rj is computed as a weighted sum by considering
execution time and consuming cost.

T OAi
off

Rj ¼ λAi
Di

� O CTAi Di
off Dð Þ þ C T

Ai Rj
remote

1
ℱL
Di

�
XL

k¼1
aik

0B@
1CA

þ 1−λAi
Di

� �
� O CEAi Di

off Dð Þ þ P
Ai Rj
remote

ρDi �
XL

k¼1
aik

0@ 1A
ð6Þ

According to Eqs. (3), (4), (5), and (6), the total execu-

tion time of Ai T CAi
total

Di; Rj
� �

with partial offloading

can be estimated considering between the local and re-
mote computing times.

T CAi
total

Di; Rj ¼ max L CTAi Di
comp ; O CT Ai

off
Di Dð Þ þ C T

Ai Rj
remote

� �h i
ð7Þ

Finally, we can compute the total execution overhead
of Ai SAi Di; Rj Dð Þ� �

as

SAi Di; Rj Dð Þ ¼ λAi
Di

� T CAi
total

Di; Rj
� �

þ 1−λAi
Di

� �

�
L CCAi

comp
Di þ O CEAi Di

off Dð Þ þ P
Ai Rj
remote

� �
ρDi �

XL

k¼1
aik

0@ 1A
ð8Þ

To meet the application-specific demand, different ap-
plications have different evaluation criteria for time and
energy consumption. For example, when a mobile device
is running an application that is delay sensitive (e.g.,
real-time applications), it should put more weight on the
execution time (i.e., a higher λ) in order to ensure the
time deadline and vice versa. Therefore, a fixed value for
λ cannot effectively adapt to the different application de-
mands. In this work, the value of λ for the Ai on mobile

device Di λAi
Di

� �
is dynamically decided as follows.

λAi
Di

¼ mim 1 ;

1
ℱL
Di

�
XL

k¼1
aik

T DAi

0B@
1CA

264
375 ð9Þ

where TDAi is the time deadline of Ai. Therefore,
through the real-time online monitoring, we can be
more responsive to application demands.

B. Application partitioning game

An important challenge for partial offloading is how to
partition elastic applications and which part of the parti-
tioned application should be pushed to the remote
clouds. In this section, we analyze how mobile devices
can exploit a partial offloading between cloud computa-
tion and local computation. To distribute computation
tasks for partial offloading, we provide a non-cooperative
bargaining game model by considering the consuming
cost and computation time. Usually, a solution to the
bargaining game model enables the game players to fairly
and optimally determine their payoffs to make joint agree-
ments [17, 18]. Therefore, the bargaining model is attract-
ive for the partitioning problem.
In 1982, Israeli economist Ariel Rubinstein built up an

alternating-offer bargain model based on Stahl’s limited
negotiation model; it is known as a Rubinstein-Stahl bar-
gaining process. This model can provide a possible solu-
tion to the problem that two players are bargaining with
the division of the benefits [19, 20]. In the Rubinstein-
Stahl model, players have their own bargaining power
(δ). The division proportion of the benefits can be ob-
tained according to the bargaining power, which can be
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computed at each player individually. Usually, the bar-
gaining solution is strongly dependent on the bargaining
powers. If different bargaining powers are used, the
player with a higher bargaining power obtains a higher
benefit than the other players. In this study, players ne-
gotiate with each other by proposing offers alternately.
After several rounds of negotiation, players finally reach
an agreement as follows [19, 20].

x�1; x
�
2

� � ¼
�

1−δ2
1−δ1δ2

;
δ2 1−δ1ð Þ
1−δ1δ2

�
if the player 1 offers first�

δ1 1−δ2ð Þ
1−δ1δ2

;
1−δ1
1−δ1δ2

�
if the player 2 offers first

8>>>>><>>>>>:
ð10Þ

s:t:; x�1; x
�
2

� �
∈R2 : x�1 þ x�2 ¼ 1; x�1≥0; x

�
2≥0 and 0 ≤ δ1, δs ≤ 1

It is obvious that 1−δ2
1−δ1δ2

≥ δ2 1−δ1ð Þ
1−δ1δ2

and δ1 1−δ2ð Þ
1−δ1δ2

≤ 1−δ1
1−δ1δ2

.

Traditionally, the bargaining power in the Rubinstein-
Stahl’s model is defined as follows [20].

δ ¼ e−ξ�Φ; s:t:; > 0 ð11Þ
where Φ is the time period of a negotiation round.
Given that Φ is fixed, δ is monotonically decreasing with
ξ. Therefore, ξ is an instantaneous discount factor to
adaptively adjust the bargaining power. Usually, the bar-
gaining power represents the relative ability to exert in-
fluence over other players; the more bargaining power a
player has, the more payoff a player attains.
In this section, the Rubinstein-Stahl bargaining game

model is formulated to solve the application partitioning
problem. In our game model, the cloud computation re-
source and mobile device are assumed as players, which
are denoted as player_1 (i.e., mobile device for local
computation) and player_2 (i.e., cloud resource for re-
mote computation). In the scenario of the Rubinstein-
Stahl model, each player has a different discount factor
(ξ). Under various MCIoT situations, we dynamically
adjust ξ values to provide more efficient control over
system condition fluctuations. When the current local
computation overhead is heavy, the mobile device does
not have sufficient computation capacity to support the
local computation service. In this case, a higher value of
player_1’s discount factor (ξI) is more suitable. If the re-
verse has been the case (i.e., the remote computation
overhead is heavy), a higher value of player_2’s discount
factor (ξII) is suitable. At the end of each game period,
player_1 and player_2 adjust their discount factor values
(ξI and ξII, respectively) as follows.

ξ I ¼ 1− ξ II ; s:t:; ξ II ¼
T O

Ai Rj

off

SAi Di; Rj Dð Þ ð12Þ

For simplicity, we assume that the ξ values are fixed
within an offloading procedure for each application,

while they can be changed in different applications.
Therefore, as system situations change after application
partitioning, each player can adaptively adjust their ξI
and ξII values for the next application execution while
responding current MCIoT system conditions.

C. Cloud resource selection game

Recently, researchers have proposed various auction
models to optimally match up the buyer and seller ac-
cording to their desires. It is a significant and efficient
market-based approach to solve the allocation problem
with more requisitions. Therefore, the auction game
model can provide a resource-selection mechanism in
MC systems. In our computation resource-selection sce-
nario, there are a requested offload task (i.e., buyer) and
computation resources (i.e., sellers). Based on the se-
quential offloading requests, our action model is de-
signed as the one-to-many auction structure. As sellers,
computation resources (ℝ) in the MC system offer bids
(i.e., the expected selling prices) for the remote offload
computation. To show their preference to get the off-
loading computation, sellers (ℝ) can adjust their sell-
ing prices periodically. For the tth auction stage, the
seller (i.e., Rj ∈ ℝ) bids his price ψRj tð Þð Þ per CPU
cycle as follows.

ψRj tð Þ ¼

ψRj t−1ð Þ þ 1−
1

exp max 0; εRj

	 
� �� �
0@ 1A; if Rj is selected at t−1

s:t:; εRj e N μRj
; σ2Rj

� �
ψRj t−1ð Þ− 1−

1

exp max 0; εRj

	 
� �� �
0@ 1A; otherwise

8>>>>>>>>><>>>>>>>>>:
ð13Þ

where εRj is a random variable to present the price ad-
justment. Because the sellers are not interrelated, the
random variable (ε) of each seller is independent of each
other. According to Eq. (13), each seller (i.e., Rj ∈ℝ) bids

his offer ψRj ; ℱ R
Rj

� �
at each auction round, and then,

the buyer (i.e., Di∈D) selects the most adaptable offer. In
this work, the minimum price-offering resource while
satisfying the computation deadline (T_D(·)) is selected.
This dynamic auction procedure is repeated sequentially
for each auction round. In each auction round, sellers
can learn the buyer’s desire with incoming information
and can make a better price decision for the next
auction.

D. The main steps of proposed algorithm

A more recent and rapidly increasing trend deals with
two technologies (MC and IoT) together, and they have
combined synergistically. Without the MC computing
technology, many mobile applications in the IoT system
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would not exist. The complementary characteristics of
MC and IoT inspire a new MCIoT paradigm. This inte-
gration realizes a new convergence scenario and will
impact future application development where new op-
portunities arise for data aggregation, integration, and
sharing with third parties. Although the MC and IoT
may seem to be a mature technology, this work is only
at the very beginning of exploiting the potential ap-
proach of the MC and IoT integration.
In this paper, we present a two-stage nested game

model for the interaction of game players such as
elastic applications, mobile devices, and MC compu-
tation resources. Applications are involved in the ap-
plication partitioning game in the first stage, and mobile
devices and MC resources are involved in the
resource selection game in the second stage. This
two-stage nested game reflects the sequential depend-
encies of decisions in each stage. Based on the feed-
back interaction process, players can capture how to
adapt their decisions to maximize their payoffs in an
entirely distributed fashion. It is a practical and suit-
able approach in real-world MCIoT system opera-
tions. The main steps of our proposed nested game

algorithm are given next and described as a flowchart
in Fig. 1.

Step 1: At the initial time, applications in each mobile
device are equally partitioned for local and remote
offloading computations. At the beginning of the game,
this starting guess is useful to monitor the current
MCIoT situation.
Step 2: According to Eqs. (1)–(9), mobile devices can
estimate their total offload overhead T O �ð Þ

off

� �
and the

total execution overhead ðS �ð Þ Dð ÞÞ individually.
Step 3: Based on Eqs. (10)–(12), each mobile device
adaptively re-partitions its application based on the
Rubinstein-Stahl bargaining game model.
Step 4: One part is computed locally on the mobile
device. In the MC side, the other part is computed
remotely on the computation resource, which is
selected according to the auction game.
Step 5: For the next resource selection process,
computation resources periodically adjust their selling
prices (ψ(·)) according to Eq. (13).
Step 6: As game players, elastic applications, mobile
devices, and MC computation resources are

Fig. 1 Computation offloading scheme for MCIoT systems
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interrelated and interact with each other in a two-stage
nested game. In each stage game, game players try to
maximize their payoffs while they are involved in a
bigger game.
Step 7: Under widely diverse MCIoT environments,
mobile devices and computation resources are self-
monitoring constantly for the next iterative feedback
processing. This iterative feedback procedure continues
under the MCIoT system dynamics.
Step 8: When a new application service is requested, it
can re-trigger another computation offloading process;
the service proceeds to Step 1 for the next game iteration.

4 Performance evaluation
In this section, the effectiveness of our proposed scheme
is validated through simulation. Using a simulation model,
the performance of our proposed scheme is compared
with two existing computation offload schemes [7, 11].
The assumptions implemented in our simulation model
are as follows.

� There are 10 mobile devices and 15 computation
resources in our MCIoT system.

� Applications can be split differently according to
application type.

� The application generation rate is a Poisson with
rate Δ (applications/s), and the range of offered
computation load was varied from 0 to 3.0.

� Different applications are assumed based on
computation requirement, duration, and required
QoS (i.e., T_D).

� The T_D of each application is exponentially
distributed with different means for different
applications.

� The performance measures obtained on the basis of
50 simulation runs are plotted as a function of the
offered applications per second at each mobile
device (applications/s/D).

� The MCIoT system performance is estimated in
terms of the normalized energy consumption,
application execution time, and QoS satisfaction
probability under various offered computation loads.

In order to emulate a real MCIoT system environment
and for a fair comparison, application types, characteris-
tics, and system parameters are carefully selected for a
realistic simulation scenario. Table 1 shows the application
types and system parameters used in our simulation.
As mentioned earlier, the DCOG and NTGO schemes

[7, 11] have been recently published and introduced
unique challenges to efficiently solve the computation
offloading decision problems. However, they are successful
only in certain circumstances. In addition, it is observed
that the DCOG and NTGO schemes [7, 11] require higher
control overhead for computation offloading via wireless
communication. Compared to these schemes, we can con-
firm the superiority of our proposed approach.
Figure 2 shows the normalized energy consumption of

each scheme. To effectively operate the MCIoT system,
energy consumption is an important performance metric.
All the schemes have similar trends. However, under vari-
ous offered loads, effective strategic decisions based on

Table 1 Application and system parameters used in the simulation experiment

Application type Applications Computation requirement Computation duration average/sec

I Voice telephony, video phone 128 K cycle/s 180 s (3 min)

II Remote login, tele-conference 512 K cycle/s 120 s (2 min)

Parameter Value Description

n 10 The number of mobile devices in MCIoT

m 15 The number of computation resources in MCIoT

L 6 or 10 The number of split coded modules in applications

ℱL 64 K cycle/s A computation capacity of mobile device

ℱR {128, 256, 512 K cycle/s} A computation capacity of computation resource

ρ 1 The price per CPU cycle of mobile device

ℬ 1 MHz The channel bandwidth

P 100 mW The transmission power of mobile device

ω 100 dBm The interference power

μ 1 The mean of the normal distribution

σ 1 The standard deviation of the normal distribution

Parameter Initial Description Values

ψ 1 The price per CPU cycle of resources Dynamically adjustable

λ 0.5 The relative weights given to time and energy 0 ~ 1
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our nested game model could lead to higher energy effi-
ciency than the DCOG and NTGO schemes. When de-
signing an effective computation offloading scheme, it is a
highly desirable property.
Figure 3 presents the performance comparison in

terms of QoS satisfaction probability. In this work, it is
estimated as an application’s complete ratio within each
deadline. As the offered load in MCIoT system increases,
the average amount of available computation resources

decreases. Thus, the required QoS of applications is
likely to be not satisfied; QoS satisfaction probability de-
creases. Under widely diverse MCIoT environments, our
proposed scheme can provide a higher satisfaction prob-
ability for target QoS than the other schemes.
The curves in Fig. 4 show the normalized application

execution time in the dynamic MCIoT platform. Usually,
computation offloading trades off communication cost
for computation gain. The DCOG and NTGO schemes

Fig. 2 Normalized energy consumption

Fig. 3 QoS satisfaction probability
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assume stable network connectivity and adequate cloud
computation resources. However, in dynamic system en-
vironments, a mobile device may experience communi-
cation congestions, while cloud resources may be
temporarily unavailable or occupied. Therefore, the
communication cost may be higher, while the computa-
tion gain will be lower. Moreover, the network and exe-
cution time prediction may be inaccurate, causing the
performance of MCIoT systems to be degraded. To

effectively adapt the unpredictable environment, our
scheme constantly monitors the current system condi-
tions. Based on the feedback interaction process, we can
maintain a lower application execution time than other
existing schemes.
In Fig. 5, the packet loss probabilities are presented.

When the offered load is low (below 0.3), the performance
of all the schemes is identical. However, as the offered load
increases, data packets are likely to be dropped; the packet

Fig. 4 Normalized application execution time

Fig. 5 Packet loss probability for communications
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loss probability increases linearly with the offered system
load. Under various load intensities, the proposed scheme
achieves a lower packet loss rate than other schemes.
From the simulation results in Figs. 2, 3, 4, 5, it can be

seen that the proposed scheme, as expected, achieves
better performance than the DCOG and NTGO schemes.
Traditionally, energy consumption and total computation
time are the key performance indicators for offloading
computation. However, there is a trade-off. Based on the
nested game model, our approach allows that each mobile
device can make decisions individually, while pursuing the
minimization of the computation time with a constraint
over the energy consumption. It is essential in order to be
close to the optimized system performance. Perform-
ance evaluation results indicate that our proposed
scheme can attain appropriate performance balance,
while other schemes [7, 11] cannot offer such an at-
tractive system performance.

5 Summary and conclusions
Over the recent past years, a novel paradigm where
cloud and IoT are merged is expected to be an import-
ant component of the future Internet. In this paper, we
review the integration of MC and IoT and design a new
computation offloading scheme in the MCIoT platform.
Based on the nested game model, the main goal of our
proposed scheme is to maximize mobile device perform-
ance while providing service QoS. To satisfy this goal,
the proposed nested game model consists of an applica-
tion partitioning game and cloud resource-selection
game. In our partitioning game, applications are adap-
tively partitioned according to the Rubinstein-Stahl
bargaining model. In our resource-selection game,
computation resources in the MC system are selected
based on the one-to-many auction game model. Based
on the nested game principle, these game models are
interrelated to each other and operated as a two-stage
sequential game. The simulation results show that our
nested game approach can outperform existing compu-
tation offloading schemes. For the future work direc-
tion in this promising field, novel system architectures
that seamlessly integrate MC and IoT and protocols
that facilitate big data streaming from IoT to MC
should be addressed when adopting a multi-MCIoT en-
vironment. In addition, QoS and QoE, as well as data
security, privacy, and reliability issues, are critical con-
cerns for the further research.
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