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Abstract

In this study, we present a deep neural network-based online multi-speaker localization algorithm based on a
multi-microphone array. Following the W-disjoint orthogonality principle in the spectral domain, time-frequency (TF)
bin is dominated by a single speaker and hence by a single direction of arrival (DOA). A fully convolutional network is
trained with instantaneous spatial features to estimate the DOA for each TF bin. The high-resolution classification
enables the network to accurately and simultaneously localize and track multiple speakers, both static and dynamic.
Elaborated experimental study using simulated and real-life recordings in static and dynamic scenarios demonstrates
that the proposed algorithm significantly outperforms both classic and recent deep-learning-based algorithms.
Finally, as a byproduct, we further show that the proposed method is also capable of separating moving speakers by
the application of the obtained TF masks.
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1 Introduction
Localizing multiple sound sources recorded with a micro-
phone array in an acoustic environment is an essential
component in various cases such as source separation and
scene analysis. The relative location of a sound source
with respect to a microphone array is specified in the
term of the DOA of the sound wave originating from that
location. DOA estimation and tracking are essential build-
ing blocks in all modern far-field speech enhancement
and recognition for smart home devices as well as robot
audition applications. In real-life environments, sound
sources are captured by the microphones together with
acoustic reverberation. While propagating in an acoustic
enclosure, the sound wave undergoes reflections from the
room facets and from various objects. These reflections
deteriorate speech quality and, in extreme cases, its intel-
ligibility. Furthermore, reverberation increases the time
dependency between speech frames, making source DOA
estimation a very challenging task.
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A plethora of classic signal processing-based
approaches have been proposed throughout the years
for the task of broadband DOA estimation. The multiple
signal classification (MUSIC) algorithm [1] applies a
subspace method that was later adapted to the challenges
of speech processing in [2]. The steered response power
with phase transform (SRP-PHAT) algorithm [3] used
a generalization of cross-correlation methods for DOA
estimation. These methods are still widely in use for both
single- and multi-speaker localization tasks. However, in
highly reverberant enclosures, their performance rapidly
deteriorates [4, 5].
Supervised learning methods can be potentially advan-

tageous for this task since they are data-driven. Deep
neural networks can be trained to find the DOA in
different acoustic conditions. Moreover, if a network is
trained using rooms with different acoustic conditions
and multiple noise types, it can be made robust against
noise and reverberation even for rooms which were not
in the training set. Deep learning methods have recently
been proposed for sound source localization. In [6, 7],
simple feed-forward deep neural networks (DNNs) were
trained using generalized cross correlation (GCC)-based
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audio features, demonstrating improved performance as
compared with classical approaches. Yet, this method is
mainly designed to deal with a single sound source at a
time. An extension of the multi-speaker DOA, using a
DNN for the estimation task, can be found in [8]. In high
reverberation conditions, however, the performance of
these algorithms is not satisfactory. In [9] and [10], time-
domain features were used demonstrating performance
improvement in highly reverberant enclosures. In [11],
a CNN-based classification method was applied in the
short-time Fourier transform (STFT) domain for broad-
band DOA estimation, assuming that only a single speaker
is active per time frame. The phase component of the
STFT coefficients of the input signal were directly pro-
vided as input to the CNN. This work was extended by [5]
to estimate multiple speakers’ DOAs and has shown high
DOA classification performance.
The main drawback of most DNN-based approaches,

however, is that they only use low-resolution supervision,
namely at the time frame level or even utterance-based
level, and the network outputs a single localization deci-
sion for the entire time frame. For speech signals, how-
ever, each time-frequency bin is dominated by a different
speaker, a property referred to as W-disjoint orthogonal-
ity (WDO) [12]. In the case of multiple speakers, each
TF bin can therefore be associated with a different DOA.
This high-resolution information can yield an improved
DOA estimation also in the entire time frame localization
resolution, especially in the case of multiple speakers.
In this study, we present a multi-speaker DOA estima-

tion algorithm that is based on the U-net architecture that
infers the DOA of each TF bin. The DOA decisions of all
the frequency bands of a single time frame are then aggre-
gated to extract the active speakers at that time frame
level. The TF-based classification also facilitates the track-
ing capabilities of multiple moving speakers. U-Net has
been introduced in the medical imaging domain [13] and
was recently successfully applied to various audio process-
ing tasks, e.g., for speech dereverberation [14], speaker
separation [15], and noise reduction [16], all in the STFT
domain, and for speech enhancement in the time-domain
[17, 18] also employing self-attention mechanism.
In the current study, we show that U-net architecture is

also beneficial in speaker localization and tracking appli-
cations. We tested the proposed method on simulated
data, using publicly available room impulse responses
(RIRs) recorded in a real room [19], as well as real-life
experiments recorded at the acoustic lab, Bar-Ilan Univer-
sity. We show that the proposed algorithm significantly
outperforms state-of-the-art methods.
The main contribution of our work is casting the

time-domain DOA estimation problem into a time-
frequency segmentation problem. The proposed method
improves the DOA estimation performance with respect

to (w.r.t.) the state-of-the-art (SOTA) approaches, which
are frame-based, and facilitates simultaneous tracking of
multiple moving speakers.

2 Multiple-speaker localization algorithm
In this section, we describe the proposed algorithm,
including the feature extraction, the network architecture,
and the training procedure.

2.1 Multi-microphone time-frequency features
Consider an array with M microphones acquiring a mix-
ture of N speech sources in a reverberant environment.
The ith speech signal si(t) propagates through the acous-
tic channel before being acquired by themth microphone:

zm(t) =
N∑

i=1

{
si ∗ him

}
(t), m = 1, . . . ,M, (1)

where him is the RIR relating the ith speaker and the mth
microphone. In the STFT domain, (1) can be written as
(provided that the frame-length is sufficiently large w.r.t.
the filter length):

zm(l, k) =
N∑

i=1
si(l, k)him(l, k), (2)

where l and k are the time frame and the frequency
indices, respectively.
The STFT (2) is complex-valued and hence comprises

both magnitude and phase information. It is clear that
the magnitude information alone is insufficient for DOA
estimation. It is therefore a common practice to use the
phase of the TF representation of the received micro-
phone signals, or their respective phase-difference, as they
are directly related to the DOA in non-reverberant envi-
ronments. We decided to use an alternative feature, which
is generally independent of the speech signal and is mainly
determined by the spatial information. For that, we have
selected the relative transfer function (RTF) [20] as our
feature, since it is known to encapsulate the spatial fin-
gerprint for each sound source. Specifically, we use the
instantaneous relative transfer function (iRTF), which is
the bin-wise ratio between themthmicrophone signal and
the reference microphone signal zref(l, k):

iRTF(m, l, k) = zm(l, k)
zref(l, k)

. (3)

Note that the reference microphone is arbitrarily cho-
sen. Reference microphone selection is beyond the scope
of this paper (see [21] for a reference microphone selec-
tion method). The input feature set extracted from the
recorded signal is thus a 3D tensorR:

R(l, k,m) = [Re(iRTF(m, l, k)), Im(iRTF(m, l, k))] .
(4)
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The tensor R is constructed from L × K bins, where L
is the number of time frames and K is the number of
frequencies. Since the iRTFs are normalized by the refer-
ence microphone, the latter is excluded from the features.
Then, for each TF bin (l, k), there are P = 2(M − 1)
channels, where the multiplication by 2 is due to the real
and imaginary parts of the complex-valued feature. For
each TF bin, the spatial features were normalized to have
a zero mean and a unit variance. Other feature extraction
methods can be considered. In Section 3, we show that
the features described above are a suitable choice for the
localization task.

2.2 U-Net for DOA estimation
The WDO assumption [12, 22] implies that each TF bin
(l, k) is dominated by a single speaker. Consequently, as
the speakers are spatially separated, i.e., located at differ-
ent DOAs, each TF bin is dominated by a single DOA.
We first accurately estimate the speaker direction at every
TF bin from the given mixed recorded signal. Then, we
extract the speakers’ locations at each time frame.
We formulated the DOA estimation as a classification

task by discretizing the DOA range. The resolution was
set to 5◦, such that the DOA candidates are in the set
� = {0◦, 5◦, 10◦, . . . , 180◦}. It is natural to view the DOA
estimation as a regression problem. The regression output
is a Gaussian unimodal distribution. Casting the problem
as a classification yields a multi-modal distribution which
is more suitable for the case of several speakers. Let Dl,k
be a random variable (r.v.) representing the active domi-
nant direction, recorded at bin (l, k). Our task boils down
to deducing the conditional distribution of the discrete set
of DOAs in � for each TF bin, given the recorded mixed
signal:

Pl,k(θ) = p(Dl,k = θ |R), θ ∈ �. (5)

For this task, we use a DNN. The network output is an
L × K × |�| tensor, where |�| is the cardinality of the set
�. Under this construction of the feature tensor and out-
put probability tensor, a pixel-to-pixel approach [23] for
mapping a 3D input “image,” R, and a 3D output “image,”
P , can be utilized. A U-net is used to compute (5) for
each TF bin. The pixel-to-pixel method is beneficial in two
ways. First, for each TF bin in our input image, the net-
work estimates the DOA distribution separately. Second,
the TF supervision is carried out with the spectrum of
the different speakers. The U-Net hence takes advantage
of the spectral structure and the continuity of the sound
sources in both the time and frequency axes. These struc-
tures contribute to the pixel-wise classification task and
prevent discontinuity in the DOA decisions over time. In
our implementation, we used a U-net architecture, similar
to the one described in [24].

The input to the network is the feature tensor R (see
(4)). In our U-net architecture, the input shape is (L,K ,P)

where K = 256 is the number of frequency bins, L = 256
is the number of frames, and P = 2M − 2 where M is the
number of microphones.
TF bins in which there is no active speech are non-

informative. Therefore, the estimation is carried out only
on speech-active TF bins. As we assume that the acquired
signals are noiseless, we define a TF-based voice activity
detector (VAD) as follows:

VAD(l, k) =
{
1 |zref(l, k)| ≥ ε

0 o.w. , (6)

where ε is a threshold value. In noisy scenarios, we can
use a robust speech presence probability (SPP) estimator
instead [25].
The DOAs should only be estimated on a time frame

basis. Hence, we aggregate over all active frequencies at
time frame l to obtain a frame-wise probability:

pl(θ) = 1
K ′

K∑

k=1
Pl,k(θ)VAD(l, k), θ ∈ � (7)

where K ′ is the number of frequency bands for which (6)
exceed the threshold at the lth time frame.We thus obtain
for each time frame a posterior distribution over all possi-
ble DOAs. If the number of speakers is known in advance,
we can choose the directions corresponding to the high-
est posterior probabilities. If an estimate of the number
of speakers is also required, it can be determined by
applying a proper threshold. We dub our algorithm time-
frequency direction-of-arrival net (TF-DOAnet). Figure 1
summarizes the TF-DOAnet network architecture. The
algorithm is summarized in Table 1.

2.3 Model training
The supervision in the training phase is based on the
WDO assumption in which each TF bin is dominated by
(at most) a single speaker. The training is based on sim-
ulated data generated by a publicly available RIR genera-
tor software1, efficiently implementing the image method
[26]. A four microphone linear array was simulated with
(8, 8, 8) cm inter-microphone distances. Similar micro-
phone inter-distances were used in the test phase. For
each training sample, the acoustic conditions were ran-
domly drawn from one of the simulated rooms of different
sizes and different reverberation levels RT60 as described
in Table 2. The microphone array was randomly placed in
the room in one out of six arbitrary positions.
For each scenario, two clean signals were randomly

drawn from the Wall Street Journal 1 (WSJ1) database
[27] and then convolved with RIRs corresponding to two

1Available online at github.com/ehabets/RIR-Generator.

https://github.com/ehabets/RIR-Generator
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Fig. 1 Block diagram of the TF-DOAnet algorithm. The dashed envelope describes the feature extraction step

different DOAs in the range� = {0, 5, . . . , 180}. The sam-
pling rate of all signals and RIRs was set to 16 KHz. The
speakers were positioned on a radius of r = 1.5 m from
the center of the microphone array. To enrich the train-
ing diversity, the radius of the speakers was perturbed by a
Gaussian noise with a variance of 0.1 m. The DOA of each
speaker was calculated w.r.t. the center of the microphone
array.
The contributions of the two sources were then summed

with a random signal to interference ratio (SIR) selected
in the range of SIR ∈ [−2, 2] to obtain the received micro-
phone signals. Next, we calculated the STFT of both the
mixture and the STFT of the separate signals with a frame-
length K = 512 and an overlap of 75% between two
successive frames.
We then constructed the audio feature tensor R as

described above. In the training phase, both the location
and a clean recording of each speaker were known; hence,
they could be used to generate the labels. For each TF bin
(l, k), the dominant speaker was determined by:

dominant speaker ← argmax
i

|si(l, k)hiref(l, k)|. (8)

The ground-truth label Dl,k is the DOA of the dominant
speaker. The training set comprised 4 h of recordings with
30,000 different scenarios of mixtures of two speakers. It
is worth noting that as the length of each speaker record-
ing was different, the utterances may also include non-
speech or single-speaker frames. The network was trained
to minimize the cross-entropy between the correct and
the estimated DOA. The cross-entropy cost function was
summed over all the images in the training set. The net-
work was implemented in Tensorflow with the ADAM

Table 1 The TF-DOAnet multi-speaker localization algorithm

• Compute the iRTF features from the multi-microphone recordings.

• Apply the U-net network to classify each TF bin to one of the possible
DOAs.

• Based on the U-net results, decide the locations of the active speakers
at each time frame.

optimizer [28]. The number of epochs was set to be 100,
and the training stopped after the validation loss increased
for 3 successive epochs. The mini-batch size was set to be
64 images.

3 Experimental study
3.1 Datasets
We evaluated the TF-DOAnet and compared its perfor-
mance to both classic and DNN-based algorithms. To
objectively evaluate the performance of the TF-DOAnet,
we first simulated two rooms that were different from the
rooms in the training set. Then, we tested our TF-DOAnet
with real RIR recordings in different rooms. Finally, a real-
life scenario with fast moving speakers was recorded and
tested. For each test scenario, we selected two speakers
from the test set of the WSJ1 database [27] and placed
them at two different angles between 0 and 180◦ relative
to the microphone array, at a distance of either 1 m or
2 m. The signals were generated by convolving the signals
with RIRs corresponding to the source positions and with
either simulated or recorded acoustic scenarios. The SIR
was tested in accordance with the DOA literature.

3.2 Performance measures
Two different measures to objectively evaluate the results
were used: the mean absolute error (MAE) and the local-
ization accuracy (Acc.). The MAE, computed between
the true and estimated DOAs for each evaluated acoustic
condition, is given by

MAE(◦) = 1
N · C

C∑

c=1
min
π∈SN

N∑

n=1
|θ cn − θ̂ cπ(n)|, (9)

where N is the number of simultaneously active speak-
ers and C is the total number of speech mixture segments
considered for evaluation for a specific acoustic condition.
The term π is the permutation and SN represents the per-
mutation possibilities. The true and estimated DOAs for
the nth speaker in the cth mixture are denoted by θ cn and
θ̂ cn, respectively.
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Table 2 Configuration of training data generation. All rooms are 2.7 m in height

Simulated training data

Room 1 Room 2 Room 3 Room 4 Room 5

Room size (6 × 6) m (5 × 4) m (10 × 6) m (8 × 3) m (8 × 5) m

RT60 0.3 s 0.2 s 0.8 s 0.4 s 0.6 s

Signal Noiseless signals from WSJ1 training database

Array position in room 6 arbitrary positions in each room

Source-array distance 1.5 m with added noise with 0.1 variance

The localization accuracy is given by

Acc.(%) = Ĉacc.
C

× 100 (10)

where Ĉacc. denotes the number of speech mixtures for
which the localization of the speakers is accurate. We con-
sidered the localization of speakers for a speech frame to
be accurate if the angular distance between the true and
the estimated DOA for all the speakers was less than or
equal to 5◦.

3.3 Compared algorithms
We compared the performance of the TF-DOAnet with
two frequently used baselinemethods, namely theMUSIC
and SRP-PHAT algorithms. In addition, we compared its
performance with the CNN multi-speaker DOA (CMS-
DOA) estimator [5]2. To facilitate the comparison, the
MUSIC pseudo-spectrum was computed for each fre-
quency subband and for each STFT time frame, with an
angular resolution of 5, over the entire DOA domain.
Then, it was averaged over all frequency subbands to
obtain a broadband pseudo-spectrum followed by averag-
ing over all the time frames L. Next, the two DOAs with
the highest values were selected as the final DOA esti-
mates. Similar post-processing was applied to the com-
puted SRP-PHAT pseudo-likelihood for each time frame.

3.4 Speaker localization results
3.4.1 Static simulated scenario
We first generated a test dataset with simulated RIRs. Two
different rooms were used, as described in Table 3. For
each scenario, two speakers (male or female) were ran-
domly drawn from the WSJ1 test database and placed
at two different DOAs within the range {0, 5, . . . , 180}
relative to the microphone array. Since the length of
each speaker recording is different, the test dataset also
includes non-speech or single-speaker frames.We assume
the minimum angle between 2 speakers to be 20◦, which,
for the radius of ≈ 1.5 m from the microphone array,
implies that the speakers are practically standing shoulder
to shoulder. Each speaker has a different signal length in

2The trained model is available here
https://github.com/Soumitro-Chakrabarty/Single-speaker-localization.

the mixture. The microphone array was similar to the one
used in the training phase. The assumption that we are
familiar with the microphone array is fairly common and
realistic. For instance, the microphone array in a confer-
ence room, in smart devices, or even in phones, is known
in advance. Using the RIR generator, we generated the RIR
for the given scenario and convolved it with the speakers’
signals.
The results for the TF-DOAnet compared with the

competing methods are depicted in Table 4. The tables
demonstrate that the deep-learning approaches outper-
form the classic approaches. The TF-DOAnet achieved
very high scores and outperforms the DNN-based CMS-
DOA algorithm in terms of bothMAE and accuracy. Note
that the results in Table 4 are reported at a frame-based
resolution, where each frame may consist one or two
speakers.

3.4.2 Static real recordings scenario
The best way to evaluate the capabilities of the TF-
DOAnet is testing it with real-life scenarios. For this pur-
pose, we first carried out experiments with real measured
RIRs from a multi-channel impulse response database
[19], recorded in our lab. The database comprises RIRs
measured in an acoustics lab for three different reverber-
ation times of RT60 = 0.160, 0.360, and 0.610 s. The lab
dimensions are 6 × 6 × 2.4 m.
The recordings were carried out with different DOA

positions in the range of [ 0◦, 180◦], in steps of 15◦. The
sources were positioned at distances of 1 m and 2 m from
the center of the microphone array. The recordings were

Table 3 Configuration of test data generation. All rooms are 3 m
in height

Simulated test data

Room 1 Room 2

Room size (5 × 7) m (9 × 4) m

RT60 0.38 s 0.7 s

Source-array distance 1.3 m 1.7 m

Signal Noiseless signals from WSJ1 test database

Array position in room 4 arbitrary positions in each room

https://github.com/Soumitro-Chakrabarty/Single-speaker-localization
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Table 4 Results for two different test rooms with simulated RIRs

Test room Room 1 Room 2

Measure MAE Acc. MAE Acc.

MUSIC [2] 27.95 28.34 31.62 18.38

SRP-PHAT [3] 28.25 27.23 36.61 36.28

CMS-DOA [5] 12.87 73.09 24.0 39.25

TF-DOAnet (our algorithm) 1.58 97.45 2.76 93.0

carried out with a linear microphone array consisting of
8 microphones with three different microphone spacings.
For our experiment, we chose the [8, 8, 8, 8, 8, 8, 8] cm
setup. In order to construct an array setup identical to the
one in the training phase, we selected a sub-array of the
four center microphones out of the total 8 microphones in
the original setup. Consequently, we used a uniform linear
array (ULA) M = 4 elements with an inter-microphone
distance of 8 cm.
The results for the TF-DOAnet compared with the

competing methods are depicted in Table 5. Again, the
TF-DOAnet outperforms all competing methods, includ-
ing the CMS-DOA algorithm. Note that the results are
reported per time frame and not per utterance, and
hence, the inferior results may be expected. Interestingly,
for the 1 m case, the best results for the TF-DOAnet
were obtained for the highest reverberation level, namely
RT60 = 610 ms, and for the 2 m case, for RT60 =
360 ms. While surprising at the first glance, this can
be explained using the following arguments. There is
an accumulated evidence that reverberation, if properly
addressed, can be beneficial in speech processing, specif-
ically for multi-microphone speech enhancement and
source extraction [20, 29, 30] and for speaker localiza-
tion [31, 32]. In reverberant environments, the intricate
acoustic propagation pattern constitutes a specific “finger-
print” characterizing the location of the speaker(s). When
reverberation level increases, this fingerprint becomes
more pronounced and is actually more informative than
its an-echoic counterpart. An inference methodology that
is capable of extracting the essential driving parameters

of the RIR will therefore improve when the reverbera-
tion is higher. If the acoustic propagation becomes even
more complex, as is the case of high reverberation and
a remote speaker, a slight performance degradation may
occur, but as evident from the localization results, for
sources located 2 m from the array, the performance for
RT60 = 610 ms is still better than the performance for
RT60 = 160 ms.
It is worth noting that the test samples were not part

of the training phase. The network was not fine-tuned for
these test conditions. Yet, since we trained the network
with the same RIR generator (with different conditions),
it is likely that the results on the simulated test set will
be high. The RIR generator cannot capture the accurate
sound propagation in real acoustic environments. There-
fore, with real recordings, the network performance is
likely to be inferior.

3.4.3 Real-life dynamic scenario
To further assess the capabilities of the TF-DOAnet, we
also carried out experiments in real dynamic scenarios.
The recordings took place at the acoustic lab, Bar-Ilan
University, for which the reverberation level can be set
in a wide range. We examined two reverberation lev-
els, namely RT60 = 390 ms and RT60 = 720 ms. The
microphone array consisted of 4 microphones with an
inter-microphone spacing of 8 cm. The speakers walked
naturally on an arc at a distance of about 2.2 m from the
center of the microphone array. For each RT60, two exper-
iments were recorded. The two speakers started at the
angles 20◦ and 160◦ and walked until they reached 70◦
and 100◦, respectively, turned back and walked to their
starting point. This was done several times throughout the
recording. The input SIR values of the first and second
speakers are SIR = −0.12, 0.12 dB, respectively; hence,
both speakers have almost identical power. In the first
room setup (RT60 = 390ms), the speed of the twomoving
speakers was 0.34 and 0.35 m/s, respectively. For the sec-
ond setup (RT60 = 720 ms), the speakers’ speed was 0.28
and 0.31 m/s, respectively. Figure 2a depicts the real-life
experiment setup and Fig. 2b depicts a schematic diagram
of the setup of this experiment. The ground truth labels

Table 5 Results for three different rooms at distances of 1 m and 2 m with measured RIRs

Distance 1 m 2m

RT60 0.160 s 0.360 s 0.610 s 0.160 s 0.360 s 0.610 s

Measure MAE Acc. MAE Acc. MAE Acc. MAE Acc. MAE Acc. MAE Acc.

MUSIC 18.7 57.6 19.2 53.2 21.9 42.9 18.4 54.1 26.1 35.8 25.4 32.2

SRP-PHAT 9.0 39.0 13.9 39.4 18.6 29.9 9.7 36.0 16.5 24.7 27.7 21.3

CMS-DOA 1.6 76.3 7.3 75.2 8.4 71.9 5.1 79.5 9.7 60.1 17.5 40.0

TF-DOAnet 1.3 97.5 3.5 83.5 0.9 98.3 5.0 89.5 1.7 95.7 4.8 84.2
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Fig. 2 Real-life experiment setup

Fig. 3 Real-life recording of two moving speakers in a 6 × 6 × 2.4 room with RT60 = 390 ms

Fig. 4 Real-life recording of two moving speakers in a 6 × 6 × 2.4 room with RT60 = 720 ms
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of this experiment were measured with the Marvelmind
indoor 3D tracking set3.
Figures 3 and 4 depict the results of the two experi-

ments. It is clear that the TF-DOAnet outperformed the
CMS-DOA algorithm, especially for the high RT60 con-
ditions. Whereas the CMS-DOA fluctuated rapidly, the
TF-DOAnet output trajectory was smooth and noiseless.
Table 6 depicts the computational cost of the proposed

algorithm in comparison to the CMS-DOA algorithm.
It is evident that the number of parameters used by
the network of the proposed model is less than half of
the respective number of parameters of the CMS-DOA
model. Moreover, the processing time of the proposed
method is also slightly shorter. Note that the processing
of 1-s-long utterance takes 70 ms on NVIDIA DGX V100
(single GPU) machine.

3.5 Blind source separation of dynamical speakers
Wenext evaluate the applicability of the proposedmethod
to the challenging task of speaker separation. Single
microphone approaches, as they only utilize spectral
information, have the potential of being robust to the
source movement. However, their performance is rapidly
deteriorating in reverberant environments [33]. Multi-
channel speaker separation algorithms can remarkably
separate overlapping speakers in static scenarios [34]. In
dynamic scenarios, the acoustic propagation from the
sources to the microphones are rapidly changing over
time. Tracking these acoustic paths is a cumbersome task,
and failing to do so may result in significant performance
degradation.
We propose here a new blind source separation

approach, which can be implemented as a byproduct of
the proposed tracking scheme. First, the estimated num-
ber of speakers, N, is inferred by selecting directions θ

for which pl(θ) > 0.15 (see Eq. 7). For each speaker, the
tracking path, θ̂ i(l), is found as explained in the previous
section. TF masks, M̄i(l, k), i = 1, . . . ,N are obtained for
each tracking path, as explained below.
We first aggregate probabilities from adjacent DOAs:

Mi(l, k) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pl,k
(
θ̂ i(l)

)
+ Pl,k

(
θ̂ i(l) + 5◦

)
θ̂ i(l) = 0◦

Pl,k
(
θ̂ i(l) − 5◦

)
+ Pl,k

(
θ̂ i(l)

)

+Pl,k
(
θ̂ i(l) + 5◦

)
0◦ < θ̂ i(l) < 180◦

Pl,k
(
θ̂ i(l) − 5◦

)
+ Pl,k

(
θ̂ i(l)

)
θ̂ i(l) = 180◦

.

(11)

Then, we apply a threshold to this mask to mitigate the
musical noise phenomenon:

M̄i(l, k) =
{
Mi(l, k) Mi(l, k) ≥ 0.05
0.05 Mi(l, k) < 0.05 . (12)

3https://marvelmind.com/product/starter-set-ia-02-3d/

Table 6 Computational cost comparison

# of parameters
[million]

Average inference time
of 1-s signal [seconds]

CMS-DOA 8.7 0.09

TF-DOAnet 2.1 0.07

To circumvent source permutation issues, we maintain
track smoothness by associating DOA estimates with a
specific source, only if the current estimate is within 10◦
of the estimate at the previous frame. Other, more sophis-
ticated, tracking schemes can be applied, but the heuristic
approach proposed here provided satisfactory results for
the examined scenarios. More involved scenarios, such
as intersecting trajectories that necessitate sophisticated
tracking schemes, e.g., Bayesian methods [35, 36], are left
for a future study.
Once the TF masks are obtained, the separation is

implemented by applying the masks to zref, the mixed
signal in the reference microphone.

ŝi(l, k) = zref(l, k) · M̄i(l, k). (13)

Figure 5 depicts the mixed signal, described at the pre-
vious section, the estimated TF masks and the separated
signals. To estimate the masks, we used the tracking
path from Fig. 3c. The separation capabilities are clearly
demonstrated from these figures. After the application of
the proposed algorithm, the output SIR values of the first
and second speakers are, respectively, SIR = 6.08 dB and
SIR = 7.51 dB, i.e., approximately 7 dB improvement.
It is worth noting that separating overlapping dynamic
speakers in a highly reverberant room is a challenging
task and the obtained results are promising. The reader is
also referred to the corresponding audio samples in our
website4.
A note on the validity of the WDO assumption [22]

is in place. This widely used assumption underlies many
blind audio separation algorithms that apply binary mask-
ing. Strictly speaking, this assumption may not hold in
reverberant environments for multiple time-frequency
bins, due to the “smearing” effect of the reverberation
phenomenon. While this may only marginally degrade
localization performance in static environments, it can
significantly deteriorate speaker separation capabilities,
especially in dynamic scenarios. In our experiments,
we have shown that even a naïve application of time-
frequency masking (see Eq. (12)) can yield satisfactory
separation performance. Other, more sophisticated sepa-
ration schemes that utilize these masks may be applied.
Such schemes are left for a future study.

4www.eng.biu.ac.il/gannot/speech-enhancement/

https://marvelmind.com/product/starter-set-ia-02-3d/
www.eng.biu.ac.il/gannot/speech-enhancement/


Hammer et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2021) 2021:16 Page 9 of 10

Fig. 5 Real-life separation results of two moving speakers in a 6 × 6 × 2.4 room with RT60 = 390 ms

4 Conclusions
A joint time-frequency approach was presented in this
paper for the DOA estimation task. Instantaneous RTF
features were used to train the model. The high TF resolu-
tion facilitated the simultaneous tracking ofmultiplemov-
ing speakers. A comprehensive experimental study was
carried out with both simulated and real-life recordings.
The proposed approach outperformed both the classic
and CNN-based SOTA algorithms in all experiments. As
a byproduct of the DOA tracking algorithm, we also pre-
sented a separation scheme, based on TF masking, which
can be applied to moving speakers in a reverberant envi-
ronment. We believe that the proposed method can be
also applicable for localization audio signals other than
speech [37].
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