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Abstract

Selecting an optimal importance density and ensuring optimal particle weights are central challenges in particle-based
filtering. In this paper, we provide a two-step procedure to learn importance densities for particle-based filtering. The
first stage importance density is constructed based on ensemble Kalman filter kernels. This is followed by learning a
second stage importance density via weighted likelihood criteria. The importance density is learned by fitting Gaussian
mixture models to a set of particles and weights. The weighted likelihood learning criteria ensure that the second stage

Expectation-maximization (EM) algorithm

importance density is closer to the true filtered density, thereby improving the particle filtering procedure. Particle
weights recalculated based on the latter density are shown to mitigate particle weight degeneracy as the filtering
procedure propagates in time. We illustrate the proposed methodology on 2D and 3D nonlinear dynamical systems.
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1 Introduction

For the most general forms of dynamical systems involv-
ing non-linear and non-Gaussian components, particle
filters (PFs) constitute a class of methods that are able to
infer the underlying filtered densities without restrictive
assumptions. PFs consist of a collection of particles and
weights that are updated and then propagated sequen-
tially over time via Bayes rule. The weight and particle
pairs at each time approximate the true filtered distribu-
tion in the Monte Carlo sense [36, 37]. Sequential particle
filtering, thus, provides a convenient non-parametric way
to approximate successive filtered distributions [34]. The
nonparametric nature of PFs enables it to be applied to
all state space models (linear as well as nonlinear) where
the errors arise from general (i.e., non-Gaussian) distribu-
tions as well as in hierarchical models; see, for example,
[7]. The exact solution using PF requires an infinite num-
ber of samples, so in practice, a large number of particles
are generated. The particles are then propagated using
recursive forward filtering based on procedures such
as sequential importance sampling (SIS) and resampling
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(SIR); see [2]. More recently, [22] reviewed resampling
methods for PFs and discussed their implementation.

Other recursive forward filtering procedures, variants
of the basic SIS and SIR, have also been reported in the
literature. These include the auxiliary PFs (APFs), regular-
ized PFs, the “likelihood” PF, etc; see [2] for details. These
filtering procedures choose a variety of importance (i.e.,
proposal) densities that should ideally capture the overall
form of the target density, i.e., the filtered density. Since in
many situations the filtered density is not available in the
closed and tractable form, choosing the importance den-
sity is not so straightforward. In [2], the authors highlight
this problem, and at the same time, emphasize the impor-
tance of choosing the correct importance density to avoid
particle and weight degeneracy.

Kalman-type filters and its extensions (ie., the
unscented KF (UKF), extended KF (EKF), and ensemble
KF (EnKF)) use linearization techniques to arrive at fil-
tering equations for nonlinear systems. When combined
with particle-based methods, KF-type particle filtering
can give rise to effective filtering methods in the presence
of nonlinearity and non-Gaussianity. Used in combina-
tion with PFs, these methods construct a multitude of
intermediate importance densities, via linearization, to
generate particles and weights. A special case of such
methods, the unscented particle filter (UPF), is discussed
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in [27] for predicting the life of lithium ion batteries based
on a localized UKEF filter. Zuo et al. [47] propose a KF-type
particle filtering framework in which the UKF is used dur-
ing the importance sampling step. A truncated version of
the UPF has been proposed by Straka et al. [40] when the
distribution of measurement noise has bounded support.

Another combination involving PFs and KF-type fil-
ters is the Ensemble Kalman Particle Filters (EnKPF).
The EnKPF incorporates EnKF methodology into the PF
framework by combining the advantages of both and con-
trolling the extent of the contribution of each method via
a tuning parameter [12]. Localized versions of the EnKPF,
localized within a grid set or using only nearby obser-
vations, for data assimilation is developed and discussed
in [28, 35] for meteorological applications. An improved
PF is proposed by [6] where the EnKF kernel is used to
generate a multitude of importance densities at the cur-
rent step for each particle obtained from the previous
step. In [6], MCMC-based resampling is also performed
to avoid particle impoverishment. A development of a
weighted ensemble transformed Kalman filter for the non-
linear image reconstruction is proposed in [5]. Proposal
densities based on the EnKF filter in which the distribu-
tion is based on a sequence of previous measurements
is discussed in [31]. A progressively corrected regular-
ized particle filter is proposed in [30] to improve the
nonparametric signal estimation. A recursive estimation
scheme for a non-linear dynamical system is proposed
in [15] where state estimation is performed based on the
progressive processing. A brief survey highlighting the
research gaps in state space estimation domain, giving
specific attention to non-linear systems with informative
observations, is reported in [25] where a modeling free
solution is proposed and referred to as observation only
(Oy) inference. In O inference, the state estimates are
directly calculated from observations [23].

The challenge of selecting an optimal importance den-
sity is closely related to the problem of weight degeneracy
or particle impoverishment of the PF. Sub-optimal choices
of the importance density, which deviate too far away
from the targeted filtered density, give rise to importance
weights that are severely skewed. Several methods are
proposed in the literature to deal with weight degener-
acy and particle impoverishment. In [13], an improve-
ment of estimation accuracy is reported with the use of
a smaller number of particles while maintaining particle
diversity. An equivalent weights particle filter is proposed
in [1] where the proposed importance density ensures that
the particles end up in high probability region of pos-
terior. In [41], particle impoverishment and sample size
dependency problems are reported, and a particle swarm
optimization procedure is proposed in the context of a
genetic particle filter. An improved particle filter (IPF) is
proposed for GPS/INS navigation system in which biases
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are estimated in the first stage and then corrected for the
predicted particles [43]. After this bias correction, recal-
culation of particle weights and resampling of particles
are carried out. Another IPF was proposed in [46] based
on a two-step procedure: In the first step, a standard
importance density was used to simulate particles and
to calculate the importance weights. In the second stage,
weight optimization was performed by a pre-specified
weight scaling factor, after which the particles generated
in the first stage were resampled according to these new
weights.

In this paper, we propose a two-step particle filtering
procedure that mitigates weight degeneration. In the first
step, we adopt localization to construct an importance
density based on the Ensemble Kalman Filter (EnKF). This
EnKeF is similar to the procedure outlined in [6] but not
identical to it. The second stage importance density is
learned from the first stage particle and weight pairs via
weighted likelihood criteria. The two-step procedure is
similar to the two-step procedures of [43, 46] in that an
initial pre-specified importance density is used to gener-
ate particles and weights. However, this paper is different
from [43, 46] in terms of the adjustments that we per-
form to improve the first stage procedure. Instead of
re-calibrating as in [43] or re-scaling weights as in [46], we
recompute weights based on a learned importance den-
sity. We present justification so as to why the second stage
weights mitigate particle impoverishment: The second
stage weights are shown to be more uniformly distributed
as a result of the learned importance density being close
to the true but unknown filtered density, which is the tar-
get of our estimation based on the weighted likelihood
criteria.

The second stage proposal density is learned from
the class of Gaussian mixture models (GMMs). An
expectation-maximization (EM) algorithm is developed
for estimating the number of mixture components as well
as GMM parameters. Note that learning importance den-
sities based on GMM s and likelihoods have been reported
in the literature as in [33]. However, the GMM model in
[33] is fit to resample of particles, and thus, is subject to
the variability of resampling. In our case, the weighted
likelihood criteria do not depend on any resampling of
particles from the set of particles and weights.

The remainder of the paper is organized as follows.
Section 3.1 gives the preliminaries of particle-based
filtering, while Section 3.2 presents the preliminaries
of Gaussian mixture models (GMM) and the stan-
dard expectation-maximization (EM) algorithm for fit-
ting GMMs to observed data. Section 4 presents the
two-step particle filtering (TS) procedure. The first step
develops the EnKF methodology in Section 4.1 for con-
structing an importance density. The second step where
GMMs are learned via weighted likelihoods is presented
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in Section 4.2. The proposed EM algorithm is adopted
to weighted, rather than un-weighted (or standard), like-
lihoods. To validate the TS procedure, three methods are
presented: the root mean square error (RMSE), the high-
est posterior density (HPD), and the effective sample size
criteria in Section 5. Section 6 presents two examples (2D
and 3D), simulated under various noise levels of the state
space and observation models, to investigate the robust-
ness of the proposed filtering procedure. Conclusions and
future work are presented in Section 8.

2 Methods

The aim of our study is to select an optimal importance
density in particle-based filtering. The importance den-
sity is learned by fitting Gaussian mixture models based
on the maximum weighted likelihood criteria. It is shown
that the resulting two-step (TS) procedure is less prone
to degeneration of particles and weights. For comparing
our proposed TS procedure with several other filter-
ing procedures in the literature, we conduct simulation
experiments based on dynamical systems that have been
reported in the literature. Based on observations obtained
from the simulation experiments, we carry out filtering
steps for the selected procedures and compare their per-
formances using several criteria such as root mean square
error (RMSE), the extent of coverage by highest posterior
density (HPD) sets, and values of effective sample size.
All relevant statistical methodologies, such as maximum
likelihood estimation, Gaussian mixture models, Bayesian
HPD sets and others, as well as comparison criteria used,
such as RMSE, HPD sets, and effective sample size, have
been clearly described in the subsequent sections. Our
study involves simulation codes developed using licensed
MATLAB software; no human subjects were involved.

3 Preliminaries

State space modeling gives a unified framework for elic-
iting temporal dynamics of both linear and non-linear
systems. State space modeling consists of two stages: (i) a
model that describes underlying temporal system dynam-
ics, called the state space model, and (ii) the measure-
ment state model which relates the observations to the
state space variables via noise factors. The discrete time
stochastic system representing (i) and (ii), respectively, is
given by

X = ®y(xy-1) +uy, and (1)
Yn = Wu(xy) + Vi, (2)
forn = 1,2,---, T, with T denoting the final time index

and xp denoting the initial state vector. In (1) and (2),
uy and vy, respectively, are the state and measurement
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noise random variables assumed to have known distribu-
tions f,, and g, respectively. We denote the state space and
measurement model noise by

éy, =var(f,) and R, = var(gy), (3)

respectively, keeping in mind that Q,, and R, will be matri-
ces (i.e., variance-covariance matrices) in the multivariate
setting. The functions ®, and W, represent known non-
linear functions of the state space and measurement mod-
els, respectively. Given the observations y1, y2,-- -, 7,
the aim is to estimate the underlying state vectors
X0» X1y XT

We introduce some notations for the subsequent pre-
sentation. The notations #1 : 15 and Ay, .n, TEpresent vectors
of indices (n1,n1+1,- -, n2) and (ay, a4, - -an,) for any
attribute a, respectively. The underlying state and obser-
vation vectors at time »n are denoted by x,, € R" and
yn € R, respectively, where r and s represent the dimen-
sions of the corresponding spaces. We also do not, at
present, consider any unknown parameters in the model
of (1) and (2); all quantities are assumed known except for
the underlying state vectors xo.7. The goal, therefore, is
to obtain the filtered density of x,, at each # based on all
observations y1.,. A Bayesian approach provides a conve-
nient framework for finding all filtered (target) densities
[2]. In the Bayesian framework, the initial state space vec-
tor xp is assumed to follow a known prior density, po. In
subsequent text, we use the notation p(a | b), for random
vectors a and b, to denote the conditional density of a
given b.

3.1 Particle filters (PF)

Recursive sequential updating via Bayes rule [36, 37] is

the best way to obtain all filtered densities successively.

Assuming that the filtered density p(x,—1 | y1..—1) at step

n — 1 is available, the n-th step filtered density is given by
o POn | )P0 | Y1:0-1)

n mn) = 4
p(x |y1 ) p(ynlylzn—l) ()

where

p&n | y1n-1) = /R P& | Xn—1)PpEn—1 | Y1:0—1)d%n—1
(5)

is the predictive distribution for x,, given y;.,—1. Closed-
form expressions of the filtered densities in (4) typically
cannot be obtained for non-linear state space models, as
is well-known and numerical techniques and approxima-
tions are, therefore, needed.

Recursive sequential particle filtering provides a con-
venient non-parametric way to approximate successive
filtered densities [34]. A set of particles and corresponding
weights, {xﬁq, W,‘, }?il, forn = 1,2,---, T are propagated
over time so that at every step #, the filtered density
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Py, | ¥1.0) is represented in the Monte Carlo sense [14] for
large M as

M
PG 1) = 3 Wi 8y (o, (6)
i=1
where §,(x) is the Dirac function that takes values 1 and
0 according to whether x = u or otherwise. The nor-
malized weights W) = wi/ Zf\i | W, are obtained from
the (unnormalized) weights w, which satisfy the recursive
relation

JACAEAVICAE)
q (xt, 1%, 1, y10)

i
Wyp =Wy

, 7)

with g(x, | xfk 1» ¥1:n) being the n-th step importance den-
sity. Thus, xln ~ q(qu |x;_1,y1:n) fori = 1,2,---,M
are the M samples generated from it given the previously
available particles xilil. The Recursive filtering performed
using this sequential importance sampling (SIS) frame-
work is described in Table 1.

PFs based on SIS suffer from weight degeneration. As n
becomes large, PFs puts more weight on fewer and fewer
particles, and finally, to just a singleton particle [4, 39].
As a result, PF estimates of filtering densities p(xy, | y1.,)
become increasingly unreliable as only a few particles
become relevant. The source of the problem lies in the
choice of the importance density g which cannot always
be ideally taken to be the true filtered density (which is
unknown). PF literature addressing weight degeneration
discusses and develops different choices of the importance
density q(xy | X,—1, y1.n)- Some of the notable works have
been discussed in the “Introduction” section whereas oth-
ers include [1, 8, 17, 21]. Many of the earlier proposed
methods do not give satisfactory results whenever g devi-
ates significantly from the ideal choice. Resampling has
also been suggested as a partial solution to the weight
degeneration problem. After obtaining the ensemble of
particles and weights according to SIS, {x, W:i}?il, the
sequential importance resampling (SIR) filter will resam-
ple particle x*/ with probability W;’. The output of an SIR
filter is the resampled particles with equal weights given

Table 1 Particle filtering using SIS

[Gwi}L ] = 515 [bswos VL ]
— Initialize xj ~ po and w)) = 1/Mfori=1,2,--- M.
-DOforn=1,2,---,T:

- Drawx), ~q (Xn | X_y, yin), fori=1,2,-+- M.

- Calculate importance weights as

i POnbn) PO 1)
[T A
- Normalize: W, = wj, / M wi,

M

i=1

i
W, =W,

Propagate : {x], w},}
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by {xi,1/M}M .. Table 2 gives the SIR procedure. For the
SIR, it may happen that low weights at current step n actu-
ally correspond to high weights in step # + 1 in which
case the resampling step loses important information and
again causes weight degeneration [18]. Since most of the
time high weights are statistically picked, resampling also
leads to the loss of heterogeneity of the particles [34].

3.2 Gaussian mixture models (GMMs)

In this section, we present the class of Gaussian mix-
ture densities and associated algorithms of sampling and
learning (i.e., estimation of its parameters) which will be
needed for the development of our two-step PF proce-
dure. Gaussian mixture densities are a semi-parametric
class of pdfs which can adequately represent any density
by choosing a sufficiently large number of mixture com-
ponents. The class of d-variate Gaussian mixture models
(GMMs) is given by

G
Fe;0) = e (x5 1g o) (8)

g=1

where G is the number of mixture components, 7,, g =
1,2,---,G are non-negative mixture weights summing
to 1, and ¢, is the pdf of a d-variate normal with
mean [ig and covariance matrix PIFR respectively. The
parameter (G;0) = (G 7, g = 1,2,---,G; g, g =
1,2,---,G; %y, g = 1,2,---,G) represents all quantities
that define the pdf of a GMM. Sampling from a GMM
with known parameters (G;6) can be easily carried out.
To sample M realizations from (8), first sample the label

of the mixture component L' € {1,2,--,G) with proba-
bilities w1, 9, - - - , wg, respectively, independently for i =
1,2,---,M. Then, conditional on L! = g, sample &’ from

the conditional Gaussian density ¢, (x [ g, Eg), that is,

p (1L =g 0) = ¢a (x5 11, ). 9)

In (9), we also make explicit the dependence of the con-
ditional density (and, in fact, all subsequent densities) on
6. The joint density of the pair (x,L’) is

Table 2 Particle filtering using SIR

[ 1L ] = SR [f 1/
—Initialize x; ~ po and wy = 1/Mfori=1,2,--- , M.
-DOforn=1,2,---,T:

= Drawx ~ gl | X_y,yrn), fori=1,2,--+ M.

- Calculate importance weights as
i _ PObR)PlG )
Wﬂ - I [yl
a(xh Xy yin)
- Normalize: W¥ = w¥ /M wii
i\M «i\M i i i \M
- Resample {x,}._, from {xx}.Z with weights { Wx' }'_,

- Propagate: {x, 1//\4}1411
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)4 (xi,Li; 0) = i da (xi; Wis 2ri) (10)

whereas the marginal distribution of &, by summing over
different realizations of L’ in {1,2, - - - , G} according to the
probabilities 1, o, - - - , g, is precisely the GMM given
in (8).

We assume that the number of components G is fixed
and known for the subsequent discussion. When 6 is
unknown, a standard procedure for learning (i.e., esti-
mating) 6 based on M independent observations X i =
1,2,- -+, M from (8) is the expectation maximization (EM)
algorithm [26]. We briefly describe the EM procedure as
in [26] since the notations will be used to develop our EM
algorithm for weighted likelihoods. The goal is to estimate
6 by maximizing the (regular) likelihood

M
L) = Hf(x‘; 0) (11)
i=1
as a function of 6. This estimate of 0, known as the
maximum likelihood estimate (MLE), is defined as

M
6= argmeax L) = argm@ax (Ef (x’;@)) . (12)

The EM algorithm is an iterative procedure that indi-
rectly maximizes the likelihood of 6 in (12) by incorpo-
rating auxiliary variables as missing observations (see [26]
for details). The class label L is incorporated as the auxil-
iary variable for each observation &%, i = 1,2, - - - , M, with
the conditional distribution of L given x’ having the form

p(xi, L 0) _ T b4 (xi; Wi, EU)

It i;@ = , ,
PRS0 =200 fd; 0)

(13)

based on (10).

The EM algorithm for finding éMLE starts with an initial
guess of 6, say 6O At the k-th iteration, assume that &
has been obtained. At the (k 4 1)-st step, the next iterate
H*+D is found as

o+l = argmax Q (9<k>,9*) (14)
where Q(,6%) = Y, E[logp (x,L'; 6*)] and the
expectation E is taken under the conditional probability
distribution of L? given &’ and @ in (13). The sequence of
iterates of the likelihood Hf\il ACE G(k)) fork=1,2,---
can be shown to be non-decreasing and, thus, converges
to a local maxima of the likelihood function in (12). Thus,
starting from a initial value that is close enough to § guar-
antees that 6 converges to the MLE § as k — oc.
Properties of the standard EM algorithm and its applica-
tion to GMMs are well known and we refer the interested
reader to [26] for more details.
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To select an appropriate value for G, Bayes information
criteria (BIC) is used where

M

BIC = —2log (Hf(xi; éMLE)) + plog(M), (15)
i=1

where p = (G—1)+d G+ Gd (d+1)/2 is the number of
parameters for a GMM with G mixture components. Typ-
ically, a maximum pre-specified number, Gy, is selected
for the estimated number of mixture components, and the
G value corresponding to the maximum BIC value in the
range of 1 < G < @Gy is selected as the estimated number
of mixture components for the GMM.

4 Atwo-step (TS) procedure for particle filtering
We describe the proposed procedure for PF that reduces
weight degeneration of particles in this section. This pro-
cedure is a recursive procedure. At the end of the (n—1)-th
recursion, we assume that M particles, class labels (asso-
ciated with GMMs which will be made clear later on), and
weights, denoted by { xi,_l, L;_l , w;_l }?il, are available.
At the n-th stage, the procedure consists of two main
steps: The first step involves constructing the importance
density (¥ | %n—1, Y1) = q (x!,|x),_,, y1.4) for each i.
This proposal density is selected based on the EnKF ker-
nel separately for each i, similar to [6]; see also [10, 19] and
[16]. Second, we learn the filtered density at each time step
n, p(x, | y1.1) by fitting GMMs to a collection of samples
and weights based on weighted likelihood criteria. The
two-step procedure is outlined below and in Table 3.

— Initialize xf) ~ po and wf) =1/Mfori=1,2,--- ,M.
- DOforn=1,2,---,T:
— DO for each particle , i = 1,2, -- , M:
— STEP 1: Construct the EnKF importance density:
1. [fc;, IA’;] = EnKF[xil_l, L;_l, y,,]; see Section 4.1.
2. Sample: Draw x% ~ ¢y (x |3, f’j,) as in (18).

3. Calculate weights

p Onlxy) p (310,
a (w13, Pi)

— STEP 2: Learn p(xy, | y1.1):

(16)

n n—1

1. Find its estimate, fn (%), based on fitting GMMs
using data { 3, wﬁi}?il from STEP 1; see
Section 4.2.

2. Sample: Draw (x/n, L/n) an(x)

3. Compute weights
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Table 3 Two-step particle filtering (TS) algorithm
—— . : —
[ B [T A
—Initialize x, ~ po and wj = 1/Mfori=1,2,--- ,M.
-DOforn=1,2,---,T:

-DO for each particle i, i=1,2,--- ,M:
— STEP 1: Construct the EnKF importance sampling density and sample
- from it:

1. Construct: [}, P11 =EnKF[x_,, LI, yn]-

2.Sample: Draw x ~ ¢y (X |X, lA”n) asin (18).

3. Calculate weights wjy = w),_, %.
— STEP 2: Learn p(xp | y1:n):

1. Find its estimate, £, (x), based on GMMs and data { x¥/, w¥ }
- from STEP 1.

2. Sample: Draw (><{7, Lfg) ~ ?n(x)

3. Compute weights

M
i=1

Wiy p(vn 1) (a1,

N
- Propagate: {Xln, Lo, wh }/:1

1 W\ p (}’n IxJQ) p (x’; Ifo)
M i=1 J}n (x’,,)

(17)

L M
— Propagate: {x/n, L, Vl/n}. .
]:
The two steps involved are explained in greater detail in
the following subsections.

4.1 Importance density based on EnKF kernel
In STEP 1, the choice of the importance density is devel-
oped by considering the Ensemble Kalman Filter (EnKF)
[10, 16, 19] kernel. The key idea is to use the previous par-
ticle xLl at the (n — 1)-th step to construct a separate
proposal distribution for each i = 1,2, - - - , M. In this way,
regions close to xil_l can be explored leading to a choice
of a localized importance sampling density that is ideal.
Fix i and recall that the particle and class label pair is
xihl and Lihl = g, say. The EnKF methodology entails
the following subsequent steps:

N

— Sample N ensemble points {xfkl }b from

o (x; xiz_l, f]g), the Gaussian density with mean

l

x.,_; and covariance matrix Xg.

— Obtain N realizations of Xf‘n% =, (Xfl’_1> + uﬁ,

forb=1,2,---,N, where uﬁ are samples from the
distribution of errors for the state space model in (1).
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— Obtain the mean and covariance matrix as

1 N
~j b o~
xnlnfl - N z : Xn\nfl’ = X say, and
b=1

1 T
o b =\ (b -
= Eg + ﬁ Z <Xn|n71 _x) (annfl - x) .
b=1

— Based on the measurement model (2), obtain the
mean and covariance matrices for the observation
process given by

pi

i
nln—1

N

o 1 ; -

V1 = N 2 Wn (Xffn—l)zysa}” and
b=1

A wo i AT
Py = NZ (‘p”(Xn\nfl)_JO (an (Xn|n71>_y)

and the covariance between the state and observation
processes given by

i 1 & bi . bi A\
Py = 5 2 (s = %) (9 () - 3)

— Apply the Kalman updating formulas
D, = Ry +P,
; i i1
Ky, = P, [D;,]

s Al i Ai
xnln - xn\nfl +1<n ( n _yn\nfl) ,and

i __ pi
nn — *nn—1

- K:DK!
where Ry, is the measurement noise variance and K},
represents the EnKF Kalman gain matrix.

— Define

A

i and P

54’1 = xn\n’ it = Pﬁq\n’
and set the EnKF importance sampling density,
qenkr (%1 %L_1, Y1), as

Qe %y yi) = $a (%1 2, Ph), (18)

the Gaussian density with mean &}, and covariance P.,.

We denote the procedure in STEP 1 as LLPFg, xr, which
can be seen to be a locally linearized PF (LLPF) based on
the EnKF.

At the end of STEP 1, the resulting samples and weights

{3, wff}?il (see Table 3) is an approximation to the fil-
tered density at time step 7, p(x, | ¥1.4), in the Monte Carlo
sense of (6) for large M since we utilized the general SIS

framework.

4.2 Learning GMMs via weighted likelihoods
We now describe STEP 2 of our two-step procedure out-
lined in Table 3. STEP 2 consist of learning a GMM from
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the M particles and weights { x5, w} }f\il obtained at the
end of STEP 1. The M particle and weight pairs consists
the “data” for a likelihood function from which we will
estimate the parameters 6 and G for the GMM defined in

(8). This likelihood function is defined as

M .
L@ =[] f@50)" (19)

i=1
where f(x;60) is the GMM defined in (8). Note that the
above likelihood is a weighted version of the ordinary
likelihood in (11) where each of the M terms in the
weighted likelihood, f (x;";e), is weighted by the corre-
sponding weight term, w}, fori = 1,2,--- , M. In view of
the more general weighted likelihood formula in (19), the
ordinary likelihood in (11) is a special case of (19) where
the weights w’! are constant. The weighted maximum
likelihood estimator of 8, 6,,, is defined as

M ,
~ . W::l
O = argmax L,(©0) = argmax (r!f (x350) )
i=

(20)

and is obtained using an EM algorithm developed for the
weighted likelihood; details are given in the Additional
file 1: Section 2. To select an appropriate value for the
number of mixture components, G, we use the BIC cri-
teria as before as in (15) where now the likelihood L(6)
is replaced by the weighted likelihood L,,(9) and the BIC

is defined as BIC = —2logL,, (éw) + plog(M), where
p=(G-1)+dG+ Gd(d + 1)/2 is the number of

parameters for a GMM with G mixture components. We
define

fn(xn) Ef (xn§ éw)
in STEP 2 of Table 3.

Remark 1 The GMM class is a semi-parametric class
that is flexible enough to approximate arbitrary densities
by selecting a sufficiently large number of mixture com-
ponents, G. The GMM class is used in our procedure to
approximate the true filtered density at each time step n,
n=12,---,T, based on the weighted likelihood criteria.
Additional file 1: Section 2.2 in the Appendix gives insight
into how this is achieved. The relevance of the closeness of
the GMM approximation to reduction in weight degener-
acy of the TS procedure is also explained in detail in the
Additional file 1: Section 2.2 of the Appendix.

Remark 2 Additional file 1: Section 2.3, we illustrate TS
procedure in the case of Kalman filtering (i.e., linear sys-
tems with Gaussian noise). We show explicitly that even
if the STEP 1 importance density is chosen sub-optimally,
the weighted likelihood criteria in STEP 2 corrects and
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improves this sub-optimal choice and leads to a fitted
GMM density that is close to the true filtered density. We
demonstrate the utility of the BIC criteria which acts as
a penalty term that penalizes spurious fits based on extra
mixture components when they are unnecessary.

5 Monitoring weight degeneracy via RMSE, HPD
sets, and N

For a filtering procedure such as SIR, LLPFg,xr, and TS,

we evaluate its performance using the root mean square

error (RMSE) criteria. The RMSE criteria for any estima-

tor §(y1.,) of x,, is defined as

RMSE = % > [5 () — ]2, (21)

i=1

based on N simulation experiments that generate the
underlying state space variables xézT, and observations
¥, are given x;, p, for i = 1,2,---,N, from (1) and (2),
respectively. Note that the above RMSE is defined for
every time step n = 1,2,-- -, T for which a filtered distri-
bution can be obtained based on the SIR, LLPFg,xr, and
TS procedures. The estimator §(y;.,) will be taken to be
the posterior mean of the filtered distributions p(x, | y1.1)
for estimating the state space variable x,,. For a filtering
procedure, let the filtered distribution at the #-th step be
represented by the set of M particles xi,, i=12,---,M
and weights w!, i = 1,2,---, M. The posterior mean of
the filtered distribution is calculated as

M i
2ui=1 Wn¥n

M .
D it Wi

based on the M particles and weights and is taken to be
the estimator of the state space variable x,. Thus, differ-
ent filtering procedures will give rise to different estimates
of xy,.

We also consider another estimator in our experiments,
namely, the observation-only (O3) estimator reported in
[23]. The Oy estimator depends only on the measure-
ment model (2) and is typically the maximum likelihood
estimator.

Weight degeneracy or particle depletion over time is a
common and well-known problem for PFs and any filter-
ing procedure. In the ideal case, the importance density,
q(xn | %1—1,¥1:1), should be identical to the filtered distri-
bution, p(x,|y1.4), giving rise to equal weights. However,
in most cases, a poorly chosen importance density causes
weights to be starkly uneven, and with the propagation of
time, weights increasingly concentrate on fewer and fewer
particles.

Assessment of particle degeneracy can be carried out
using the RMSE criteria. Particle degeneration affects the
quality of the filtering, which in turn, affects the quality

§ (1) = (22)
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of posterior mean calculated from the filtered distribu-
tion. When particle degeneracy is present, the posterior
mean estimates will deviate far away from the true value
of x,. As a result, the RMSE values will be large. Typi-
cally, as # increases from 1 to 7, the filtering performance
deteriorates further and the RMSEs will show an increas-
ing trend. This situation can be verified by observing that
the mean and standard deviations of the RMSE (over
n=1,2,---,T) will both be large. We provide numerical
examples in Section 6 based on simulation experiments.
Another assessment of weight degeneracy is based on
the HPD sets which is described in Additional file 1:
Section 1 for this article. Using the HPD sets, we show that
the true state space vector x;, lies inside its 95% HPD set
for each n. This coverage demonstrates that the filtering
procedure under consideration does not suffer from par-
ticle weight depletion during the propagation of particles
and weights; for if there was weight depletion at any stage,
the HPD sets constructed thereafter would not cover the
true value of x;, with high probability. The coverage prob-
abilities of the HPD sets is then obtained by repeating the
simulation experiments and checking whether x,, belongs
inside its 95% HPD set or not for each simulated data.
These coverage probabilities are reported in Section 6.
We also calculate the effective sample size [2]

(23)

as a measure that reflects the extent of uniformity of the
normalized weights W, computed from w! during the
n-th step of the filtering procedure. The quantity N ,
satisfies 1 < N, < M with lower bound 1 indicating
extreme weight degeneration: all probability is concen-
trated on one particle only with W’ = 1 for that particle.
The upper bound M indicates that the weights are all
equal to 1/M, the ideal case. A filtering procedure that
outputs particles from the true filtered density at each
time step will have a constant value of Nyy = M in
the ideal case. Deviations from this ideal case indicate
the extent of weight/particle degeneration of the filtering
procedure.

6 Experimental results

Two test examples, one 2D and one 3D example used in
[33], are given in this section to illustrate the performance
of the TS procedure. This section compares the perfor-
mance of three estimators: the O, SIR, and TS, based on
their RMSE values. We also study the robustness of the TS
procedure under various noise levels.
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6.1 Example 1
The ordinary differential equation (ODE) model in [33]
given by

(24)

is considered, where x = (x1,x%3) € RZ? is the state
space variable. The state space model corresponding to
the time-discretized version of (24) is

X1 = —x1/2, Xy = sin(x)

Xl = Xn—1,1 — AL (Xn—1,1/2) + U1, (25)

Xn2 = Xn_1,2 — Atsin (x,-12) + n2 (26)
where uy, = (1, un2) T ~ N(0,Qy),

~ 21

QnEQn[l 1] (27)

with Q, = (At)g,. Equations (25) and (26) are a special
case of the state space model in (1). The measurement
model considered is linear:

Yn = Xy + Vy (28)

where v,, ~ N(O, INQ,,) with R, = R,lx5. The numbers
R, and Q, govern the extent of noise in the measure-
ment and state space models, respectively. We note that
the covariance matrix of the measurement model is given
by R, = R,lry2 whereas covariance matrix of the state
space model is given by Q,, which is related to Q,, (and qn)
as in (27). In our experiments, constant values of Q, = Q
and R, = R are considered.
The prior on xj is taken as

Po(x0) = ¢ (x;[_gz},Q[f {D

We set At = 0.02 and 7" = 10 as the final time point.
We carried out N = 100 simulation experiments based on
various specifications of R and Q. These specifications are
reported in Tables 4 and 5. The x-trajectories were gen-
erated from the prior distribution (29), followed by the
state space transition kernel given by Egs. (25) and (26).
Given xg.T, the observations y;.7 were generated from the
measurement model (28). For the TS procedure, the EnKF
kernel based importance distribution is constructed using
50 ensemble particles. The GMMs are fitted using the
maximum setting of Go = 10 components.

To illustrate how the trajectories of the true state space
variables look like in Example 1, we provide trajectory
plots corresponding to R = 0.1 and Q = 0.2 in Fig. 1.
Figure 1 gives the trajectory plots of x,, 1 and x,,5 (true val-
ues) together with their estimates based on the TS, SIR,
and O, procedures. The average of RMSE over N = 100
experiments for the three procedures is shown in Fig. 2 for
the noise level specifications R = 0.1 and Q = 0.2. The
RMSE of all R and Q combinations are reported in Tables 4
and 5.

(29)
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Table 4 Simulation results for Example 1: Mean and standard deviations of the RMSE for three different estimators of x,,1, namely, O,
the posterior mean based on SIR and the posterior mean based on TS

RMSE for x4
Exp. no. @QR) £ 0, SIR TS

Mean SD Mean SD Mean SD
1 (0.1,0.1) 1.0 0.0977 0.0093 0.1260 0.0728 0.0696 0.0238
2 (0.2,0.1) 0.5 0.1048 0.0128 0.2225 0.1305 0.0665 0.0075
3 (04,0.1) 0.25 0.0930 0.0126 0.4081 0.2352 0.0815 0.0212
4 (0.8,0.1) 0.125 0.0985 0.0123 0.6030 0.3530 0.0872 0.0327
5 (1.0,0.1) 0.100 0.0974 0.0127 0.6848 0.5169 0.1190 0.0538
6 (0.1,1.0) 10.0 1.0290 0.1465 0.4606 0.2287 03164 0.1152
7 (04,1.0) 25 0.9933 0.1684 0.6965 0.3935 04716 0.1602

We summarize our findings based on Tables 4 and 5 for
Example 1. When R is small (i.e., the value 0.1 in Experi-
ments 1-5 in Tables 4 and 5) and Q is small (for example,
Exp. 1 and 2 in Tables 4 and 5), the filtering procedures
give better performance compared to O,. In this situation,
the state space model is informative and filtering adds
value to the final goal of estimating x,,. The RMSE values
of the Oy estimator are slightly higher compared to SIR
and TS, and the RMSE of TS is the lowest (best), e.g., see
Exp.1and 2 in Tables 4 and 5. However, when Q increases,
deterioration of filtering due to particle degeneracy is
apparent, as evidenced by the larger RMSE (mean as well
as standard deviation). The increase in RMSE is more pro-
nounced for the SIR filter compared to TS, which indicates
that TS produces robust estimates of x,, compared to SIR
even when Q becomes larger. The performance of the O,
estimator is not affected by the increase in Q and remains
robust throughout. When R is small, the RMSE of the O,
estimator is only slightly larger compared to the optimal
RMSE of the posterior mean obtained by TS.

When R is large (i.e., the value 1 in Experiments 6 and 7
in Tables 4 and 5) and Q is small, the filtering procedures
give significantly better performance compared to O;. In
this situation, the state space model is more informative

compared to the measurement model, and filtering adds
significant value to the estimation of x,,. The RMSE val-
ues of the Oy estimator are much higher compared to SIR
and TS. However, as in the previous case, deterioration of
the filtering due to particle degeneracy is apparent as Q
increases and it is more pronounced for the SIR filter. TS
produces robust estimates for x,, when Q becomes larger
compared to SIR. The performance of the O, estimator
is not affected by the increase in Q and remains robust
throughout, but the RMSE of O is significantly higher
compared to TS when R is large.

Contour plots are obtained for the 95% HPD sets cor-
responding to x,,1 and x,>; these are given in Fig. 3 for
(Q,R) = (0.2,0.1) = 0.2, for time steps n = 5, n = 7, and
n = 10, and for three randomly selected experiments 25,
49, and 99 out of the N = 100. It can be observed from
Fig. 3 that the true simulated values of x;,; and x,, 2 belong
to their respective HPD sets in all the panels.

Next, we calculated the average coverage probabilities
of the HPD sets which are given in Table 6. The cover-
age probabilities are averaged over N = 100 experiments,
reported for each » = 1,2,---,10 and for (Q,R) =
(0.2,0.1). The high values of coverage probabilities show
that the filtering performance of the TS algorithm is very

Table 5 Simulation results for Example 1: Mean and standard deviations of the RMSE for three different estimators of x,, 2, namely, O,
the posterior mean based on SIR and the posterior mean based on TS

RMSE for x,2
Exp. no. (Q,R) R/Q 0, SIR TS

Mean SD Mean SD Mean SD
1 (0.1,0.1) 1.0 0.0986 0.0088 0.0646 0.0315 0.0395 0.0089
2 (0.2,0.1) 0.5 0.0947 0.0129 0.1242 0.0607 0.0516 0.0086
3 (04,0.1) 0.25 0.1069 0.0168 0.1781 0.0750 0.0689 0.0107
4 (0.8,0.1) 0.125 0.1009 0.0138 0.4562 0.3604 0.0819 0.0182
5 (1.0,0.1) 0.100 0.1030 00114 0.5090 0.3914 0.1136 0.0500
6 (0.1,1.0) 10.0 0.9943 0.0934 0.2452 0.1371 0.1920 0.0753
7 (04,1.0) 25 0.9926 0.1125 04424 0.1824 0.2905 0.0888
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Fig. 1 Anillustration of the trajectories of the true state space
variables and their estimates based on the SIR, TS, and O, procedures
for Example 1. The trajectories are obtained for one experiment based
(Q,R) = (02,0.1): (@) xp,1 and (b) xp»

effective; coverage deterioration is not seen with the prop-
agation of time. In the same way, we obtained coverage
probabilities for all pairs of (Q, R) considered earlier. We
found that coverage probabilities were similar to the ones
reported in Table 6, thus demonstrating the robustness of
the TS procedure under various noise conditions.

Figure 4 shows the quality of the GMM approxima-
tion to frequency histograms for a selected experiment;
the frequency histograms are generated from resamples of
{, W, }f\il which are representative of the true filtered
density. However, the resamples are subject to sampling
variability. Note that the GMM curve fit (represented by
the solid line) is a good fit to all the frequency histograms
and does not suffer from resampling variability. The good-
ness of fit of the GMM and absence of resampling vari-
ability is the reason why weights of the TS procedure are
more uniform and less prone to degeneracy.

To study the advantage of the ML estimation scheme,
we report Negy for the LLPFg,kr and the TS procedures
in Fig. 5 for four different combinations of R and Q. The

TS
—+SIRA

RMSE

RMSE

Fig. 2 An illustration of the traceplots of average RMSE over N = 100
experiments for the TS, SIR, and O, procedures for R = 0.1 and
Q= 0.2:(@) xp,1 and (b) x>

LLPFg,xr procedure is the first stage of the TS proce-
dure without the ML estimation scheme. We note that
the decrease in Ny is much lesser for the TS procedure,
indicating more uniform weights for all the noise levels
considered. Thus, the TS procedure is robust in the sense
that its weights are more uniform (hence, less skewed)
compared to LLPFr,xr under various noise conditions.

6.2 Example 2

The well known Lorenz 63 model is proposed as an appli-
cation for the TS methodology. The Lorenz model exhibits
strong non-linearity and chaos [9] and is considered as
a benchmark example in data assimilation problems for
testing the effectiveness of filtering methodology [11]. The
Lorenz 63 model is a 3D model describing atmospheric
convection based on the following ODEs: x; = a(—x1 +
Xx9), Xy = Bx1 — xo — x1x3, and X3 = —yx3 + x1x3, where
10, B = 28, and y = 8/3. The dynamical sys-
tem corresponding to the time-discretized version of the
continuous Lorentz 63 model is

o =

Xnl = Xn—1,1 + Ata(—xy_11 +%p—1,2) + Un,1 (30)

X2 = Xn—12FAL[Brn1,1 —Xn—12—%n—1,1%n-1,31HUn2 (31)
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-10.5

by’x"in each panel

-10

Fig. 3 95% HPD contour sets based on the fitted GMM, for the experiments £ = 25,49, and 99. The true simulated value of x, = (xp,1,Xp,2) is marked

Xn3 = xn-13 + AL[—Y%n-13 + Xn—1,1%n-12] + U3 (32)

where u, = (up1,un2 un3)’ ~ N(O, Q) with Q, =
Qulzx3 = (At)gul3x3. The measurement model consid-
ered is linear:

Yn = Xn + Vn (33)
where v, ~ N(0,R,) with R, = R,[3,3. As in Example
1, we consider constant values R, = Rand Q, = Q to
govern the extent of noise in the measurement and state

space models, respectively.
The prior on xy is taken as normal

—0.2 100
poxo) =2 | x| =02 [,Q| 010 (34)
8 001

As in Example 1, we carried out N = 100 simulation
experiments based on various specifications of R and Q.
These specifications are reported in Tables 7, 8, and 9. The
x-trajectories were generated from the prior distribution
(34) followed by the state space transition kernel given by

Egs. (30)—(32). Given x.T, the observations y;.7 were gen-
erated from the measurement model (33). We set At =
0.02 and T = 10 as the final time point. As before for
the TS procedure, the EnKF kernel-based importance dis-
tribution is constructed using 50 ensemble particles. The
GMMs are fitted using the maximum setting of Go = 10
components.

Figure 6 gives the average RMSE plots over N = 100
experiments for comparing the TS, SIR, and Oy proce-
dures based on (Q,R) = (0.5,1). The RMSE correspond-
ing to all (Q, R) specifications are reported in Tables 7, 8,
and 9.

We obtain similar findings for Example 2. When R is
small (i.e., the value 0.1 in Experiments 1-5 in Tables 7, 8,
and 9) and Q is small, the filtering procedures that yield
the posterior mean as the estimate of x,, give better per-
formance compared to O,. The RMSE values of the O,
estimator are slightly higher compared to SIR and TS (e.g.,
Exp. 1 and 2 in all the tables). However, when Q increases,
deterioration of filtering due to particle degeneracy is
apparent, as evidenced by the larger RMSE (mean as well

Table 6 Average coverage probabilities (in %) of the 95% HPD confidence set for (xy1,X52) based on the TS procedure

Time step Coverage (%) Time step Coverage (%)

n by 95% HPD sets n by 95% HPD sets
1 976 6 926

2 94.6 7 934

3 95.6 8 944

4 95.2 9 95.6

5 944 10 938

Coverage probabilities are shown for each n in Example 1 corresponding to (Q,R) = (0.2,0.1)
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Fig. 4 Univariate frequency histograms of x, 1 (top row) and x> (bottom row) in Example 1 in the case of filtering at n = T. The non-normality
(asymmetries) of the frequency histograms is well approximated by the fitted GMM (solid line). The histograms are constructed using resamples

as standard deviation). The increase in RMSE (both mean
and standard deviation) is more pronounced for the SIR
filter compared to TS, which indicates that TS produces
robust estimates of x,, even when Q becomes larger.
When R is large (i.e., the value 1 in Experiments 6-9
in Tables 7, 8, and 9) and Q is small, the filtering pro-
cedures give superior performance compared to O;. In

this situation, the state space model is more informative
compared to the measurement model, and filtering adds
significant value to the estimation of x,,. The RMSE val-
ues of the Oy estimator are much higher compared to SIR
and TS. However, as in the previous case, deterioration of
the filtering due to particle degeneracy is apparent as Q
increases and it is more pronounced for the SIR filter. TS
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Fig. 5 Traceplots of average N, of the TS and LLPFgnkr procedures based on N = 100 simulation experiments for Example 1 corresponding to four
different (Q, R) specifications:a (Q,R) = (04,1),b (Q,R) = (04,0.1), ¢ (Q,R) = (0.8,0.1),and d (Q,R) = (1,0.1)

1200 T T T T T T




Rehman et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:36

Page 13 of 19

Table 7 Simulation results for Example 2: Mean and standard deviations of the RMSE for three different estimators of x,,1, namely, O,
the posterior mean based on SIR and the posterior mean based on TS

RMSE for x4
Exp. no. (Q,R) R/Q 0, SIR TS

Mean SD Mean SD Mean SD
1 (0.05,0.1) 20 0.0975 0.0092 0.0731 0.0247 0.0430 0.0046
2 (0.1,0.1) 1.0 0.0975 0.0092 0.1316 0.0562 0.0600 0.0054
3 0.2,0.1) 05 0.0975 0.0092 02421 0.1286 0.1057 0.0354
4 (05,0.1) 0.2 0.0975 0.0092 0.5258 0.3407 0.2066 0.0958
5 (1.0,0.1) 0.1 0.0995 0.0118 1.0438 0.6207 0.2796 0.1236
6 (0.1,1.0) 10.0 1.0819 0.1884 0.1991 0.0474 0.1832 0.0432
7 (0.2,1.0) 50 1.0171 0.1087 0.3268 0.0854 0.2598 0.0376
8 (05,1.0) 20 1.0537 0.1222 1.2481 05182 0.5583 0.1881
9 (1.0,1.0) 1.0 1.0000 0.2104 1.3098 0.4975 0.5926 0.1279

produces robust estimates for x;,, when Q becomes larger
compared to SIR. The performance of the O, estimator
is not affected by the increase in Q and remains robust
throughout, but the RMSE of O, is significantly higher
compared to TS when R is large making it a sub-optimal
estimator in this case.

We do not provide visual plots of the HPD sets for
Xy = (X1, %n,2, %,,3) since they are 3D sets. Nevertheless,
the methodology outlined in the Additional file 1: Section
1 of the paper is able to compute the thresholds <, and
coverage probabilities of HPD sets in 3D and, in fact, for
any dimension.

The average coverage probabilities of the HPD sets over
N = 100 experiments are given in Table 10 for each
n = 1,2,---,10, and for (Q,R) = (0.5,1). The high
values of coverage probabilities show that the filtering per-
formance of the TS algorithm is very effective; coverage
deterioration is not seen with the propagation of time. In
the same way, we obtained coverage probabilities for all

pairs of (Q, R) considered earlier. We found that coverage
probabilities were similar to the ones reported in Table 10,
thus demonstrating the robustness of the TS procedure
under various noise conditions.

Figure 7 shows the quality of the GMM approxima-
tion to frequency histograms for a selected experiment;
the frequency histograms generated from resamples of
{xf, wi, Y1 are representative of the true filtered density.
However, the resamples are subject to sampling variabil-
ity. Note that the GMM curve fit (represented by the solid
line) is a good fit to all the frequency histograms and does
not suffer from resampling variability. The goodness of fit
of the GMM and the absence of resampling variability are
the reasons why weights of the TS procedure are more
uniform and less prone to degeneracy.

We also report Ngy for the LLPFpyxr and the TS
procedures in Fig. 8 for four different combinations
of R and Q. We note that the decrease in N is
lesser for the proposed TS procedure indicating more

Table 8 Simulation results for Example 2: Mean and standard deviations of the RMSE for three different estimators of x, 2, namely, O,,
the posterior mean based on SIR and the posterior mean based on TS

RMSE for X,
Exp. no. (Q.R) R/Q ) SIR TS

Mean Mean SD Mean SD
1 (0.05,0.1) 20 0.0988 0.0189 0.0745 0.0284 0.0500 0.0050
2 (0.1,0.1) 1.0 0.0988 0.0189 0.1288 0.0659 0.0654 0.0088
3 (02,0.1) 0.5 0.0988 0.0189 0.2423 0.1643 0.1146 0.0499
4 (0501 0.2 0.0988 0.0189 0.6131 0.4831 0.2293 0.1181
5 (1.0,0.1) 0.1 0.1007 0.0150 1.5960 14733 0.2881 0.1205
6 (0.1,1.0) 10.0 0.9569 0.1735 0.3094 0.1273 0.3027 0.1210
7 0.2,1.0) 5.0 0.9910 0.1608 0.3606 0.0862 0.3440 0.0568
8 (0.5,1.0) 2.0 1.0473 0.1379 14103 0.7227 0.7169 0.1229
9 (1.0,1.0) 1.0 0.9946 0.1457 1.2677 0.6478 0.6411 0.1119
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Table 9 Simulation results for Example 2: Mean and standard deviations of the RMSE for three different estimators of x,, 3, namely, O,
the posterior mean based on SIR and the posterior mean based on TS

RMSE for x, 3
Exp. no. QR) R/Q 0, SIR TS

Mean SD Mean SD Mean SD
1 (0.05,0.1) 20 0.1007 0.0119 0.1190 0.0406 0.0567 0.0132
2 0.1,0.1) 1.0 0.1007 0.0119 0.1800 0.0944 0.0696 0.0103
3 0.2,0.1) 0.5 0.1007 0.0119 0.2976 0.1850 0.1137 0.0456
4 05,0.1) 0.2 0.1007 0.0119 0.6206 0.4280 0.2268 0.1089
5 (1.0,0.1) 0.1 0.0944 0.0145 1.0841 0.7334 0.2652 0.0931
6 (0.1,1.0) 10.0 0.9370 0.1374 0.2932 0.0616 0.2062 0.0188
7 (0.2,1.0) 5.0 0.9515 0.2547 0.5539 0.1642 0.3280 0.0606
8 (0.5,1.0) 20 1.0107 0.1934 1.5100 0.8464 0.6677 0.0613
9 (1.0,1.0) 1.0 0.9635 0.0891 1.3989 0.7751 0.5752 0.0739

uniform weights for all the noise levels considered as in
Example 1.

The distribution of weights prior to ML estimation is
transformed into a new set of weights based on the GMM
fitted density in the second stage of the TS procedure. The
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Fig. 6 An illustration of the traceplots of average RMSE over N = 100
experiments for the TS, SIR, O, procedures based on (Q,R) = (0.5, 1):
axp, bxp and cx,3

ML estimation scheme ensures that the (second stage)
weights are more uniformly distributed and that the (sec-
ond stage) particles and weights provide a good approx-
imation to the filtered density. We have provided some
insight into why the ML estimation scheme is able to do
so in Additional file 1: Section 2.2. By making the weights
more uniform, the ML estimation scheme ensures that
weight degeneracy is mitigated.

Based on the Ny plots for Examples 1 and 2, as given by
Figs. 5 and 8, we note that Negr decreases at a much slower
rate for TS compared to LLPFg,xr for all the noise spec-
ifications considered. Thus, the ML estimation scheme
yields weights that are more uniform and less prone to
degeneracy under all noise levels, thus making the TS
procedure more robust.

The details of computational times for the three esti-
mators are as follows: The average processing time of the
TS procedure is 8-12 s per time step, whereas the aver-
age processing times of SIR and O, are 0.0019 and 1.42 x
107 s, respectively. TS has the largest computational time
but gives superior performance: TS has lower RMSE val-
ues compared to Oy for small R and significantly lower

Table 10 Coverage probabilities (expressed as percentage) of
the 95% HPD confidence set based on the filtered densities at
each time point n in Example 2 (the Lorentz 63 model) with
Q=05andR="1

Time step Coverage (%) Time step Coverage (%)

n by 95% HPD sets n by 95% HPD sets
1 96.6 6 934

2 95.8 7 90.8

3 934 8 904

4 95.4 9 93.6

5 94.0 10 94.6
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RMSE compared to O; for large R when particle degen-
eracy is negligible. TS remains more robust compared to
SIR when filtering is subject to various noise conditions.
Computational times are based on running the experi-
ments on a DELL Precision T1700 workstation with Xeon
E3-1226 v3 processor with processing speed 3.3 GHz
and 16 GB of RAM. Codes were developed in MATLAB

7 Discussion

To summarize, the TS procedure produces robust esti-
mates of the underlying state space variable under various
noise conditions. The value of filtering and in particu-
lar TS is best realized when the noise of the state space
model is small at every fixed level of the measurement
noise. When the measurement noise level is small, TS

2015a.

procedures are slightly better estimates compared to Oy,
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Fig. 8 Traceplots of average N, of the TS and LLPFgnkr procedures based on N = 100 simulation experiments for Example 2 corresponding to four
different (Q, R) specifications:a (Q,R) = (1,1), b (Q,R) = (0.2,1),c (Q,R) = (0.1,0.1),and d (Q,R) = (0.05,0.1)
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whose performance is of comparable level. But when R
is large, TS gives significantly better performance com-
pared to Os. The best performance of the TS procedure is
observed when R is large and Q is small. For these values
of R and Q, the effect of particle degeneracy is the small-
est. For higher levels of Q, particle degeneracy becomes
more pronounced and the posterior mean of the filtered
density becomes a poorer estimate of x,,. Nevertheless, the
TS procedure is less affected by particle degeneracy due to
the implementation of ML estimation in the second stage.
The smaller RMSE values of the TS shows that the ML
scheme works to reduce particle degeneracy. The distri-
bution of weights prior to the ML estimation is made to
be more uniform by transforming to a new set of weights
obtained by fitting the GMM.

The performance of the O, estimator is not affected by
the increase in Q and remains robust throughout. When
R is small, the RMSE of the O, estimator is only slightly
larger compared to the optimal RMSE of the posterior
mean obtained by TS, but when R is large, the Oy esti-
mator has significantly larger RMSE compared to the
posterior mean obtained using the TS procedure.

The “value” of filtering can be seen in the situations
when R/Q becomes larger for every fixed value of R. This
is consistent with the findings of [23] where filtering was
deemed effective when

r=2383/82 (35)
was small and
mp — mo
p=—g— (36)
85

was close to zero; see Eqgs. (16) and (17) of [23]. In the
above, 81% and 8(2), respectively, denote the variances of
the state space and measurement models, whereas 1,
and m,,, respectively, denote the means of the state space
and measurement models. In their paper [23], the authors
show that filtering is deemed effective when PoFB (prob-
ability of filter benefit) is above 0.5. Based on the funnel-
shaped region of Fig. 3 in their paper, they show that when
r and p are small, the PoFB, indeed, lies above 0.5. This
is because the PoFB lies along the upper boundary of the
funnel-shaped diagram which is significantly above the
constant line of 0.5.

To study the impact of the above results in our context,
we note that the observation model is always unbiased in
our experiments, that is, m) = x!, where i is the index of
the i-th experiment, i = 1,2,---,N, and &/, is the true
simulated but unknown value of the state space variable at
time step #. Note that Q and R are proxies of 812, and 8(2), )
that R/Q largely corresponds to the case where r is small.
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For the i-th experiment,

2
80

where mj, = 9, (x;_l) (see (1)). It follows that ave (pi)
over all experiments is

ave (p') = ave (’”5’ - ") _avelrhmm)

8o 8o

Furthermore, the variance of p*,

var (p') = var p — % == (rtp = ) = §= r
8o 82 &

Thus, when R/Q is large, r is small, and hence, var (p‘)
is also small. It follows that the values of p* will be highly
concentrated around its mean value p = 0 which forms
the upper boundary of the funnel-shaped region of PoFB
values in Fig. 3 of [23]. Thus, the PoFB values from the
experiments will almost all be significantly higher than
0.5, indicating that filtering is very effective in almost all
of the N experiments. When R/Q is small, r is large, and
hence, var (pi) is large but the mean value remains the
same at p = 0. The PoFB now can vary from experiment to
experiment and can be significantly below 0.5 indicating
that the filtering is not so effective. This phenomenon is
exemplified by the SIR, but our TS procedure still remains
robust even in such situations.

8 Conclusions
We propose and develop a two-step (TS) particle filter-
ing procedure to select an optimal importance density
and reduce weight degeneracy in particle filtering. The TS
procedure is based on fitting Gaussian mixture models to
a set of particles and weights via weighted likelihood. It
is shown that particle weights from the TS procedure do
not deteriorate significantly over time compared to other
PF methods considered. In the subsequent paragraphs,
we provide theoretical comparisons between the TS and
other filtering procedures (and their extensions) to gauge
the scope of the TS procedure in a variety of applications.

Pure filtering refers to the situation where parameters
of the dynamical system are completely fixed and known.
Currently, the TS procedure can be applied to pure filter-
ing problems only. In future work, we plan to extend the
TS procedure to perform parameter inference in dynam-
ical systems. For parameter inference, there is always an
associated pure filtering procedure in addition to estimat-
ing the unknown parameters; see, for example, [20]. We
will investigate properties of the parameter inference algo-
rithm when the TS procedure is used as the underlying
filtering algorithm.

Rao-Blackwellized filters are filters based on condition-
ally Gaussian models [29]. The TS procedure currently
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does not incorporate any such conditioning but can be
developed to be a part of such filters where it can be used
for the non-linear and non-Gaussian components. The TS
procedure is robust, that is, it is not severely affected by
significant measurement noise levels. Thus, the TS pro-
cedure can be compared with other procedures in terms
of the extent of their robustness for filtering. In [20], the
unscented Kalman filter (UKF) is shown to be robust for
online model assessment and parameter estimation. Thus,
a comparison can be made when the UKF is replaced
by the TS procedure for online model assessment and
parameter inference; see also [3, 38, 45].

Spatial applications involve state space vectors that are
high dimensional and where a priori dependencies exist
between vector components that are spatially close to
each other. The TS methodology can be extended to such
high-dimensional situations by eliciting the class of GMM
models (in STEP 2 of the TS procedure) to capture these
inherent spatial dependencies. Thus, the TS approach
can be seen as a promising approach for higher dimen-
sional problems involving spatial as well as more general
dependencies.

In tracking applications, the probability hypothesis den-
sity (PHD) filter is used to track multiple objects [42]. In
[32], for example, the PHD filter is proposed to track the
branches from centerlines of neurons. Methodology for
finding the PHD filter based on the TS procedure can also
be developed based on a modified weighted likelihood
criteria for random sets.

If the measurement model is highly complex and non-
linear, the likelihood component in filtering is not avail-
able in closed (i.e., tractable) form. The evaluation of
the likelihood becomes comparatively difficult. In such
situations, the method proposed in [24] can be used
to calculate the likelihood numerically. The weights cal-
culated in STEP 2 of the TS procedure involve like-
lihood computations, and when the likelihood is not
available in closed form, the TS procedure can ben-
efit from the numerical methods reported in [24] for
evaluating the likelihood. In a similar manner, different
approaches to filtering (see [44]) can be used in com-
bination with the TS procedure for improved filtering
results.

An important contribution of estimation via weighted
likelihood, as proposed in this paper, is that the unknown
filtered density f,(x) can now be obtained based on sta-
tistical density estimation techniques. Incorporation of
estimation techniques in filtering opens up the possibility
of incorporating many other statistical methods of model-
ing and inference into the area of filtering and, later on, for
the development of tracking, monitoring, and early warn-
ing applications. Statistical models will be used to elicit
a priori structures of the state space vector in dynamical
systems, while the estimation scheme will select the best
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statistical model that adheres to this structure based on
particles and weights. The spatial and tracking scenarios
mentioned earlier serve as illustrations of potential appli-
cations of this general statistical framework to filtering.

Additional file

Additional file 1: Supplementary Material: A weighted likelihood criteria
for learning importance densities in particle filtering. (PDF 183 kb)
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