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Abstract

In this paper, we propose a new procedure to robustly determine the eyelid position in high-speed
videokeratoscopic images. This knowledge is crucial in videokeratoscopy to study the effects of the eyelids on the
cornea and on the tear film dynamics. Difficulties arise due to the very low contrast of videokeratoscopic images and
because of the occlusions caused by the eyelashes. The proposed procedure uses robustM-estimation to fit a
parametric model to a set of eyelid edge candidate pixels. To detect these pixels, firstly, nonlinear image filtering
operations are performed to remove the eyelashes. Secondly, we propose an image segmentation approach based
on morphological operations and active contours to provide the set of candidate pixels. Subsequently, a verification
procedure reduces this set to pixels that are likely to contribute to an accurate fit of the eyelid edge. We propose a
complete framework, for which each stage is evaluated using real-world videokeratoscopic images. This methodology
allows for automatic localization of the eyelid edges and is applicable to replace the currently used time-consuming
manual labeling approach, while maintaining its accuracy.
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1 Introduction
A keratoscope is an ophthalmological instrument that
allows for non-invasive imaging of the topography of the
human cornea, which is the outer surface of the eye [1].
The cornea is the largest contributor to the eye’s refrac-
tive power, and its topography is of critical importance
when determining the quality of vision and corneal health.
For example, astigmatism may occur if the cornea has an
irregular or toric curvature. Videokeratoscopy allows for
studying the dynamics of the corneal topography [2–5].
Another important application of videokeratoscopy is

the analysis of tear film stability in the inter-blink inter-
val. Ocular discomfort can be caused by dry spots which
occur if the tear film is destabilized. The tear film build-up
and break-up times can be estimated from videokerato-
scopic images if the data acquisition rate is sufficiently
high [6–9]. Videokeratoscopy is also involved in the study
of the dynamic response of the corneal anterior surface
to mechanical forces. These mechanical forces are exerted
by the eyelids during horizontal eye movements in a
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downward gaze. More information on the applications of
high-speed videokeratoscopy can be found in [10].
Figure 1 displays the principle of videokeratoscopy.

Concentric rings are projected by a Placido disk onto the
cornea which is covered by a tear film. The reflection of
the ring pattern is recorded by a video camera and ana-
lyzed to produce contour maps and 3D reconstruction of
the corneal surface. Equally spaced symmetric reflections
from the corneal surface would indicate perfect vision,
while distortions in the ring pattern represent aberrations.
One of the first high-speed videotopographic methods

could record four images per second [11]. The Contact
Lens and Visual Optics Laboratory (CLVOL) at the School
of Optometry, Queensland University of Technology, in
Brisbane, Australia, has developed a high-speed videok-
eratoscope which can operate at sampling frequency of
50Hz due to a combination of a commercially available
videokeratoscope and an additional dynamic image acqui-
sition system [10]. Only at this high sampling rate it is
possible to reasonably study the period of tear film behav-
ior immediately before and after a blink. All videokerato-
scopic data used in this paper were recorded at CLVOL.
An example of a videokeratoscopic image is given in Fig. 2.
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Fig. 1 Principle of videokeratoscopy [40]. Illuminated rings of
pre-defined geometry are projected onto the cornea

Eyelid localization in images is an active area of research,
and important applications are, for example, iris recog-
nition systems and drowsiness detection [12–15]. To the
best of our knowledge, the case of videokeratoscopic
images is still an open research question. In fact, even
today, the very time-consuming manual selection of can-
didate pixels followed by a parametric fit of a parabola in
the least squares sense is still the routine operation.
In videokeratoscopy, the contrast of the images is low

and edges are potentially blurred, which makes edge
detection [16, 17] inapplicable. Further, severe occlusions
especially by the upper eyelashes and their shadows may
occur, as seen in Fig. 2. Figure 3 illustrates the applica-
tion of a Canny edge detector [16] to videokeratoscopic
images. Clearly, the Placido disk ring pattern produces
strong gradients in all directions. Further, it is evident that
the upper eyelid edge is muchmore difficult to detect than
the lower eyelid because it is severely affected by the eye-
lashes and their shadows. For this reason, we focus on the
upper eyelid.

Fig. 2 A videokeratoscopic image

Fig. 3 Canny edge detection applied to a videokeratoscopic image

In addition to the difficulty of localizing the image’s
region of interest, videokeratoscopy for eye research
imposes strong requirements concerning the accuracy of
the model of the eyelid edge. The conventional approach
to fit a parabola does not always provide a sufficiently
accurate approximation to the real curvature. In some
images, a non-symmetrical model may be necessary to
describe the entire eyelid including the parts covering the
sclera. In this paper, we therefore propose and evaluate
some alternative models.
Contributions: In this paper, a new procedure is pro-

posed to robustly determine the eyelid position in high-
speed videokeratoscopic images. The proposed method
allows for automatic localization of the eyelid edges which
replaces the currently used time-consumingmanual label-
ing. We propose to use robust M-estimation to fit a
parametric model to a set of eyelid edge candidate pix-
els. In this way, we account for outliers in the candidate
pixels. These are present due to the very low contrast
of videokeratoscopic images and because of the occlu-
sions caused by the eyelashes. In the case of the parabola,
an alternative robust fit by the Hough transform is also
discussed. To detect these pixels, first, nonlinear image fil-
tering operations are performed to remove the eyelashes.
In particular, we propose a method based on the gradi-
ent direction variance and a wavelet-based method which
adapts the procedure of [14] to videokeratoscopic images.
Subsequently, an image segmentation approach based on
morphological operations and active contours is proposed
to provide the set of candidate pixels. We propose and
evaluate new linear and nonlinear eyelid curvaturemodels
as alternatives to the conventionally used parabola. A real-
world data performance analysis is provided to examine
the error rates of the proposed models.
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Organization: Section 2 is dedicated to the proposal
and description of the robust procedure to locate the eye-
lid position in noisy videokeratoscopic images. Section 3
provides real-data experiments and results. Section 4 con-
cludes the paper.

2 The proposed procedure for eyelid position
estimation in videokeratoscopy

In this section, we introduce a new robust procedure for
eyelid localization in noisy videokeratoscopic images. Our
method is divided into three steps: nonlinear image filter-
ing, candidate pixel detection and verification, and robust
model fitting. Figure 4 shows an overview.

2.1 Nonlinear image filtering for eyelash removal
In this step, videokeratoscopic images are processed such
that the subsequent algorithms are able to detect candi-
date pixels that are located on the eyelid edge. Similar to
iris recognition systems [12, 14], an important factor that
affects the quality of the eyelid position estimation are
the eyelashes. Additional challenges to be considered in
videokeratoscopy are the blur of the image and the ring
pattern of the Placido disk.
We investigate two different approaches to remove the

eyelashes from videokeratoscopic images. The first is
based on the gradient direction variance and the second is
a wavelet-based method.

2.1.1 Gradient direction variance-basedmethod
We briefly revisit the method by Zhang et al. [18] that is
based on nonlinear conditional directional filtering and
describe its adaptation to videokeratoscopic images.
The first step concerns detecting whether a pixel is

in an image area that is contaminated by the eyelashes.
Then, the eyelashes’ direction is estimated. Each affected
pixel is filtered along the eyelashes’ perpendicular direc-
tion. To find the eyelashes’ positions and to estimate their

direction, a 3×3 Sobel edge filters are applied to the image,
as illustrated in Table 1.
The gradients in the x- and y-directions are denoted as

Gx and Gy, respectively. Here, the local gradient direction
φ and the magnitude ∇ are calculated as follows:

Gx = (z7 + 2z8 + z9) − (z1 + 2z2 + z3) (1)
Gy = (z3 + 2z6 + z9) − (z1 + 2z4 + z7) (2)

∇ =
√
G2
x + G2

y (3)

φ = arctan
Gy

Gx
. (4)

Next, a window of size 8 × 8 is defined and the gradient
direction variance is calculated as

σ 2∇ = 1
63

64∑
i=1

(
φi − φ

)2. (5)

Herein, φ represents the sample mean of the gradient
directions included in the window. If the gradient direc-
tion variance is small, which indicates the presence of an
edge, then the pixel is classified as being affected by an
eyelash. This underlying threshold is empirically deter-
mined to be 2.7 by the distributions of gradient direction
variances in the eyelash and non-eyelash areas, see Fig. 5.
In case of an eyelash pixel, a 1-D median filter of length
L is applied to the surrounding pixels to determine a new
value of the classified pixel.
For distinguishable gradients, as caused by the eyelashes

in well-focused images, the method has achieved reason-
able results [18]. The filter has been reported to have little
effect on the regions without gradients, e.g., the iris, the
sclera, or the facial skin. In videokeratoscopic images, the
eyelash removal is less effective, as illustrated in Fig. 6
which displays the output of the method. While the eye-
lashes on the lower eyelid are almost entirely removed,
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Fig. 4 The proposed framework for the estimation of the eyelid edges (top) and the investigated filtering, verification, and fitting methods and
eyelid edge models (bottom)
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Table 1 Sobel edge filters: x-direction, image region, and
y-direction (from left to right)

this does not hold for the upper eyelashes region, espe-
cially if multiple eyelashes overlap.

2.1.2 Wavelet-basedmethod
For iris recognition systems, an effective wavelet-
based method for eyelash removal was introduced by
Aligholizadeh et al. [14]. Wavelets can be used to decom-
pose the eye image into components that appear at
different resolutions. The key advantage of the wavelet
transform, compared to the traditional Fourier transform,
is its position-frequency localization property, allowing
features that occur at the same position and resolution to
be matched up.
We adapted the eyelash removal algorithm by [14] and

extended it to be applicable to videokeratoscopic images.
For this, in each level, we decomposed the videokerato-
scopic image into four sub-bands of wavelet coefficients,
as shown in Fig. 7.
In videokeratoscopy, the eyelashes are mainly vertically

or diagonally aligned. Therefore, it can be expected that
they have an influence on the coefficients in the ver-
tical and diagonal sub-band images whereas the eyelid
is mainly horizontally or in some extent diagonally ori-
ented. Based on these assumptions, Daubechies wavelets
are used to decompose the image and to set all verti-
cal and diagonal coefficient values in each level to zero.

Fig. 5 Histogram of the gradient direction variances for the eyelash
area and the non-eyelash area

Fig. 6 Videokeratoscopic image (same as Fig. 2) after applying the
gradient direction variance method

After applying the inverse wavelet transform, the wavelet-
filtered image should contain less eyelashes than the
original image. Figure 8 shows the wavelet-filtered image
and the difference image, i.e., the image containing the
removed eyelashes.
Videokeratoscopic images are more challenging com-

pared to the images considered in [14]. For this reason,
applying the above method only results in a reduction
and not the removal of eyelashes. Additional steps are
necessary to determine eyelid edge pixels. Our proposed
approach is introduced subsequently.

2.2 Active contours method for eyelid edge pixel
candidate detection

After applying nonlinear image filters to the initial videok-
eratoscopic image, an active contours image segmentation
method is presented to detect pixels in videokeratoscopic
images that lie on the eyelid edge. This method outper-
formed other image segmentation approaches, such as
region growing [19], watershed segmentation [20], and
empirical and gradient-based methods [16] we studied
before, but we do not report for space considerations.
Active contours are widely used in image segmentation

to delineate an object contour within an image. The gen-
eral idea of Kass et al. [21], who introduced the active
contour model (also called snakes), was to minimize the
energy associated to the current contour as a sum of an
internal and external energy. The internal energy term
controls the smoothness of the contour and is mini-
mized when the snake’s shape matches the shape of the
sought object; the external energy term attracts the con-
tour towards the object and is minimized when the snake
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Fig. 7Wavelet coefficients at level 1 of a videokeratoscopic image: approximation (top left), horizontal (top right), vertical (bottom left), and diagonal
coefficients (bottom right)

is at the object’s boundary. An initial estimate is required
which is refined by means of energy minimization.
“Snakes” are active deformable models and can be rep-

resented as a set of n points vi = (xi, yi), where i =
0, . . . n−1. The deformation of their contours depends on
their energy function

Esnake =
∫ 1

0
Esnake (v(s)) ds

=
∫ 1

0
Einternal (v(s)) + Eexternal (v(s)) ds

=
∫ 1

0
Einternal (v(s)) + Eimage (v(s))

. . . + Econ (v(s)) ds (6)

with Einternal representing the internal energy of the snake,
Eimage denoting the image forces acting on the spline,
and Econ representing the external constraint forces intro-
duced by the user. Eimage and Econ form the external
energy acting on the spline.
In the case of videokeratoscopy, the recurrent struc-

ture of the image allows to incorporate higher-level prior
knowledge to obtain an initial estimate. We propose
to apply morphological operations to the output of the
nonlinearly filtered image (stage 1). In particular, the non-
linearly filtered image is eroded and dilated with morpho-
logical discs.
If A is a set in Z

2, then a = (a1, a2) is considered to be
an element of A if a ∈ A. This corresponds to a pixel lying
within a region of the image.Dilation is thereby defined as

Fig. 8Wavelet-filtered image and difference image based on the videokeratoscopic image shown in the upper left part of Fig. 7
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δB(A) = A ⊕ B = {z ∈ E | (Bs)z
⋂

A �= ∅}, (7)

where A and B denote sets within Z
2 and Bs is the the

reflection of set B

Bs = {w|w = −b, for b ∈ B}. (8)

Dilation can be interpreted geometrically as the locus of
points covered by B when the center of B moves inside A.
Erosion is defined as

εB(A) = A � B = {z ∈ E | Bz ⊆ A}. (9)

The translation of a set B by point z = (z1, z2), denoted
as Bz, becomes

Bz = {b + z, |b ∈ B}, ∀z ∈ E. (10)

Erosion is interpreted as the locus of points reached by
the center of B when B moves inside A. In our approach,
we combine the two operations, which is referred to in
mathematical morphology as opening: the erosion of A by
B, followed by dilation of the result by B.

γB(A) = A ◦ B = (A � B) ⊕ B (11)

Opening generally smooths the contour of a set by
breaking its narrow isthmuses and by eliminating small
holes in the set.
The proposed approach uses morphological discs for B

with radius rd = 2 pixels for dilation and radius re = 16
pixels for erosion. If the size of the structuring element
is chosen properly, the eyelashes can be effectively sup-
pressed. From the resulting image, a global image thresh-
old is calculated by Otsu’s method [22] to convert the
image to a binary image. Figure 9 displays an example of
an obtained binary image that is used as an initial estimate
for active contours.

Fig. 9 Initial estimate for active contours obtained frommorphological
dilation and erosion operations on the nonlinearly filtered image
using gradient direction variance

By minimizing the energy function in Eq. (6), the con-
tours of the initial estimate iteratively adapt and converge
to the eyelid contour. Here, it is possible to cut the videok-
eratoscopic image into the upper and lower half to decide
for estimating the edge of the upper or lower eyelid
contour. As we focus on the upper eyelid in this work,
candidate pixels are finally drawn from the upper edge
of the white contour in the binary image. An example of
the resulting candidate pixels for the upper eyelid edge
superimposed onto the original image is shown in Fig. 10.

2.3 Candidate verification by using image statistics and
polar coordinate fit

Before candidate pixels are fit to a parametric model, a
candidate verification algorithm analyzes characteristics
of the candidate pixels in order to remove pixels which are
unlikely to contribute to an accurate fit of the eyelid.
The verification is based on a set of characteristics:

the intensity averages, the column intensity decline, and
a polar coordinate fit, which are combined to obtain a
verification of candidates.

2.3.1 Intensity averages
In this characteristic, first-order statistics of the column
and row of a candidate pixel are evaluated and compared
to the overall averages of the remaining rows and columns.
Figure 11 depicts the average row intensity values of a
typical videokeratoscopic image and the empirically deter-
mined threshold which flags the membership of this row
to the eyelid region. The threshold is carefully and conser-
vatively chosen among all videokeratoscopic images. The
box in Fig. 11 illustrates the value range of the actual eyelid
areas. The same strategy is pursued for the columns. Since

Fig. 10 Candidates pixels drawn from the resulting contour
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Fig. 11 Average row intensity of a videokeratoscopic image. The box
indicates the value range of the actual eyelid areas

the intensity averages of the columns are less significant,
they are given less weight in the final pixel verification.

2.3.2 Column intensity decline
The next characteristic is motivated by the fact that, in
general, for videokeratoscopic images, the pixels above an
eyelid are brighter due to the skin compared to the eyelid,
which itself is characterized by a dark region. Thus, the
intensity decline serves as indicator that a candidate pixel
belongs to the set of eyelid edge pixels.
Before the intensity gradients are calculated, it is nec-

essary to filter the column intensity values to reduce the
effect of the ring patterns from the Placido disk. In our
experiments, a median filter of length L2 = 15 is applied
to suppress the ring patterns and a moving average filter
of length L1 = 25 further smooths the intensity curve.
After the smoothing, an extended differentiation is per-

formed on the column intensity values, which calculates
the difference of values having a distance of 15 pixels. The
distance between the pixels is empirically determined by
the average transition range of an eyelid in a videokerato-
scopic image. An example is shown in Fig. 12.
Positive weight is given towards the overall decision if

the differentiated column intensity values of the candi-
date pixel and that of its adjacent columns fall below zero.
Thus, the candidate pixel lies inside an intensity decline.

2.3.3 Polar coordinate fit
The third characteristic to verify the candidate pixels is
based on a robust parabolic fit of the candidate pixels in
the polar coordinate domain. After shifting the center of
the image to the center of the pupil, a polar image can be
determined by a Cartesian to polar coordinate transfor-
mation. In polar coordinates, the eyelids’ shape is similar
to a parabolic curve.

Fig. 12 Differentiated column intensity values of a videokeratoscopic
image

The algorithm to calculate the polar coordinate fit con-
sists of four steps which we discuss in the sequel.
Step 1: Finding the center of the pupil. A videokerato-

scopic image is characterized by the ring pattern which
is projected onto the iris. The center of the rings is also
the center of the pupil. This fact can be exploited by a cir-
cular Hough transform [23], which is a robust method to
find circles in an image. The circular Hough transform is
applied to the original videokeratoscopic images to find
circles with radii ρ between 75 and 125 pixels and center
coordinates cx and cy. The parametrized equation of the
circle is given by

ρ =
√

(y − cy)2 + (x − cx)2. (12)

The maximum in the Hough space is determined to find
the best fitting parameter set.
Step 2: Transformation in the polar domain. Based on

the center coordinates of the pupil, a Cartesian to polar
transformation can be performed. The new coordinate
system consists of the variable ρ for the radius as in
Eq. (12) and ϕ for the angle which can be derived by

ϕ = arctan
( y − cy
x − cx

)
. (13)

Due to the circular dimension of the new coordinate
system, the rectangular original image is cropped in the
corners. For our purpose, the cropping can be neglected
since only insignificant image areas are dropped. This
would result in information loss, only if the center of the
iris is very far away from the center of the image, which is
not usually the case for videokeratoscopic images.
Step 3: Robust fitting of a parabolic curve. In this step,

a robustly estimated parabolic model is fitted to the
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candidate pixels. See Section 2.4 for possible robust esti-
mation methods. An example is provided in Fig. 13.
Step 4: Outlier detection. The last step is to compare the

candidate pixels with the fitted curve of step 3. For this
purpose, the smallest distances di between the candidate
pixels and the fitted curve are calculated. Then, the cor-
responding robust estimate of the standard deviation is
determined by

σ̂rob = 1
	−1(3/4)

·MAD(di) = 1.4826·MAD(di), (14)

where the median absolute deviation (MAD) is given as
MAD(di) = mediani(|di − medianj(dj)|) and 	−1 is the
inverse of the cumulative distribution function for the
standard normal distribution. To detect outliers, a thresh-
old is set to T1 = 3 · σ̂rob. The 3-σ̂rob rule is justified by the
fact that for di ∼ N (μ, σ 2), the probability of di taking a
value above 3σ is unlikely, i.e., Pr(|di−μdi | < 3σ) = 99.73.

2.3.4 Candidate verification
For candidate verification, the normalized decisions ci,k
of each characteristic i are weighted for each candidate k
according to its significance and compared to a threshold:

1
3
c1,k + 2

9
c2,k + 4

9
c3,k >

7
9
. (15)

Both the weights and the threshold are determined
empirically. Figure 14 shows a videokeratoscopic image
with accepted (white) and dismissed (yellow) candidate
pixels.

2.4 Robust model fitting
In this section, we present robust approaches to fit lin-
ear and nonlinear parameterized curve models to the
verified eyelid edge candidate pixels. Due to the eye-
lashes and low image quality in videokeratoscopic images,
we suggest to use robust M-estimation for the unknown

Fig. 13 Eyelid candidates (white) and robustly fitted curve (yellow)

Fig. 14 Videokeratoscopic image with accepted (white) and
dismissed (yellow) candidate pixels

model parameters. We choseM-estimators, because even
after candidate pixel verification, the Gaussian assump-
tion may only hold approximately. An alternative robust
fit via the Hough transform is also discussed exemplarily
for quadratic polynomials.

2.4.1 Curvemodels
To provide the best possible accuracy, we investigate the
applicability of a wide range of curve models.
The quadratic polynomial

y(x; a, b, c) = ax2 + bx + c (16)

is a linear function of the parameters and is also the most
frequently applied parametrization of the eyelid edge.
Drawbacks are its symmetry and its single maximum,
which do not always accurately represent the true eyelid
edge. We thus also consider the cubic

y(x; a, b, c, d) = ax3 + bx2 + cx + d, (17)

and the fourth-order polynomial

y(x; a, b, c, d, e) = ax4 + bx3 + cx2 + dx + e. (18)

Higher polynomial orders are not considered since they
would result in curvatures that over-fit the data. As there
is no physical motivation to restrict our attention to linear
models, we also consider some nonlinear models that are
potentially suitable parametrizations of the eyelid edge.
Rational functions, which are described by a nominator

polynomial function P(x) and a denominator polynomial
function Q(x)

y(x) = P(x)
Q(x)

(19)



Schäck et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:136 Page 9 of 13

are a natural extension of the polynomial models. Based
on experimental evaluation, we restrict the class of ratio-
nal functions to a parabolic nominator function and a
linear denominator function, i.e.,

y(x; a, b, c, p) = ax2 + bx + c
x + p

. (20)

The second nonlinear model that we consider is the
first-order Fourier series

y(x; a0, a1, b1,ω) = a0 + a1cos(xω) + b1sin(xω), (21)

for which the Fourier coefficients a0, a1, and b1 are given
by

a0 = 1
π

∫ π

−π

xdx = 0, (22)

an = 1
π

∫ π

−π

x cos(nx)dx = 0, n ≥ 0, (23)

bn = 1
π

∫ π

−π

x sin(nx)dx (24)

= −2
n
cos(nπ) + 2

πn2
sin(nπ) (25)

= 2
(−1)n+1

n
, n ≥ 1. (26)

Also, in this case, higher orders were excluded to avoid
an over-fitting of the data and to avoid modeling artefacts
that would be introduced by the periodicity.
The third class of curve models is based on probability

density functions (pdf), which are characterized by
∫ ∞

−∞
f (x)dx = 1 (27)

with f (x) ≥ 0. The motivation for applying pdf type func-
tions is that shifted and rotated versions of f (x) are able to
well parametrize the eyelid edge using only a few parame-
ters. Since there is no theoretical justification, or practical
investigation that suggests a particular distribution, we
consider the following candidates.
(i) TheWeibull pdf [24, 25]

f (x; σ , λ) = σ

λ

( x
σ

)λ−1
e−(x/σ)λ (28)

is described by the scale parameter σ and its shape param-
eter λ. Here, x ≥ 0 and σ , λ > 0.
(ii) The Gamma pdf

f (x; σ , λ) = 1
σ
(λ)

( x
σ

)λ−1
e−

x
σ , (29)

with x ≥ 0 and σ , λ > 0.
(iii) The Fréchet pdf

f (x; σ , λ) = λ

σ

( x
σ

)−1−λ

e−( x
σ )

−λ

, (30)

where x ≥ 0 and σ , λ > 0.

(iv) The Type I Dagum pdf [26, 27]

f (x; a, b, p) = ap
x

( ( x
b
)ap

(( x
b
)a + 1

)p+1

)
, (31)

where x ≥ 0 and a, b, p > 0.
(v) The log-logistic pdf

f (x;α,β) =
β
α

( x
α

)β−1

(
1 + ( x

α

)β
)2 (32)

with scale parameter α and shape parameter β , where
x ≥ 0 and α,β > 0.
(vi) The Rice pdf [28]

f (x; ν, σ) = x
σ 2 e

−(x2+ν2)
2σ2 I0

( xν
σ 2

)
, (33)

where x ≥ 0 and ν, σ ≥ 0 with ν being the distance
between the reference point and the center of the bivari-
ate distribution. σ is the scale parameter, and I0(x) is the
modified Bessel function of the first kind with order zero.
(vii) The skew normal pdf [29]

f (x;α, ξ ,ω) = 2
ω

φ

(
x − ξ

ω

)
	

(
α

(
x − ξ

ω

))
, (34)

where α represents the skew, ξ the location, ω the scale
parameter. φ(x) is the standard normal pdf

φ(x) = 1√
2π

e−
x2
2 (35)

and 	(x) denotes the cumulative distribution function
given by

	(x) =
∫ x

−∞
φ(t)dt = 1

2

(
1 + Erf

(
x√
2

))
. (36)

Here, the error function Erf(z) is defined as

Erf(z) = 2√
π

∫ z

0
e−t2 dt. (37)

For α = 0, the skew normal distribution reduces to the
normal distribution. For an increasing absolute value of
α, the skewness also increases. The distribution is right
skewed for α > 0, and for α < 0, the distribution is left
skewed.
Before fitting these models, the candidate pixels must be

aligned and normalized to account for rotation or scaling.
For this, a ground line is drawn from the lowest candidate
pixel to the left to the lowest candidate pixel to the right
in the image. The ground line is then rotated to a horizon-
tal line and all candidate pixels are rotated with the same
angle. The scale is normalized to one in both axes, and
the fitting is performed on these transformed candidate
pixels.
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2.4.2 Robust estimation
The above described curve models represent either a lin-
ear or a nonlinear regression. The linear regression model
is given by

Yn = X�
n θ + Vn, n = 1, . . . ,N , (38)

where Yn is a scalar random variable,Xn is a vector of ran-
dom variables, θ are the unknown parameters of interest,
and Vn is a random variable of the errors. The residuals Rn
can be obtained by

Rn = Yn − X�
n θ̂ , n = 1, . . . ,N . (39)

In our notation, vectors and matrices are bold and
random variables are in uppercase.
The nonlinear regression model states that

Yn = f (Xn, θ) + Vn, n = 1, . . . ,N , (40)

where f (Xn, θ) is a nonlinear function and the corre-
sponding residuals Rn are obtained by

Rn = Yn − f (Xn, θ̂), n = 1, . . . ,N . (41)

The Gaussian maximum likelihood estimate is defined
by

θ̂ = argmin
θ

N∑
n=1

ρ (Rn(θ)) , (42)

where the loss function ρ(x) = x2 coincides with that
of a least squares estimator (LSE). It is well known that
this estimator is very sensitive to departures from the
Gaussian data assumption. Robust statistics formalize the
theory of approximate parametric models [30]. On the
one hand, like classical parametric methods, robust meth-
ods are able to leverage upon a parametric model, but
on the other hand, they do not depend critically on the
exact fulfilment of the model assumptions. In this sense,
robust statistics are very close to engineering intuition and
signal processing demands [31]. M-estimators robustify
maximum likelihood estimation (MLE) by introducing a
bounded score function ψ(x) = ∂ρ(x)

∂x .
A common M-estimator is the least absolute devia-

tions (LAD) estimator, for which estimates are obtained by
solving

θ̂ rob = argmin
θ

N∑
n=1

ρ

(
Rn(θ)

σ̂rob

)
(43)

with ρ(x) = |x| and σ̂rob as given by (14). It belongs to the
classM-estimators with monotone score function.

As a member of the class M-estimators with re-
descending score functions, we consider Tukey’s bisquare
estimator which uses

ρ(x) =
{
1−[ 1 − (x/k)2]3 if |x| ≤ k
1 if |x| > k. (44)

Choosing the tuning constant to be k = 4.685 ensures
95% efficiency w.r.t. the MLE when the data exactly fol-
lows the nominal Gaussian model [32]. To obtain esti-
mates for linear models, the minimization problem of
(43) is easily solved using an iteratively reweighted least
squares approach, as described in [32]. The LAD can serve
as starting point for Tukey’s biweight method. For nonlin-
ear models, we used the trust-region method [33], which
represents an improvement over the popular Levenberg-
Marquardt algorithm [34, 35].

2.4.3 Hough transform for parabolic curve detection
The Hough transform [36] is widely used in digital image
processing and computer vision to isolate features of a
particular shape within an image. Circular or parabolic
Hough transforms have been applied to accurately detect
the iris or eyelid boundary [37–39], respectively.
Based on geometrical limitations, boundaries for the

parameters in Eq. (16) are determined so as to span a finite
size 3-D accumulator array, the Hough space. Within
these boundaries, all possible parabolas are evaluated for
each candidate pixel. If the corresponding parametrized
parabola matches a candidate pixel, the value of a point in
the Hough space is incremented.

3 Real-data experiments
This section presents the evaluation metric, the experi-
mental setup, and the results of the proposed procedure.

Fig. 15 Reference pixels in a videokeratoscopic image
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Table 2 Overall results of the proposed methods for all possible
combinations of the stages that are shown in Fig. 4 have been
computed

Rank Filtering Model Fitting Mean ± STD

1 GDV Rice LAD 3.54 ± 1.44

2 GDV Rice Bisquare 3.68 ± 1.49

3 GDV Parabola LAD 4.32 ± 2.07

4 GDV Cubic Bisquare 4.34 ± 1.51

5 GDV Cubic LAD 4.42 ± 1.72

6 GDV Parabola Bisquare 4.51 ± 2.64

7 GDV Rational LAD 4.64 ± 1.91

8 GDV Fourier LAD 4.69 ± 2.10

9 GDV Fourth-order LAD 4.75 ± 2.11

10 GDV Fourier Bisquare 4.80 ± 1.99

11 GDV Dagum LAD 4.84 ± 1.54

13 GDV Skew-normal Bisquare 4.86 ± 2.42

17 GDV Weibull LAD 5.11 ± 2.09

42 GDV Log-logistic LAD 5.71 ± 2.86

71 Wavelet Fréchet Bisquare 6.10 ± 3.36

78 Wavelet Parabola Hough 6.13 ± 4.42

184 No filtering Gamma Bisquare 7.17 ± 1.41

The top ten and best results for each curve model are listed in decreasing accuracy
order

Table 3 Overall results of the proposed methods (in decreasing
accuracy order)

Rank Filtering Model Fitting Median ± MAD

1 GDV Parabola Hough 3.50 ± 1.37

2 GDV Rice LAD 3.52 ± 1.04

3 GDV Parabola Bisquare 3.54 ± 0.91

4 GDV Fourth-order LAD 3.61 ± 1.80

5 GDV Rice Bisquare 3.62 ± 1.37

6 GDV Parabola LAD 3.66 ± 1.17

7 GDV Rational Bisquare 3.82 ± 0.61

8 GDV Fourier Bisquare 3.83 ± 1.57

9 GDV Fourth-order Bisquare 3.91 ± 2.28

10 GDV Skew-normal Bisquare 4.03 ± 2.22

11 GDV Cubic LAD 4.04 ± 1.74

32 Wavelet Weibull Bisquare 4.62 ± 2.11

40 Wavelet Fréchet Bisquare 4.86 ± 2.27

42 GDV Dagum LAD 4.90 ± 1.08

60 GDV Log-logistic LAD 5.16 ± 2.40

113 GDV Gamma LAD 5.71 ± 3.03

The results are the median and MAD of the RMS deviations over all ten images

Table 4 Results of the two nonlinear image filtering approaches
and without any filtering in RMS deviations over all images

GDV Wavelet None

Mean ± STD 12.27 ± 13.26 10.31 ± 7.32 11.51 ± 8.60

Median ± MAD 6.60 ± 4.58 8.23 ± 4.80 8.73 ± 4.89

3.1 Experimental setup
As with many real-world problems, there is no objective
ground truth for the exact eyelid curvature of videoker-
atoscopic images. Therefore, reference pixels yrefm ,m =
1, . . . ,N ref, are manually determined in the videokerato-
scopic images to serve as ground truth for the evaluation.
In each of these selected videokeratoscopic images, about
ten reference pixels are set to a position, where an expert
human observer locates the eyelid with high confidence.
In our study, we considered ten different videokerato-
scopic images. All of them are challenging, as they contain
blur and severe eyelashes. An example is shown in Fig. 15.

3.2 Evaluation metric
As the evaluation metric for a fitted curve, the root mean
square (RMS) deviation of each reference pixel to the
closest pixel of the fitted curve is calculated by

RMS(ŷm(θ̂), yrefm ) =
√∑Nref

m=1(ŷm(θ̂) − yrefm )2

N ref . (45)

Here, θ̂ represents the estimated parameters, N ref is
the number of reference pixels, and ŷm(θ̂) defines the
closest curve pixel to the reference pixel yrefm . A pixel in
a videokeratoscopic image corresponds to approximately
20 μm.
After evaluating Eq. (45) for all reference images, we

report on the mean and standard deviation (STD) taken
over all images. We also calculate the median and MAD
over all images since they are robust estimates of the mean
and standard deviation that are not severely influenced by
severely divergent results on single images.

3.3 Results
In Table 2, the overall results of the proposed methods for
all possible combinations of the stages, that are shown in
Fig. 4, are listed. As it can been seen, the curve model of
the Rice function outperforms the parabola. Furthermore,
the LAD achieves better results for the Rice function and

Table 5 Results of the candidate verification procedure in RMS
deviations over all images

Verification No. of verification

Mean ± STD 13.62 ± 15.73 13.67 ± 14.47

Median ± MAD 9.27 ± 5.26 9.35 ± 5.06
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Table 6 Results of the robust fitting approaches in RMS
deviations over all images

M-estimator Hough transform

Mean ± STD 12.19 ± 13.62 18.46 ± 25.39

Median ± MAD 8.81 ± 5.12 10.48 ± 5.75

parabola compared to Tukey’s bisquare. The performance
of the Hough transform is disappointing, not only because
of its enormously high computational complexity but also
in terms of the accuracy of fitting the parabola to the
candidate pixels. The gradient direction variance (GDV)
performs much better than the wavelet-based filtering.
Interestingly, when calculating the median of the RMS

deviation over all reference images, however, the Hough
transform outperforms the M-estimation and the Rice
function falls behind, as it can be seen in Table 3. This
indicates that the Hough transform performs well in the
majority of the cases but is largely outperformed by the
M-estimators for a small subset of images.
We next assess the performance of each individual stage

of our proposed procedure.
Table 4 evaluates the nonlinear image filtering stage.

The results of the wavelet- and GDV-based eyelash sup-
pression are also compared to the case when no filtering
is performed. The GDV is more accurate when looking
at the median of the results, whereas the wavelet-based
method outperforms the GDV on average.
Table 5 shows the results of the candidate verification

stage. A minor improvement is obtained in terms of aver-
age performance; however, for the considered cases, it
seems that the curve estimators are sufficiently robust,
even without the verification stage.
Table 6 compares the Hough transform to the robust

M-estimation approach. Although the Hough transform
exhibits considerably higher computational complexity
than the M-estimator, it is inferior in terms of mean
accuracy.
Table 7 compares Tukey’s M-estimator to the LAD

estimator. The choice of the two loss functions of the
M-estimator is less significant, as both methods achieve
similar results in terms of accuracy. However, the compu-
tational complexity of Tukey’s estimator is slightly higher
than that of the LAD.
Figure 16 depicts a result of both fitting methods for a

parabola in a videokeratoscopic image. For comparison,
Fig. 17 shows a fit using the Rice model.

Table 7 Results of the two robust estimation methods in RMS
deviations over all ten images

Tukey’s bisquare LAD

Mean ± STD 13.43 ± 14.24 13.38 ± 14.50

Median ± MAD 9.30 ± 5.16 9.25 ± 5.11

Fig. 16 Videokeratoscopic image with estimated eyelid edge fitted
by Hough transform (white) and robust regression (yellow)

Based on the presented results, we suggest for further
eyelid localization research to consider the usage of M-
estimators instead of the Hough transform, as it achieves
similar results in terms of accuracy but is significantly
less computational demanding. Furthermore, we recom-
mend to also consider different curvature models than
the parabola. Candidate verification does not seem to be
required when using robust estimators.

4 Conclusions
We proposed a new procedure to robustly estimate the
position of the eyelid edges in high-speed videoker-
atoscopic images. The proposed method applies eylash

Fig. 17 Videokeratoscopic image with estimated eyelid edge using
the Rice model



Schäck et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:136 Page 13 of 13

removal before segmenting the image with an active con-
tours approach that is initialized by a contour that is
obtained from morphological opening and closing opera-
tions. The position of the eyelids are verified and, finally,
parametric curve models are fitted by applying robust
parameter estimators to the selected pixels. Real-data
experiments showed that the Rice model and the parabola
achieved best results. Furthermore, robust regression out-
performs the Hough transform as a robust fitting method
in terms of processing time and is similar in terms of
accuracy. The overall precision of the proposed approach
is in the order of 10−2 mm and allows for replacing the
currently used time-consuming manual labeling.
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