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Abstract

results and different applications.

Digital multiple notch filters are used in a variety of applications to remove or suppress multiple sinusoidal or
narrow-band interference in digital signals. In this paper, we propose an all-pass filter-based design framework for
infinite impulse response (IIR) multiple notch filters. Our approach aims to overcome the limitations of former
techniques through greater design capacity and performance. The proposed framework has versatility and enables
the tailored use of design constraints thus providing a family of possible multiple notch filter design methods. The
design performance and practicality of the proposed framework are verified empirically by a series of experimental
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1 Introduction

Digital notch filters are used to eliminate sinusoidal or
narrow-band interference in digital signals while preserv-
ing the other frequency components intact [1-4]. They
have been widely applied in a variety of disciplines rang-
ing from audio signal processing to biomedical engineer-
ing [5-19]. Recently, there has been interest in design-
ing multiple-frequency notch filters that aim to suppress
two or more frequencies of an input signal [20-25]. Two
types, finite-impulse response (FIR) and infinite-impulse
response (IIR), exist. As typical, the former exhibits
advantages of linear phase and stability while the latter has
advantages of narrower stop-band and higher quality fac-
tor for the same filter order of more significance to notch
filter design [26-34].

Several approaches exist to design IIR multiple notch
filters [1-3,21-23,35-40]. The cascading method is a pop-
ular direct design technique that realizes a multiple
notch filter by cascading several well-designed second-
order IIR single-notch filters [36]. The resulting system
is characterized by a canonical structure for software
and hardware realization. The main drawback is that it
is restricted to few notch frequencies and very narrow
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bandwidths otherwise leading to non-unity pass-band
gains [37].

The optimal design method requires computations for
pole placement that results in a better frequency char-
acteristic [2,3,37,38], but highly complex search-based or
iterative algorithms are required even for a notch filter
with two frequencies [2,38]. For a greater number of notch
frequencies, a two-stage approach has been proposed to
generate a stable optimal multiple notch filter, but the
design procedure involves quadratic programming via an
iterative scheme [3].

The all-pass filter-based method presented by S-C. Pei
and C-C. Tseng transforms the specifications of a mul-
tiple notch filter to those of an equivalent all-pass filter.
A linear design equation is constructed to determine the
all-pass filter coefficients which are used to character-
ize the desired multiple notch filters [1,41]. An improved
method was proposed to design a notch filter with only
two frequencies [42]. One advantage is that all-pass filter-
based methods have normalized analytical forms with no
iterative calculations.

The practical success of all-pass filter-based meth-
ods is a result of three assumptions: i) the magnitude
responses are symmetric about notch frequencies, ii) the
neglected right-hand cutoff frequencies do not produce
design errors, and iii) the constructed linear equation has
an accurate solution. However, these constraints can also
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lead to the following challenges [42]. The symmetric mag-
nitude responses are too prohibitive for applications. The
information of the all-pass filter is not fully utilized. And,
the linear equation is potentially ill-conditioned due to
tangent operations.

Thus in this work, we present a generalized design
framework for IIR multiple notch filters whereby we aim
to: a) deduce an improved design process of the all-
pass filter-based method, b) maximize the availability
of phase information of all-pass filter, and c) introduce
selection mechanisms and weighting strategies to enable
the unified representation of a family of all-pass filter-
based methods. We also apply the framework to typi-
cal multiple notch filter applications to empirically test
performance.

In the next section, an improved all-pass filter-based
approach is explored for multiple notch filters. Section 3
proposes a generalized framework with selection mech-
anisms and weighting strategies. Section 4 verifies the
effectiveness and practicality of our framework through
experimental results. Final conclusions are drawn in
Section 5.

2 Improved multiple notch filter design

Suppose s[ 1] is a desired information-bearing signal cor-
rupted by N sinusoidal interference components whose
frequencies are wn1, wN2, - -+ , NN The overall corrupted
signal can be expressed as [1,2]:

N

xln]=slnl+ ) A;sin(onin + ¢) (1)
i=1

where A; and ¢; represent the magnitude and initial phase
of the ith sinusoidal component.

In order to extract s[ #] from x[ #] with limited distor-
tion, the design specification of an ideal digital multiple
notch filter is given by [2]:

, . for w = wn;
H (&) = 0, for w = wp; @)
1, for w # wp;

where i = 1,2,---,N. Without loss of generality, we
assume wy1 < wn2 < -+ < opnN-. In practice, zero
bandwidths can not be realized [22]. Hence, the frequency
response of an actual notch filter is the approximation to
that of the ideal one.

2.1 All-pass filter-based design process

In this section, we reformulate the all-pass filter-based
design process of multiple notch filters. Suppose that
the notch frequencies wy1,wn2, -+ , NN correspond to
notch bandwidths Byi,Bna2, - -+, Bnn, respectively. The
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system function of the notch filter is expressed as
follows [1,3]:

H@iz) = ——~ (3)

where A(z) is an 2N-order all-pass filter.
The frequency response of the notch filter is given by:

1+A(e?)
2

where w € (—m,m]. The all-pass filter has magnitude
response |A (e/“’)| = 1 and phase response 94(w) =
LA (e’“”) that is monotonically decreasing [43]. For an 8-
order all-pass filter (N = 4), its magnitude and phase
responses are shown in Figure 1. Thus, A (ej‘“) can be
uniquely characterized by 64 (w):

A(€?) = 4@, (5)

H(*) = H@) | ,epo = (4)

Therefore, 64(w) must be carefully selected such that
H (ejw) fulfills the design specifications (notch frequencies
and bandwidths) of the notch filter.

Generally, a 2N-order all-pass filter is expressed as:

Ay = vt an-12 '+ a4 2N
1t az 4 a1z N 4 agyz N

(6)

where real coefficients a;y € R (k = 1,2,---,2N) in both
the numerator and denominator polynomials [1,3]. Given
the formulation in Equation 4, determining appropriate
values of aj,as, - ,asn represents the core problem of
all-pass filter-based multiple notch filter design.

To determine ai,as,--- ,dsn, we relate them to the
multiple notch filter design specifications as follows. Rear-
ranging Equation 6 gives:

2N
1+ ) akzk
2N _ k=1
A)z™" = N . (7)

1+ Y arz*
k=1
Next, substituting z = ¢ and Equation 5 into the left-
hand side of Equation 7 gives:
JOA@+2N] _ 4[4 () + 2Nw] +jsin[04(w) + 2Nw] .
(8)

Correspondingly, the right-hand of Equation 7 becomes:

N N N
14+ Y ape* 14 )" arcostkw) +j Y agsin(kw)
k=1 k=1 k=1

2N ) 2N 2N ’
1+ Y are 7% 1+ 3 apcostkw) —j Y. ag sin(kw)
k=1 k=1 k=1
©)
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Figure 1 Frequency responses of an 8-order (N = 4) all-pass filter. (A) Amplitude response. B Phase response.
From Equations 7, 8, and 9: and
o 2N
cos[ 04 (w) + 2Nw] +j sin[ 64 (w) + 2Nw] Zﬂk {sin[ 04 (@) + 2N — ko] — sin(kw)}
N N et (14)
1+ ) agcostkw) +j Y ag sin(kw) )
k=1 k=1 (10) = —sin[64(w) + 2Nw].

2N 2N ’
1+ Y agcostkw) —j Y ay sin(kw)
k=1 k=1

Therefore, Equation 10 can also be expressed as:

2N 2N
cos[ 04 (w) + 2Nw] - |:1 + Zak cos(kw) —]'Z ay sin(kw)j|

k=1 k=1
2N N
+ jsin[ 64 (w) + 2Nw]- |:1 + Z ay cos(kw) —jZ a sin(kw)}
k=1 k=1

2N 2N
=1+ Z ay cos(kw) + j Z ay sin(kw).
k=1 k=1

Then, we obtain Equation 12 from Equation 11:

2N
Z ay {cos[ 04 (w) + 2Nw] cos(kw)
k=1
+ sin[ 04 (w) 4+ 2N w] sin(kw) — cos(kw)}
2N
—|—jz ay {sin[ 64 (w) + 2N w] cos(kw)
k=1
— cos[ 04 (w) + 2Nw] sin(kw) — sin(kw)}
=1 — cos[Oa(w) + 2Nw] —jsin[ O4 (w) + 2Nw] .

(12)

By equating the real and imaginary parts of Equation 12
and applying triangular identities: cos(e — pB)
cosa cos B + sina sin 8 and sin(e¢ — ) = sina cosf —
cos « sin B, we deduce:

N

Zak {cos[ 04 (w) + 2Nw — kw] — cos(kw)}
k=1

=1 — cos[ 04 (w) + 2Nw]

(13)

Finally, adding both sides of Equations 13 and 14
together gives:

2N
Z ai{cos[ 04 (w) + 2Nw — kw)
k=1
+ sin[ 64 (w) + 2Nw — kw] — cos(kw) — sin(kw)}
=1 — cos[04(w) + 2Nw] — sin[ 04 (w) + 2N w]
(15)

Thus to solve for aj, ay, - - - , agn, at least 2N distinct pairs
(w, 04 (w)) must be known to provide at least 2N equations
to solve 2N unknowns.

Suppose M-pairs (w,04(w)) denoted {(wy, O4(wm))]

m=1,2,---, M} are known. Then, a linear equation con-
taining M identities with 2N variables a1, a», - - - , aan can
be constructed from Equation 15 and represented by:

Qa=p (16)
where Q =[gqux] is a M x 2N matrix, a =
[al, a0, -+ ,aon]T is a 2N x 1 vector, and p =
[p1,p2, - ,pM]T isan M x 1 vector such that:

Gk = €os[ 04 (wm)+2Nwy, — kwy,)
+ sin[ 04 (w)+2Nw,, — kw,,] — cos(kwy,,)
— sin(kwy,)
(17)

and
Pm = 1—cos[ 04 (@) +2Nw,y,] — sin[ 04 (w,)+2Nwy,]
(18)

It is well known that a unique solution to Equation 16
exists if M = 2N and Q is non-singular. For M > 2N,
Equation 16 only has a least-square solution [44].
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Based on the above discussion, our proposed design
process works as follows. Given the N notch frequen-
cies wn1, wN2, - -+ ,wnn and corresponding bandwidths
specifications By1, By, - -+, Byn for the multiple notch
filter:

1. Choose the related all-pass filter design constraints
{(Wm> 04 (@m)) | m=1,,. M} to construct Equation 16
where M > 2N.

2. Solve the linear equations of Equation 16 to obtain
the all-pass filter coefficient vector
a=[aj,ay- - ,aN]"

3. Substitute aj, as, - - - , asn into Equation 6 and then
Equation 3 to obtain the multiple notch filter system
function H(z).

We assert that step 1 will have a significant impact on
the quality of the multiple notch filter design. Thus, in
the next section, we assess four strategies to select design
constraints that we verify and compare empirically in
Section 4.

2.2 Constraint selections of notch filter design
For a 2N-order all-pass filter, its phase response 64 (w) is
monotonically decreasing from 0 to —2N as illustrated
in Figure 1. Given the continuity of both w and 64 (w),
there are an uncountably infinite number of (w,6(w))
pairs that can be selected for notch filter design by
Equation 16. However, if we restrict ourselves to those
quantities related to the design specifications of the mul-
tiple notch filter, we can naturally arrive at 3N pairs that
may be used. Specifically, those pairs related to the notch
frequencies and left-hand and right-hand 3 dB cut-off
frequencies employed [1].

Figure 2 illustrates the relationship between 64 (w) and
|H (ej‘”) | to ensure that Equation 4 results in a suitable
notch filter frequency response that we detail as follows:

1. At notch frequencies, 4 (w) must be equal to an odd
multiple of 7 to ensure that |[H (e"')) | =0.
Specifically, we require that
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Oa(wni) = —(2i — ), (i = 1,2, ,N), to give
A (ej“’Ni) = ¢04(©N) = _1 resulting in
|H (¢i) | = 0. Therefore, {(wni, 04 (@ni))li=1,2,- N}
gives |H(¢“N)| = 0 at the N notch frequencies
providing a valuable set of filter design constraints.
2. Next, at the left-hand 3 dB frequencies, 64 (w) must
appropriately ensure that |[H (¢) | = +/2/2. One
way to achieve this is to let
Oa(wr)) = —2i— 1w +7/2,(i=1,2,---,N) such
that A (¢/“1i) = €%4“L) = —j resulting in
|H (&%) | = v/2/2. Thus,
{(w1i, 0a(@r))|i = 1,2,- -, N} gives
|H (ej‘”Ll' ) | =/2/2 providing another valuable set of
filter design constraints.
3. Similarly, the right-hand 3 dB frequencies with
Oa(wp) = —(2i — D — /2, (i=1,2,--- ,N) give
A (/) = &%(@r) = j resulting in
|H (ej“’Ri) | =/2/2 providing
{(wpi, Oa(wr))|i = 1,2,--- ,N} as the third set of
filter design constraints.

Those relations are summarized in Table 1. It provides
3N possible (w, 04 (w)) pairs for notch filter design. How-
ever, given that only 2N are needed to solve Equation 16,
four intuitive and effective selection methods from the
3N-pair parameters are possible as highlighted in Table 2.

The reader should note that each selection method
from Table 2 provides sufficient information to solve
Equation 16 since M > 2N, but they may lead to slightly
different results for the same design specifications. We
evaluate their design performance in Section 4 but char-
acterize each approach briefly below.

Method I utilizes notch and left-hand cutoff frequen-
cies as filter design constraints, which is suitable for the
case of very narrow interference bandwidths and symmet-
rical magnitude responses about the notch frequencies.
Method I is adopted in [1].

Method I, in contrast to method I, utilizes notch and
right-hand cutoff frequencies for filter design. Roughly, it
has the same applicability and limitations as method I, but
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Figure 2 The relations between phase response of all-pass filter and magnitude response of multiple notch filter. (A) Phase response of
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Table 1 Relationships among w, 64(w), and |H(ei®)|, for
i=12-.---,N

® Oa() [H(e®)|
wy; wi — Bw;/2 —Qi—Nr +7/2 V2/2
[ w;j —Qi—Nrm 0
wpj wi + Bw;/2 —Qi—=Nmr —7/2 V2/2

the results of method II are slightly different from those of
method L.

Method III employs left-hand and right-hand cutoff fre-
quencies as the constraints for filter design. Although
it is not limited to very narrow notch bandwidths and
symmetrical magnitude responses, it may result in notch
frequencies drifting from their desired positions.

Method IV makes use of all available information: notch
frequencies and both left-hand and right-hand cutoff fre-
quencies. Thus, it is able to realize a trade-off between
notch bandwidths and notch positions effectively enhanc-
ing the design performance. The constraint selection
method is also adopted by method V in Section 3.

The reader should note that M = 2N in methods I, II,
and III produce unique solutions. In contrast to method
IV, M = 3N results in an over-determined equation with a
least-square solution. However, we aim to unify both into
a generalized design framework that we present next.

3 Multiple notch filter design framework

3.1 Matrix representations of selection methods

The options for constraints of multiple notch filter
design discussed in Section 2.2 can be described col-
lectively via vector-matrix forms. Let N notch frequen-
cies, N left-hand and N right-hand cutoff frequen-
cies be denoted as wny = [N, ©N2, - > onn] TS
o, = (w0, ,0N]T, and @r = [wr1, @2
wrn] T, respectively. We also denote the N x N zero matrix
with 0 and the N x N identity matrix with I. The selected
frequencies can be expressed as:

é)L S Wy,
oy | = SN ®N or ®=Sw (19)
R Sr R

where @ and ® are 3N x 1 vectors. @, ®x, and @g are N x 1
vectors. S = diag(Sr, Sn, Sr) is a 3N x3N diagonal matrix.

Table 2 Parameter constraint selection methods for
Equation 16,fori=1,2,--. ,N
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Sz, Sn, and S are N x N sub-matrices equal to either 0
or I such that S maps the set of all possible frequencies of
interest w to @ employed for notch filter design.

From Table 2, it is clear that at least two sub-matrices of
S must be set as I. For example, for S; = Sy = Iand S =
0, ®, = wy, ®N = wp, and @ = 0, which corresponds
to method I that only makes use of notch and left-hand
cut-off frequencies. Table 3 relates the specific sub-matrix
values to all selection methods discussed in Section 2.2.

For convenience, we abbreviate all-pass phases 04 (wr,;),
04 (wni), and 04 (wg;) as Or;, Oni, and Og;, respectively, for

i =1,2,---,N. Similarly, we define N x 1 vectors 6; =
(001,002, ,0iN]Y, On = [On1,0N2,- -+ ,Oan]T, and
0r = [6r1,6r2, - ,0rn]T which correspond to wy, @y,

and wg, respectively. A similar vector-matrix form related
to all-pass filter phases is expressed as follows:

0: St 01 )
oy | = Sn N or =S80 (20)
éR Sr 0r

where 8 and 0 are 3N x 1 vectors; éL, éN, and éR are N x 1
vectors correspond to 01, Ox, and O respectively; S has
the same meaning as in Equation 19.

Therefore, four selection methods of (w,04(w)) in
Table 2 can be uniformly represented via Equations 19
and 20 whereby the value of S determines the particular
method used for multiple notch filter design.

3.2 Linear equation and least-square solution

If all elements of the selected frequency vector @ and
all-pass phase vector 0 are substituted into Equations 17
and 18, we obtain the following linear equation from
Equation 16:

ol a7 .
Qy |a=|py | or Qa=p (21)
Qr Pr

where p;, py, and pp are N x 1 vectors; QL, QN, and
QR are N x 2N sub-matrices. (pL,QL), (DN QN), and
(Pr> QR) correspond to (@1,01), (@n,0y), and (@g,0z),
respectively. Hence, p is 3N x 1 vector and Qis 3N x 2N
matrix.

Table 3 Relationships between parameter constraint

Method|l  Methodll Methodlll MethodlV  methods and selection matrix S
(w1, 04(wr))) ° ° . Method | Method Il Method Il Method IV
(wni, Oa(oni)) . . . S, 1 V] | |
(i, Oa(wri)) . . . Sy 1 | 0 1
Value of M 2N 2N 2N 3N Sk 0 | | |
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In general, Equation 21 is an over-determined linear
equation that can be solved by the least-square tech-
nique [44]:

AT A\ "1 AT,
a=(Q Q) Qb (22)

In particular, for methods I, II, and III, Equation 21
degenerates into ordinary linear equations. For example,
in method I, Sg = 0 implies wp = 0and 0 = O,
and hence pr = 0 and Q; = 0 in Equation 21. Thus,
Equation 21 is simplified to:

Q [iﬂL } e b
DA a=|"= or Qa=py.
|: Qv PN : :
where p is 2N x 1 vector and QI is 2N x 2N matrix. The
solution of Equation 23 is as follows:

(23)

A—1.

a=Q; p (24)

where QI_ ! is the inverse of QI. Similar forms and results
as Equations 23 and 24 can be easily surmised for methods
IT and III.

Generally speaking, for methods I, II, and I1I, p and Qof
Equations 21 degenerate to a 2N x 1 vector and a 2N x 2N
nonsingular matrix, respectively. Because the rank of the
resulting matrix Q is 2N, Equation 21 has a unique solu-
tion. In contrast, for method IV, p is a 3N x 1 vector
and Q a 3N x 2N matrix whose rank is also 2N; thus,
Equation 21 only has a least-square solution due to the
structure and rank of Q. Thus, Equation 21 is a general-
ized form applicable to the various constraints discussed
in Section 2.2.

3.3 Weighted design equation and its solution

For certain applications, the design precision require-
ments of notch frequencies are more rigorous than those
at the cutoffs and vice versa. For example, in a contam-
inated electrocardiogram (ECG) signal, the interference
resulting from fundamental and harmonic components
of power lines have near-fixed frequency values [7,14,17].
Hence, the design precision requirement for the notch fre-
quency values of the filter is stricter than those of the cut-
off frequencies. The same is true of rejecting narrow-band
interference from amplitude-modulated (AM) broadcasts
in corona current of high-voltage direct current (HVDC)
transmission lines.

However, until now, both sets of constraints have been
treated equally in multiple notch filter design. To address
this issue, we propose the introduction of a weighting
matrix:

Wy

W= Wy (25)

Wr
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where W = diag(Wr, Wy, Wg) is a 3N x 3N diag-
onal matrix and W, Wy, and Wr are N x N diag-
onal non-zero sub-matrices used to weight @L,QL),
(x> Qn), and (g, Qp), respectively. The weighted ver-
sion of Equation 21 is therefore expressed by:

WQa=Wp (26)
with the least squares solution given by:
AT A\“laT N
a= (Q wT WQ) Q' WIwp. (27)

The weighting matrices employed in methods I to IV
are listed in Table 4. As evident, it is possible to weight
the notch and cutoff frequencies with equal or different
relative significance.

To incorporate such representations to develop new
design methods, we combine S and W to create a new
weighting matrix W as follows:

R S. Wi
W =SW = SN
Sk Wr
Wy
Wn

A

Wr

where W = diag (VA(/L, ‘AVN, \;(/R) is a 3N x 3N diago-

nal matrix and ‘?(/L =S;W;, W/N = SNWx, and \i’/R =
SrWr are N x N diagonal sub-matrices.

We highlight that W combines the selection matrix
S and weighting matrix W together to implement their
respective functions jointly. Therefore, an enhanced ver-
sion of Equation 26 can be expressed as:

WQa=Wp (29)
where a is solved as:
AT AT A ANTLAT AT A .
a= (Q W WQ) Q' W' Wp. (30)

The readers should note that Equation 29 provides a
generalized formulation of the all-pass filter-based mul-
tiple notch filter design approach whereby the weighting
matrix W incorporates both the selection mechanisms
and weighting strategies. We note that for methods I to
IV, the common I and 0 sub-matrix structure of both S
and W (as evident in Tables 3 and 4), results in weighting

Table 4 Relationships between design methods and
weighting matrix W

Method | Method Il Method IlI Method IV
w, 1 0 1 1
Wy 1 1 0 1
Wy 0 | 1 |
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matrices that have the same form (see columns 1 to 4 of
Table 5), despite their different objectives.

Thus, the incorporation of new design constraints can
be easily achieved by modifying the weighting matrix
of Equation 28. Method V in Table 5 is a new design
method derived from Equation 29. It utilizes the same
frequency selection method as method IV in Table 2.
However, it treats notch and cutoff frequencies with dif-
ferent significance through the different weighting matrix.
The advantages of method V is demonstrated in Section 4.
The readers should note that Table 5 only provides five
special cases of weighting matrix w. They can easily be
modified to address different design requirements beyond
those presented.

3.4 Generalized design framework
Our all-pass filter-based approach to multiple notch filter
design can therefore be summarized as follows.

Step 1 Acquire the design specifications of the multiple
notch filter as a set of N notch frequencies and N notch
bandwidths that form a set of 3N constraint frequencies
presented in Table 1.

Step 2 For the 3N frequencies in step 1, we can determine
the 3N related all-pass filter phases from Table 1 and then
produce 3N x 1 vectors @ and 6.

Step 3 Select one of the constraint methods from Table 2
and determine its corresponding selection matrix S from
Table 3. From this, compute the frequency vector @
via Equation 19 and the all-pass phase vector 6 from
Equation 20.

Step 4 Substitute all entries of @ and 8 into Equations 17
and 18 to compute the 3N x 1 vector p and 3N x 2N matrix
Q, necessary in step 6.

Step 5 Employing a measure of importance of notch, left-
hand and right-hand cutoff frequencies determine a suit-
able 3N x 3N weighing matrix W from Table 4 and then
combine it with S to form W using Equation 28.

Step 6 Construct the weighted equations WQa = Wfa
and solve it by the least-squares technique of Equation 30.
The solution a =[ay,as, - - - ,asn]?T is the desired all-pass
filter coefficient vector.

Step 7 Substitute all entries of a into Equation 6 to gain
system function A(z) of the all-pass filter. Then, substi-
tute A(z) into H(z) = (1 4+ A(2))/2 to obtain the system
function H(z) of the desired multiple notch filter.

Table 5 Relationships between design methods and
weighting matrix W, fora > 1

Method| MethodIl Methodlll MethodIV Method V
W, 1 0 | I 1
Wy 1 | 0 | al
Wi ()} | | | 1
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Step 8 Let z = ¢ and substitute it into H(z) to obtain
H (¢). Compare |H (¢/) | with the given specifications
to verify whether the design requirements are satisfied. If
it is not, go to step 3 to choose a different method and/or
step 6 to set a new weighting matrix and repeat the above
design process.

Once the desired notch filter H(z) is obtained, it can also
be expressed as:

2N
Z bszk
k=0
2N
1+ Y az
k=1
where ay(k = 1,2,--- ,2N) and by (k =0,1,---,2N) are
coefficients of H(z). Specifically, by = (1 + aon)/2 and
by = (ar + asn_i)/2 or in the time domain as:

H(z) = (31)

2N 2N
sl =) bxln—kl =Y ayln— k], (32)
n=0 n=1
where x[ n] and y[ #] are the input and output signals of the
notch filter, respectively. Equation 32 is applied to perform
notch filtering by iterative operations in time domain.

4 Experiments and results analysis

To assess the performance of the proposed framework for
multiple notch filter design, the five methods of Table 5
are applied and compared empirically in terms of the pass-
band error metric defined as:

E () =20logy, |H () — Hg (¢”)| (dB)  (33)

where w €[0,7] —[wn; — Bni/2, wni + Bni/2], for i =
1,2,--- ,Nand Hy (e"”) is defined by Equation 2.

4.1 Design performance among five methods

Under the conditions of sufficiently narrow bandwidths,
the five methods derived from the proposed framework
obtain similar results. However, under the rigid conditions
of non-uniform notch frequencies and wide bandwidths,
the limitations of those methods emerge. For example,
for the specifications of wy = [0.171,0.271,0.471,0.87r]T
and By = [0.067,0.067,0.087,0.107]T, the magnitude
responses and pass-band errors of the designed notch
filters are presented from Figures 3,4,5 and 6. For con-
venience, method V is set as the referenced method (for
o = 5in Table 5).

Figures 3,4,5 show that the magnitude response of
method V is better than those of methods I, II, and III, as
a whole. It is worth noting that method III exhibits larger
notch frequency drift which must be avoided in practice.
Figure 6 shows that the magnitude response of method IV
is close to that of method V but also produces large notch
frequency drift. Hence, we conclude that method V has
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the best performance in our tests and may be the opti-
mal choice in practice. Thus, we employ method V for the
remainder of experiments. Figure 7 shows that the values
of « in Table 5 affect the design performance of method
V. A smaller « can result in notch frequency shifting, and
larger values may decrease the performance at cutoff fre-
quencies, although the latter impact is small. Based on the
authors’ experience, @ should typically be greater than 3
to obtain good performance in practice.

4.2 Comparisons with the classical methods

For the same specifications as Section 4.1, the multiple
notch filters are designed by the cascading method, the
optimal pole placement method, and the all-pass filter-
based method in [1]. Their magnitude responses and
pass-band errors of the designed results are shown in
Figures 8,9 and 10.

Figure 8 shows that the cascading method cannot meet
the design requirements due to its uncontrollable gain.
Figure 9 demonstrates that the optimal pole placement
method and method V have similar magnitude responses,
but the latter does not require iterative calculations.
Figure 10 shows that the designed result of the method
in [1] is the same as that of method I because they adopt
the same all-pass filter phase information to design notch
filter, but method I uses the degenerated design forms
(shown in Equation 23) with no tangent computations.
Therefore, method V has some advantages over those
classical methods.

4.3 Interference elimination of ECG signals

The original waveform of a contaminated ECG signal is
shown in Figure 11. It is sampled with frequency of 720
Hz. The main interference arises from the fundamental
and harmonic components of power lines. To eliminate
those interference, a multiple notch filter is designed with
specifications of @y = [0.27787,0.55567, 0.83337]T and
Bw = [0.017,0.017,0.017]T. The frequency responses
of the filter are shown in Figure 12 which demonstrates
that the power line interference has been effectively elim-
inated by the designed notch filter.
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It is worth noting that several oscillations occur near
to the origin in Figure 11. This is due to edge effects
(due to the iterative operations using Equation 32) at the
beginning of the processing window and vanishes quickly.

4.4 Radio noise suppression of corona current

Corona current is usually measured to estimate the corona
discharge loss of high-voltage direct current (HVDC)
power transmission lines. It occupies a wide frequency
range and is affected by various electronic and non-
electronic factors, especially narrow-band radio noise
from civilian broadcasts. The original corona current was
measured from the HVDC transmission lines with sam-
pling frequency of 1 MHz. Its waveform and spectrum are
shown in Figure 13.

Due to the carriers of amplitude modulation (AM)
broadcast signals, there are five significantly narrow-
band radio noise components in Figure 13. To analyze
corona loss accurately, those components must be effec-
tively suppressed. The desired notch filter is designed with
wn = [0.34407,0.45207,0.53487,0.72207,0.79407] 7,
and By = [0.0087,0.0087,0.0087,0.0087,0.0087]".
The frequency responses of the notch filter are shown in
Figure 14.

The filtered waveform and spectrum are shown in
Figure 15. Compared with Figure 13, the narrowband
radio noise components has been suppressed and the
waveform quality is enhanced significantly, although it
also has many other interference components due to the
complexity of corona discharges. Subsequent calculations
show that the signal-to-noise ratio (SNR) of corona cur-
rent increases 11.45 dB by the designed notch filter.

Based on the results above, we surmise the following: 1)
irrespective of computational complexity and for the same
specifications, method V obtains the best results among
the derived approaches (methods I to V). 2) Method V
outperforms the cascading method and the technique
of [1] that exhibits the same results as method I. More-
over, method V has close results to the optimal pole
placement technique but exhibits lower computational
complexity. 3) The effectiveness and practicality of the
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proposed framework has been demonstrated by the exper-
imental results on power line interference elimination of
ECG signals and narrow-band radio noise suppression of
HVDC corona currents.

4.5 Discussions

For a multiple digital filter with N notch frequencies, it
has 3N constraints (N notch frequencies, N left-hand,
and N right-hand cutoff frequencies). All-pass filter-based
design methods attempt to find 2N appropriate coeffi-
cients to construct a 2N-order rational system function
to approximate 3N constraints. The proposed framework
enables a unified representation of the all-pass filter-based
design methods using part or all (2N or 3N) constraints to
find those 2N coefficients.

Among the derived methods from the proposed frame-
work, methods [, II, and III only use 2N available phase
information of all-pass filter. Their design equations are
the special forms of the weighted design techniques.
They are full rank and have exact solutions. Moreover,
for the same design specifications, method I obtains the
same results as the method in [1], but it avoids tangent
computations which may result in ill-conditioned linear
equations.

Methods IV and V utilize all 3N available phase infor-
mation of all-pass filter. Their design equations are over-
determined and only have least-square solutions. Method
V achieves a better compromise between notch frequen-
cies and cutoff frequencies. It obtains the best results
among the derived methods, although it has very slight
frequency drift which can be neglected in practice. The
reader should note that in Section 3.2, the 2N notch fil-
ter coefficients of methods I, II, and III are directly solved
from 2N x 2N regular linear equations via Gaussian elim-
ination, but those of methods IV and V are solved from
3N x 2N over-determined linear equations using weighted
least-square techniques. Hence, the computational com-
plexity of methods IV and V are almost identical but
higher than for methods I, II, and III.

In our design framework, the selection mechanisms
provide the flexibility to choose a desired design method.
The weighting strategies implement the compromise
among the restricted conditions. Through the incorpora-
tion of diagonal selection matrix S and weighting matrix
W, the improved diagonal matrix W can implement selec-
tion and weighting simultaneously, but the calculation
burden does not increase significantly. The computational
efficiency of the proposed framework is far higher than
that of the iteration-based design method.

5 Conclusions

In this paper, we present an all-pass filter-based design
framework for digital multiple notch filters. The main
contributions include: 1) the all-pass filter-based design
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process is reformulated as a novel linear equation which
overcome the limits of classical design methods due to
no tangent operations. 2) All-pass phase selection mecha-
nisms and weighting strategies are introduced and incor-
porated to meet the diverse of requirements. They con-
stitute the main parts of the presented framework under
weighted least-square sense. Our framework enables the
unified representation of a family of all-pass filter-based
design methods. We highlight five design methods (meth-
ods I to V) derived from the presented framework. Their
performance and effectiveness are compared and vali-
dated by a series of experimental results. Our inves-
tigations leads us to believe that method V has the
best design performance and is recommended for use in
practice.

Future work will extend our formation to: a) explore
an adaptive IIR multiple notch filter design methodology
and b) explore a FIR multiple notch filter by linear phase
control mechanisms and weighting strategies.
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