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Deletion of glucose oxidase changes the pattern of
organic acid production in Aspergillus carbonarius
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Abstract

Aspergillus carbonarius has potential as a cell factory for the production of different organic acids. At pH 5.5, A.
carbonarius accumulates high amounts of gluconic acid when it grows on glucose based medium whereas at low
pH, it produces citric acid. The conversion of glucose to gluconic acid is carried out by secretion of the enzyme,
glucose oxidase. In this work, the gene encoding glucose oxidase was identified and deleted from A. carbonarius
with the aim of changing the carbon flux towards other organic acids. The effect of genetic engineering was
examined by testing glucose oxidase deficient (Δgox) mutants for the production of different organic acids in a
defined production medium. The results obtained showed that the gluconic acid accumulation was completely
inhibited and increased amounts of citric acid, oxalic acid and malic acid were observed in the Δgox mutants.
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Introduction
With depletion of crude oil and increased environmental
concern, biologically based processes for producing or-
ganic acids that can be used as building blocks in the
chemical industries have begun to raise attention in re-
cent years (Holladay et al. 2007). It is widely accepted
that a suitable industrial strain for organic acid produc-
tion is one of the key factors affecting the feasibility of
the entire production process. Filamentous fungi have
been well studied as cell factories for different produc-
tion of organic acids for decades because they exhibit
excellent abilities to utilize a variety of carbon sources
and naturally accumulate high amount of specific or-
ganic acids under stressed conditions, like citric acid
production by Aspergillus niger and malic acid produc-
tion by Aspergillus flavus (Battat et al. 1991; Papagianni
et al. 1999). Although the mechanisms of organic acid ac-
cumulation by different fungi have not been fully under-
stood, many successful attempts have been made to
improve organic acid production in filamentous fungi by
using genetic modification and production optimization.
In this study, Aspergillus carbonarius, which has a close
phylogenetic relationship to Aspergillus niger (Thom and
Currie 1916) was selected to exploit its potential as a new
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cell factory for production of different organic acids. It re-
sembles A. niger in many features, including morphology
and high capacity of producing citric acid (Ghareib 1987;
Joosten et al. 2001; Weyda et al. 2014), which creates
the possibility to apply the knowledge accumulated for
A. niger directly to metabolic engineering of A. carbonar-
ius for production of organic acids.
In organic acid production using filamentous fungi,

pH is an important parameter. It has been reported that
low pH is necessary for obtaining high yields of citric
acid using A. niger, and reversely pH around 5 ~ 6 is pre-
ferred for producing malic acid using A. flavus and fu-
maric acid using Rhizopus oryzae (Peleg et al. 1988a;
Xu et al. 2012). The production pattern of organic acids
can also be changed dramatically in filamentous fungi by
adjusting pH during cultivation. In A. niger, production
of citric acid was dramatically suppressed at near neutral
pH as gluconic acid started accumulating in high
amount (Bercovitz et al. 1990; Goldberg et al. 2006). In
this study we investigated the effect of deleting the glu-
cose oxidase in Aspergillus carbonarius for the purpose
of organic acid production at pH 5–6. At this pH range,
the fungus accumulates high amounts of gluconic acid,
presumably due to secretion of glucose oxidase, whereby
the fungus quickly converts glucose into gluconic acid
outside the cell thus preventing further metabolism of
glucose (Mischak et al. 1985). The aim of this study was
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therefore to eliminate the gluconic acid production in
order to increase the carbon flux towards other organic
acids. The hypothesis was: by eliminating gluconic acid
production, A. carbonarius would increase 1,4-dicarbox-
ylic acid production. Deletion of the gene encoding the
glucose oxidase (gox) was conducted in A. carbonarius
to suppress the conversion of glucose to gluconic acid.
However, low frequency of homologous recombination
in filamentous fungi often leads to very limited gene tar-
geting efficiency in fungal transformation. Therefore,
a Ku complex deficient strain of A. carbonarius (Gallo
et al. 2012), which is supposed to dramatically increase
the homologous recombination frequency due to the in-
activation of Ku complex, was selected for this work.

Materials and methods
Strains and culture medium
A Ku deficient strain, KB1039 (ΔkusA, obtained from
K. Bruno, PNNL, US), which is also uracil auxotrophic
(ΔpyrG), of the wild type A. carbonarius 5010 (ATCC®
MYA-4641™) (Gallo et al. 2012), was used as the parental
strain to construct the Δgox mutants. Both the A. carbo-
narius KB1039 (ΔkusA) and the wild type 5010 was cul-
tured at PDA (potato dextrose agar) medium at 30°C
and for the Ku deficient strain, the medium was supple-
mented with uracil and uridine, each at the final concen-
tration of 2 mM.

Identification of the glucose oxidase gene in
A. carbonarius
Due to lack of information about glucose oxidase (GOX)
genes in A. carbonarius, the sequence of the gox gene in
A. niger (accession no. X16061.1) was selected to identify
the orthologous gox gene in A. carbonarius based on the
close phylogenetic relationship between A. niger and
A. carbonarius. One sequence with high identity was
identified in the alignment hit as a putative gox gene in
A. carbonarius. The sequence containing extension of
1000 bp from both 5’ and 3’ flanking regions of the gox
encoding gene sequence was also identified with the
purpose of using these 2 kb sequence flanking regions
surrounding the putative gox gene for deletion of the
gene. The sequence was submitted to GenBank with the
accession no. KF741791.

Plasmid construction for gene knock-out
The genomic DNA was isolated from wild type A. carbo-
narius 5010 by using phenol-chloroform extraction
(Andreou 2013) and used as template to amplify 5’ and
3’ flanking regions of the gox gene with primers contain-
ing uracil overhang (Table 1). Since the gene knock-out
was carried out in a Ku deficient strain, it was not neces-
sary to have very long fragments to increase the fre-
quency of homologous recombination. It is reported that
fragments about 1 kb both upstream and downstream to
a target gene could provide efficient homologous recom-
bination in A. niger (Meyer et al. 2007). Therefore, the
size of fragments amplified from A. carbonarius was be-
tween 900 and 1000 bp. The PCR reaction was set up in
50 μL reaction volume: 5 μL 10X pfu turbox buffer; 1 μL
10μM dNTP; 2.5 μL 10 uM forward and reverse primer;
1 μL pfu turbo cx polymerase (Agilent); appropriate
amount of DNA template and water added up to 50 μL.
The PCR program was as follows: Initial denaturing step
at 95°C for 3 min; 25–30 cycles of denaturing step at
94°C for 30s; annealing step at 55-65°C for 30s; elong-
ation step at 72°C for specific amount of time calculated
by the size of desired fragments (1 min/kb); final elong-
ation step at 72°C for 5 minutes. The pfu turbocx poly-
merase was only used to amplify the DNA fragment
with primers with uracil overhang in simpleUSER clon-
ing (Hansen et al. 2014), whereas all other PCR reactions
were carried out using RUN (taq) polymerase (A&A bio-
technology). The plasmid pSB414 was designed and con-
structed for simpleUSER cloning (Hansen et al. 2014)
and contains the following genetic elements: gpdA pro-
moter, trpC terminator and pyrG gene, including a
specific cassette facilitating simpleUSER cloning. The
cassette was activated by the restriction enzyme PacI
and the nicking enzyme Nb.BbvCI to generate the com-
plementary overhang to the target fragments. The target
fragments were cloned into the plasmid through self-
assembly followed by transformation of E. coli with the
plasmid for further propagation using standard procedures.

Protoplast transformation
Protoplasts of A. carbonarius were made from young
mycelium harvested after overnight growth in YPD
medium. The cell walls were degraded by 60 mg/ml of
the commercial product Vino Taste Pro (Novozymes
A/S) in protoplasting buffer (1.2 M MgSO4, 50 mM
Phosphate Buffer, pH 5.0) for approx. 4 hours. Proto-
plasts were filtered and purified from the mixture, sus-
pended in STC buffer (1.0 M sorbitol, 50 mM Tris, 50
mM CaCl2 pH 8.0) and counted with appropriate dilu-
tion folds in a haemacytometer. The final concentration
of protoplasts for aliquots was adjusted to 2×107/mL.
Protoplast transformation was carried out by adding
5 μg plasmids in 100 μl protoplast suspension and incu-
bated on ice for 15 minutes followed by incubation for
15 minutes at room temperature after adding 1 mL of
40% PEG. The mixture was transferred into 10 mL mini-
mum medium (Gallo et al. 2012) with 1 M sorbitol at
30°C for 1 hour with agitation at 80 rpm in the incuba-
tor shaker (KS 4000 I control, IKA). Then the cells were
concentrated by centrifugation for 5 minutes at 800 × g,
re-suspended in minimal medium containing 1 M sorb-
itol and 0.8% agar and poured into petri-dishes. Next



Table 1 Primers used in this research

Name Sequence (5’→ 3’) Annotation

Gox upU Fw GGGTTTAAUTCTCCTTGTGCTGACCAACCG USER cloning of gene gox upstream

Gox upU Rv GGACTTAAUGTTTACCAATCCCGCCGCGTC USER cloning of gene gox upstream

Gox downU Fw GGCATTAAUAGGTGAGATGGAGTTGTTG USER cloning of gene gox downstream

Gox downU Rv GGTCTTAAUTTGGGATGGGTAGGGTATT USER cloning of gene gox downstream

Gox Fw1 GCCCTGCCACACTACATCCG Amplify internal sequence of gene gox

Gox Rv1 TCGCCACAGCCGAGATCCTT Amplify internal sequence of gene gox

Gox Fw2 GCTGCCAATCCTTCGGTCCA Amplify internal sequence of gene gox

Gox Rv2 TAGTCGCCAAAGGTCTCGTT Amplify internal sequence of gene gox

Gox Fw3 AACAACCTCACCCACCAGAG Amplify the sequence containing gene gox

Gox Rv3 ACCATTGAAGTGGCAGGAAC Amplify the sequence containing gene gox
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day, a second layer of the same medium was poured on
the top. The plates with potential transformants were in-
cubated at 30°C for at least 3 days until transformants
appeared.
Sporulating transformants were inoculated by streak-

ing out on PDA medium and incubated at 30°C over-
night. Single colonies were identified and picked out to
verify the deletion of the target gene by extracting the
genomic DNA from the transformants and amplifying
the fragments with expected size in PCR. The transfor-
mants were further transferred to normal PDA plates
and preserved for further steps.

Growth conditions
Spores of fungal transformants were harvested from PDA
plates after 5–7 days of cultivation at 30°C, and collected
through sterilized Miracloth (EMD Millipore, USA) in
sterile 0.05 M phosphate buffer pH 6.8 in a 15 mL falcon
tube. The spores were counted in a haemacytometer and
then inoculated into 50 mL falcon tubes containing 10 mL
pre-culture medium (3.6 g/L yeast extract and 10 g/L pep-
tone). The final concentration of spores in the pre-culture
medium was approximately 1×105/mL. Pre-cultivation was
carried out at 30°C with agitation of 250 rpm for 2 days.
Pellets formed in the pre-culture medium were then trans-
ferred into production medium by filtering the pre-culture
medium through Miracloth, and all the pellets on the
top were collected and transferred into the production
medium, which was modified from the production
medium C described by Peleg et al. 1988a, b: Glucose, 100
(g/L); (NH4)2SO4, 2 (g/L); KH2PO4, 0.15 (g/L); K2HPO4,
0.15 (g/L); MgSO4 7H2O, 0.1 (g/L); CaCl2 2H2O, 0.1 (g/L);
NaCl, 0.005 (g/L); FeSO4 7H2O, 0.005 (g/L), 0.1 g/L
ZnSO4 and CaCO3, 60 (g/L) (Peleg et al. 1988a). Cultiva-
tion was carried out in 100 mL flasks containing 20 mL
production medium at 30°C with agitation of 180 rpm.
The cultivation time varied from 7 to 10 days. The pre-
culture and acid production was carried out in triplicates
and pH was kept at 5.5 for the entire procedure.
Analysis of extracellular metabolites
Samples taken from organic acid fermentation were
acidified with 72% sulfuric acid to a final concentration
of 5% in order to precipitate the calcium ion in form of
calcium sulfate and exchange the organic acids back to
liquid phase. The acidified samples were incubated at
80°C for at least 15 minutes to complete the reaction.
After incubation, pH of the samples should be lower
than 2 and was checked by pH indicator paper. The
acidified samples were then centrifuged at 10,000 rpm
for 1 minute and the supernatant was used for HPLC
analysis. The analysis for sugar and organic acids were
carried out in Aminex 87H column (Biorad) at 60°C by
using HPLC mobile phase at a flow rate of 0.6 mL/minute.
The HPLC samples were kept at 4°C in the machine
during the analysis process and then stored at −20°C. The
measurements of L-malic acid and D- gluconic acid in
the samples were carried out respectively with L-malate
(L-malic acid) kit and D-gluconate kit as described by
the manufacturer (Megazyme).

Results
Protoplast transformation and deletion of the gox gene
from A. carbonarius
Protoplast transformation was carried out with circular
pSB414gox plasmids. Two Δgox transformants were ob-
tained and checked for the deletion of the putative gox
gene by 3 different pairs of primers (Table 1). Two pairs
of primers (Gox Fw1-Rv1 and Fw2-Rv2) amplified the
internal sequence of the putative gox gene, and the third
pair of primers (Gox Fw3-Rv3) was designed to amplify
the putative gox gene together with the flanking regions
in order to check the replacement of the gox gene
(Figure 1a). As shown in Figure 1b, no fragments could
be amplified by the two pairs of internal primers in PCR,
indicating that the gox gene was deleted. In PCR with
external primers, a fragment at approx. 6.2 kb was amp-
lified from both of the transformants, which indicated
that the putative gox gene had been successfully replaced



Figure 1 Verification of deletion of the gox gene in transformant 4 and 5 (a) Disruption of gox gene and primer binding sites (b)
Amplification of internal sequence with primer Gox Fw1-Rv1 and Fw2-Rv2. Lane 1–2, Δgox transformant 4; lane 3–4, Δgox transformant 5;
lane 5–6, ITS sequence amplified from Δgox transformant 4 and 5; lane 7–8, internal fragments of the gox gene from the wildtype strain (~1,5 kb
and 0,6 kb) (c) Amplification of the gox gene containing region with the external primers Gox Fw3 and Rv3. Lane 1–2, amplified fragments from
gox transformants 4 and 5. (~6.2 kb). Lane 3, amplified fragment from wild type (~7.7 kb).
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by the marker gene, since the length of the original
sequence containing the gox gene was approx.7.7 kb
(Figure 1c). A PCR amplifying the ITS region (Bulat et al.
2000) confirmed the quality of the genomic DNA
(Figure 1b). The size of all the amplified DNA fragments
were estimated by comparing with 1 kb DNA ladder
(Figure 1b).
Effect of deletion of the gox gene on gluconic acid
production by A. carbonarius
The gox gene deleted from A. carbonarius is supposed
to play a key role in the formation of gluconic acid. In
order to evaluate the effect of this genetic modification
on gluconic acid production, growth experiments were
carried out with the Δgox mutants for 7 days at pH 5.5
by employing the A. carbonarius 5010 and KB1039
(ΔkusA) as control. As shown in Figure 2, the KB1039
(ΔkusA) and wild type strain (5010) produced high
amount of gluconic acid (72 g/L and 53 g/L respectively)
in the production medium after 7 days, and both of the
Δgox transformants only produced 0.1 g/L gluconic acid
by the end of the growth experiment. However, in order
to confirm that the low gluconic acid production was
not caused by different growth rates of the Δgox mu-
tants, the biomass of the Δgox mutants was determined
after the growth experiment. As shown in Figure 3, the
Δgox mutants produced similar amount of biomass as
the parent strain, which indicated that they grew equally
well under the same conditions. The result confirmed
that deletion of the gox gene can effectively inhibit the
formation of gluconic acid by A. carbonarius.
Figure 2 The results of fermentation test on Δgox mutants in malic a
measured for gluconic acid production, whereas all others were tested in t
Analysis of extracellular metabolites of the Δgox mutants
in the acid production media
Cultivation with the selected Δgox mutants was carried
out in shaking flasks at pH 5.5 to investigate the effect
of the gox gene deletion on production of organic acids
in A. carbonarius. However, due to the accumulation
and consumption of gluconic acid by wild type A. carbo-
narius, it is difficult to use glucose as the sole carbon
source to compare the performance of wild-type strain
with the Δgox mutant during growth. The evaluation of
organic acid production was carried out based on the
concentration of extracellular acid products in the culti-
vation broth. As shown in Figure 4a, the concentration
of citric acid was dramatically increased after 7 days cul-
tivation in the Δgox mutants compared with the wild
type 5010 and the parent KB1039 (ΔkusA) strains. In
addition, an accumulation of oxalic acid was also ob-
served in the Δgox mutants during the cultivation
(Figure 4b) and the production of malic acid also in-
creased 2.4 and 1.8 folds, respectively, compared with
the parent strain and the wild type strain (Figure 4c).

Discussion
In the present work, a glucose oxidase gene (gox) in
A. carbonarius involved in gluconic acid production was
identified and deleted. In order to achieve a high gene
targeting efficiency to facilitate the process of deleting
the gox gene, a Ku deficient strain KB1039 (ΔkusA) was
selected to construct Δgox transformants. The Ku com-
plex including Ku70 and Ku80 has been reported to play
an essential role in the non-homologous end joining
pathway (Dudášová et al. 2004). Deletion of the Ku
cid production medium. Only one sample from wild type strain was
riplicates.



Figure 3 The yield of gluconic acid production based on the biomass growth. The yield was calculated based on the results from the
samples taken on day 7.
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encoding gene can inactivate the non-homologous re-
combination mechanism and increase the frequency of
homologous recombination (Kooistra et al. 2004; Meyer
et al. 2007; Ninomiya et al. 2004). In this study it was
shown that the transformed DNA solely was integrated
via homologous recombination in all the obtained trans-
formants which proved that Ku deficient strain could be
used as an efficient tool in gene targeting and study of
gene function in A. carbonarius. By deleting the gox
gene in a Ku deficient strain, it was also shown that the
production of gluconic acid was dramatically reduced in
Δgox mutants. Evaluation of growth experiments after 7
days of cultivation showed that the mutants produced
increased amounts of malic acid and citric acid as well
as an accumulation of oxalic acid (Figure 4).
Since the aim of this work was to investigate the effect

of deleting glucose oxidase in A.carbonarius on the pro-
duction of organic acids at a pH where the glucose oxi-
dase is expressed, the cultivation was carried out at pH
5.5. Under this condition, A. carbonarius was capable of
producing high amount of gluconic acid in media con-
taining high concentration of glucose, resulting in a fast
depletion of glucose, and it was shown that the elimin-
ation of glucose oxidase had an impact on production of
other organic acids. Sugar concentration is considered as
an important factor in organic acid production for fila-
mentous fungi and has been used e.g. for citric acid pro-
duction by A. niger, malic acid by A. flavus, and fumaric
acid and lactic acid by R. oryzae (Alvarez-Vasquez et al.
2000; Peleg et al. 1988b; Ding et al. 2011). The effect of
high sugar concentration on organic acid production has
been investigated in A. niger for citric acid production.
These studies indicate that high sugar concentration
seems to repress the α-keto-glutarate dehydrogenase in
A. niger and increases the intracellular concentration of
fructose-2,6-bisphosphate which leads to high yield of
citric acid production by activating phosphofructokinase
(PFK1) (Kubicek-Pranz et al. 1990; Papagianni 2007). Re-
versely, the conversion of glucose to gluconic acid will
decrease the sugar concentration very fast during culti-
vation and further eliminate the effect of high sugar
concentration. This assumption was supported in this
study by comparing the pattern of organic acid produc-
tion in the Δgox mutants with the parental strain and
the wild type strain after 3 days of cultivation. In the
early phase of acid production, the glucose concentra-
tion still remained high although part of the glucose was
already converted to gluconic acid. Therefore, the pat-
tern of organic acids was similar among the Δgox mu-
tants and the parental and wild type strains. However,
when the glucose concentration in the media became
much lower for the parental and wild type strains than
for the Δgox mutants in the later phase of cultivation
due to the accumulation of gluconic acid, the pattern of
production of organic acid in the parental and wild type
strains started varying from the Δgox mutants. The Δgox
mutants produced higher amount of malic acid and
citric acid compared with the parental and wild-type
strains, and after 7 days of cultivation, production of
oxalic acid was also observed in the Δgox mutants.
The enhanced production of citric acid and malic acid

as well as accumulation of oxalic acid in the Δgox mu-
tants must be a result of a higher carbon flux through
the Glycolysis. Citric acid is solely produced through the



Figure 4 The effect of gene deletion on the production of organic acids by A. carbonarius. (a) The concentration of citric acid in the
fermentation medium after day 3 and 7 (b) The concentration of oxalic acid in the fermentation medium after day 3 and 7 (c) The concentration
of malic acid in the fermentation medium after day 7.
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TCA cycle, and the enhanced production indicates an im-
provement of the carbon flux into relevant pathways in A.
carbonarius including glycolysis and TCA cycle. Moreover,
the accumulation of oxalic acid might imply an elevated
carbon flux towards cytosolic oxaloacetate reduction path-
way which converted oxaloacetate to malate in the cytosol.
Although, the oxalic acid producing pathway has not been
well studied in A. carbonarius, it has been shown in A. niger,
that oxalic acid is mainly produced by hydrolyzing oxaloac-
etate into oxalate and acetate by the enzyme oxaloacetase
located in the cytosol (Ruijter et al. 1999). Due to the close
phylogenetic relationship between A. niger and A. carbo-
narius, it could be concluded that the accumulation of oxa-
lic acid was most probably attributed to an increase of
oxaloacetate in the cytosol, which was also in accordance
with the increased production of malic acid during cultiva-
tion. Therefore, the high sugar concentration and im-
proved carbon flux towards acid producing pathway might
result in the different organic acid pattern in Δgox mutant.
It is very likely that malic acid in A. carbonariusis transi-

ently produced but not capable of accumulating at high
concentration, especially in the Δgox mutant, the en-
hanced carbon flux towards the cytosolic oxaloacetate re-
duction pathway was supposed to result in a much higher
concentration of malic acid during cultivation, but this
was not achieved in our experiments. Malate, as an im-
portant intermediate of the TCA cycle, plays multiple roles
in cell metabolism. A dramatically increase of intracellular
malate concentration might influence the cell function and
therefore result in immediately reduction via other path-
ways. The transiently produced malate may not be exported
and accumulated during cultivation since A. carbonarius is
able to produce high amount of citric acid and the malate
instead may be directly used in intracellular anti-port of
citrate and malate across the membrane of mitochondria as
it is suggested for A. niger (de Jongh and Nielsen 2008).
Therefore, it may suggest that a simple change in cultiva-
tion condition and single genetic modification may not be
enough to completely reroute the carbon flux from citric
acid production to other organic acids. A series of genetic
modifications may be required in the future work on meta-
bolic engineering of A. carbonarius for production of valu-
able organic acids.
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