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Abstract 

Porcine reproductive and respiratory syndrome virus (PRRSv) infection alters the host’s cellular and humoral immune 
response. Immunity against PRRSv is multigenic and vary between individuals. The aim of the present study was to 
compare several genes that encode for molecules involved in the immune response between two groups of vacci‑
nated pigs that experienced short or long viremic periods after PRRSv challenge. These analyses include the sequenc‑
ing of four SLA Class I, two Class II allele groups, and CD163, plus the analysis by quantitative realtime qRT‑PCR of 
the constitutive expression of TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9 mRNA and other molecules in peripheral blood 
mononuclear cells.
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Introduction, methods and results
Introduction
Porcine reproductive and respiratory syndrome (PRRS) is 
one of the most economically important swine diseases 
worldwide [1]. Currently, two species of PRRS virus are 
recognized: PRRSv-1 and PRRSv-2 both within the genus 
Porartevirus, Family Arteriviridae. The genome size 
of PRRSv is about 15  Kb with at least 10 open reading 
frames (ORFs). ORF1a and 1b encode for two polypro-
teins that after enzymatic cleavage will result in at least 
14 non-structural proteins (Nsps) involved in viral rep-
lication, plus at least two other proteins encoded after a 
ribosomal frameshift [2]. The 3′ end of the viral genome 
(ORFs 2a to 7) encodes five minor (GP2a, GP3, GP4, 

ORF5a protein and E) and three major (GP5, M and N) 
structural proteins [3].

The primary target of PRRSv are  CD163+ macrophages 
that are common in lungs and lymphoid organs, par-
ticularly tonsil [4]. The entry of the virus into target 
cells involves: (i) an initial attachment to the cell sur-
face, probably mediated by heparan sulfate (HS) [5] and 
porcine sialoadhesin-1 [6]—also known as CD169—or 
other sialoadhesins [7], probably by interacting with the 
GP5-M heterodimer, (ii) the internalization of the virus 
by endocytosis, (iii) the interaction with CD163, driven 
by the viral GP2-GP3-GP4-E complex, and (iv) the sub-
sequent release of the viral genome into the cytoplasm 
[4]. Of the abovementioned receptors CD163 is consid-
ered to be the essential one. Actually, gene-edited pigs 
lacking the exon 7 of CD163 resulted in the generation of 
porcine alveolar macrophages (PAMs), and macrophages 
derived from peripheral blood completely resistant to 
both PRRSv-1 and 2 [8].

A key feature of PRRSv infection is the alteration of the 
host’s cellular and humoral immune response (reviewed 
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by [9]). Typically, PRRSv shows strong inhibitory effects 
on Type I interferons (IFN-β, IFN-α), affects the expres-
sion of several interleukins (i.e. IL-1, IL-6, IL-8, IL-10, 
TNF-α) and down-regulates swine leucocyte class I 
(SLA-I) antigens [10]. Also, several pattern recognition 
toll-like receptors (TLR3, TLR7, TLR8 and TLR9) are 
involved in the interaction between PRRSv and the host 
immune system [11]. It is increasingly evident that dif-
ferent strains may have a different potential for interfer-
ing with the pig immune system [10, 12]. Besides, host’s 
genetic traits may influence the immune response after 
PRRSv vaccination [13], or the course of PRRSv infec-
tion [14]. For instance, the risk of infection has been 
suggested to be related with several single nucleotide 
polymorphisms (SNPs) in CD163 and CD169 [15]. Also, 
other SNPs and microRNAs (miRs) especially in proteins 
involved in antiviral and inflammatory response have 
been associated to differential susceptibility to PRRSv 
infection [16–19].

In general, it is assumed that PRRSv only induces par-
tial protection against heterologous strains [20] being 
impossible by now to forecast the degree of protection 
between two different isolates. In addition, large indi-
vidual variation in the immune response is seen between 
individuals. For example, some individuals may show full 
or almost protection against a given isolate, while others 
are only partially protected or not protected at all [13].

The most widely admitted concept is that immunity 
against PRRSv is multigenic and may substantially vary 
between individuals. The aim of the present study was 

to compare several genes that encode for molecules 
involved in the immune response between two groups 
of vaccinated pigs that experienced short or long viremic 
periods after PRRSv challenge. These analyses include 
the sequencing of four SLA Class I, two Class II allele 
groups, and CD163 (Table 1), plus the analysis by quan-
titative realtime RT-PCR of the constitutive expression of 
TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9 mRNA and 
other molecules in peripheral blood mononuclear cells 
(PBMC) (Table 2).

Animal experiment
Samples selected come from animals studied in a trans-
mission by contact experiment of PRRSv-1 [21]. Briefly, 
commercial cross-breed pigs were vaccinated with a 
live modified commercial vaccine and challenged with 
the PRRSv-1 strain CReSA3267 (Accession Number 
JF276435) 30  days later. Animals were bled at several 
time points before and after challenge. The viral load 
was quantified in sera samples by means of one step 
RT-PCR (qRT-PCR) targeting PRRSv ORF7. According 
to the duration of the viremia, 20 pigs were chosen and 
classified for the purposes of the present study as short-
viremic (namely less than 5  days of viremia after chal-
lenge, SV, n = 8) or long-viremic (LV, ≥ 5 days of viremia, 
n = 12). The spleens and PBMCs of the selected animals 
collected at the end of the study (30 days post-challenge) 
were used for sequencing, TLR and cytokine expression 
analyses.

Table 1 SLA Class I and Class II, allele groups and CD163 analysed by sanger sequencing

Length of the PCR fragments amplified, number of contigs obtained (out of 20 analysed), mean coverage per position of the contigs obtained and primers used.
a [27], b [28], c [29], d [16].

Allele Group/gene Amplicon size (in bp) Contigs obtained Mean coverage PCR primers

SLA Class I

 SLA‑1*07a 220 9 2 SLA‑1*07XX F 5′‑GCCGGGTCTCACACCATCCAGAT‑3′

SLA‑1*07XX R 5′‑GGCCCTGCAGGTAGCTCCTCAAT‑3′

 SLA‑1*08a 577 18 2 SLA‑1*08XX F 5′‑CGCGTGGACTCCCGCTTCTTCATT‑3′

SLA‑1*08XX R 5′‑CCAGGAGCGCAGGTCCTCGTT‑3′

 SLA‑2*05a 544 19 2 SLA‑2*05XX F 5′‑CGAGTGAACCTGCGCACAGCTCTT‑3′

SLA‑2*05XX R 5′‑CTGCAGCGTGTCCTTCCCCATCTC‑3′

 SLA‑3*04a 192 20 2 SLA‑3*04XX F 5′‑GGAAGCCCCGTTTCATCGAA‑3′

SLA‑3*04XX R 5′‑GCAGGTTTTTCAGGTTCACTCGGA‑3′

SLA Class II

 SLA‑2*DQAb 898 20 3.38 DQAiF3 5′‑CTAGAGACTGTGCCACAGATGAAG‑3′

DQAe3R1 5′‑ACAGATGAGGGTGTTGGGCTGA‑3′

 SLA‑2*DRBc 1308 12 2.51 DRBi1F9 5′‑GCGGTGCCTTCAGCCTTTTCAGGAG‑3′

DRBi2R9 5′‑AACAGTAGCAACTGTTTTGAGAGC‑3′

 CD163d 3813 11 3.55 CD163‑Ex7Fw 5′‑ATTCTGACTTCTCTCTGGAGGC‑3′

CD163‑2700R 5′‑GAGATGATGGGCACTGCCATAT‑3′
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Sanger sequencing
Table  1 depicts the host genes analysed and the prim-
ers used. Total DNA from spleen samples was extracted 
using the DNeasy Blood & Tissue Kit (QIAGEN, Hilden, 
Germany). PCR products were amplified using the 
AccuPrime™ Pfx DNA polymerase (Fisher Scientific, 
Hampton, USA) following the guidelines and the PCR 
conditions recommended by the supplier and the refer-
ences provided. PCR products were sequenced using 
BigDye (Applied Biosystems, Foster City, USA) and chro-
matograms were aligned with SeqMan v7 (DNASTAR, 
Madison, USA). Mean coverages of the final contigs 
ranged between 2 and 3.55 lectures per position. Dou-
ble peak ambiguities in heterozygote individuals were 
assigned to individual alleles by comparing them with 
the chromatograms of the homozygote ones. Thus, for 
every studied animal and gene analysed two alleles were 
built up. The evolutionary relationships among alleles 
were analysed by means of a Neighbor-Joining (NJ) 
tree based on the pairwise distance matrix, calculated 
with the Tamura-Nei model. The confidence of the tree 
internal branches were calculated with 1000 bootstrap 
pseudo-replicates.

All trees, irrespective of being calculated from the four 
SLA-Class I allele groups, the two SLA-Class II, or the 
CD163 datasets, showed a mixed clustering of SV and 
LV animals. Figure  1 shows as an example the phyloge-
netic trees obtained for the CD163 and the SLA-1*04 
allele group. Moreover, in the present study, the three 

CD163 SNPs associated with PRRSv risk infection by [15] 
did not showed differential results between SV and LV 
groups: for the SNP A2552G the combination AA, asso-
ciated with lower infections risk, was present in all but 
one pig; the higher risk genotype for the SNP G2277A 
was not present in any of the studied pigs; and in the SNP 
C2700A the higher risk genotype AA was present in a 
single individual, the same that not harboured the lower 
risk AA genotype for the A2552G SNP.

qRT‑PCR
The constitutive levels of mRNA expression of differ-
ent TLRs, TNF-α and IFN-γ were analysed in PBMCs 
(Table 2). Total RNA was extracted using Trizol (Invitro-
gen, Paisley, UK) according to the manufacturer’s instruc-
tions. To reduce DNA contamination, DNase digestion 
was conducted, followed with a further purification 
step using the RNeasy miniki (Qiagen, Crawley, UK). 
RNA samples were processed by a qRT-PCR one step 
(Brilliant III Ultra-Fast SYBR Green QRT-PCR Master 
Mix, Agilent technologies) with a Stratagene MX3000P 
(Stratagene, La Jolla, CA, USA). Samples were tested in 
triplicate, B-actin served as the housekeeping gene and 
results were calculated as described previously [22]. 
Before comparing groups all Ct values were normalized 
with the corresponding values of the housekeeping gene. 
Figure 2 shows the mean and SD cycle threshold number 
as a measure of the mRNA expression. Significant dif-
ferences between groups were observed for TNF-α and 

Table 2 Genes analysed by RT-qPCR. Length of the PCR fragments amplified, and primers used

a [30].

Gene Ensemble gene Amplicon size (bp) PCR primers

TLRs

TLR2a ENSSSCG00000009002 162 TLR2‑F 5′‑TCACTTGTCTAACTTATCATCCTCTTG‑3′

TLR2‑R 5′‑TCAGCGAAGGTGTCATTATTGC‑3′

TLR3a ENSSSCG00000015801 112 TLR3‑F 5′‑AGTAAATGAATCACCCTGCCTAGCA‑3′

TLR3‑R 5′‑GCCGTTGACAAAACACATAAGGACT‑3′

TLR4a ENSSSCG00000005503 108 TLR4‑F 5′‑GCCATCGCTGCTAACATCATC‑3′

TLR4‑R 5′‑CTCATACTCAAAGATACACCATCGG‑3′

TLR5a Gene ID 100144476 156 TLR5‑F 5′‑CTCGCCCACCACATTA‑3′

TLR5‑R 5′‑TGAGGGTCCCAAAGAGT‑3′

TLR7a ENSSSCT00000035232.2 TLR7‑F 5′‑GGGAAAGCTCCAGTATCTGC‑3′

TLR7‑R 5′‑TGAGGCTTCTGGAACAGTTG‑3′

TLR8a ENSSSCG00000012118 105 TLR8‑F 5′‑AAGACCACCACCAACTTAGCC‑3′

TLR8‑R 5′‑GACCCTCAGATTCTCATCCATCC‑3′

TLR9a ENSSSCG00000011436 122 TLR9‑F 5′‑CACGACAGCCGAATAGCAC‑3′

TLR9‑R 5′‑GGGAACAGGGAGCAGAGC‑3′

TNF‑αa ENSSSCG00000001404 102 TNF‑α‑F 5′‑TGGTGGTGCCGACAGATGG‑3′

IFN‑γa ENSSSCT00000055560.1 132 TNFG‑F‑5′‑CTGGGAAACTGAATGACTTCG‑3′
TNFG‑R‑5′‑TCTGACTTCTCTTCCGCTTTC‑3′
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Figure 1 Phylogenetic trees. (A) NJ tree based on the 3813 bp of the CD163 analysed, corresponding to the exons 7–11 of the gene; (B) NJ tree 
based on the 641 bp of the SLA‑1*04. Only bootstrap values higher than 65 were shown. Sequence labels include the pig identifier, the allele and 
the days of viremia.

Figure 2 qRT-PCR mRNA quantification. Statistical differences in the cycle number of qRT‑PCR amplification (CTs) of different Toll‑like receptors 
(TLR) and other molecules involved in the immune response of the host between Long (LV) and Short (SV) viremic pigs. All Ct values were normal‑
ized with a housekeeping gene. *p < 0.05.
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TLR2 (p  <  0.05); while a trend was observed for TLR8 
and TLR9 (p = 0.06). In all these cases, the mean Ct val-
ues observed for the SV group were higher compared to 
the LV group, indicating a lower mRNA expression in 
pigs with shorter viremic periods.

Discussion
The available literature about the genetics of host 
response to PRRSv show that several genes are involved 
in differential responses against the infection. Signifi-
cant variation exists for a number of immune traits that 
at least include: antibody response, proliferative and 
cytokine responses of mononuclear cells, delayed-type 
hypersensitivity reactions, leukocyte number, and differ-
ential white blood cell counts (reviewed in [23]). Indeed, 
intrinsic immune differences have been reported among 
pig breeds [18, 22, 23], within herds [13] and even among 
tissues within an individual.

The results obtained in this study indicate a lack of 
correlation between the length and titre of the viremia, 
in vaccinated pigs and the clustering of the sequences 
of CD163, four SLA class I and two SLA class II allele 
groups (Figure  1). However, it should be noted that the 
low number of SLA allele groups analysed in the present 
study may certainly underrepresent the existing diversity. 
One of the most remarkable features of the SLA region 
is the extremely high degree of genetic polymorphism. 
More than a hundred allele groups have been defined 
for both SLA I (129) and SLA II (167); each of which 
present several alleles. For instance, 44 alleles have been 
described among the 12 SLA-1 allele groups; while, the 
14 DRB1 allele groups present a total of 82 alleles [24]. 
Similarly, the amount of nucleotide diversity detected 
for the CD163 dataset (34 variable positions along the 
3813 bp analysed) was not correlated with the length of 
the viremia (Figure  1). Also, none of the CD163 SNPs 
associated to PRRSv risk infection [15] were differentially 
expressed between SV and LV animals. Recent results 
from CD163 knockout pigs [25] indicate the complete 
absence of PRRSv-1 infection in PAMs and a substan-
tial reduction in PRRSv-2, suggesting the pivotal role 
of CD163 in PRRSv-1 infection that may not be neces-
sarily related with the length of the viremia. Finally, the 
constitutive mRNA expression levels of most analysed 
TLR genes in PBMC did not report significant differences 
with the exception of TLR2 and TNF-α expression (Fig-
ure  2). Interestingly, PBMCs of pigs with SV presented 
a lower constitutive mRNA levels of TNF-α and TLR2 
than pigs with LV. This finding is noteworthy as it could 
indicate that a more limited inflammatory response may 
be operating in these pigs since exacerbated inflamma-
tory responses in PRRSV-infected pigs have been corre-
lated with more persistent infections and a worse clinical 

resolution [26]. Generally speaking, the results does not 
support, for the genes examined, the existence of a clear 
allele combination or host genetic profile that can be 
correlated with the length of the viremia in vaccinated 
animals.
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