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Abstract

Cattle are the most important reservoir for enterohemorrhagic Escherichia coli (EHEC), a subset of shigatoxigenic

E. coli (STEC) capable of causing life-threatening infectious diseases in humans. In cattle, Shiga toxins (Stx) suppress
the immune system thereby promoting long-term STEC shedding. First infections of animals at calves' age coincide
with the lack of Stx-specific antibodies. We hypothesize that vaccination of calves against Shiga toxins prior to STEC
infection may help to prevent the establishment of a persistent type of infection. The objectives of this study were
to generate recombinant Shiga toxoids (rStx1mue & rStx2,.0) by site-directed mutagenesis and to assess their
immunomodulatory, antigenic, and immunogenic properties. Cultures of bovine primary immune cells were
used as test systems. In ileal intraepithelial lymphocytes both, recombinant wild type Stx1 (rStx1yy) and
rStx2wr significantly induced transcription of IL-4 mRNA. rStx1yr and rStx2y reduced the expression of Stx-receptor
CD77 (syn. Globotriaosylceramide, Gb3) on B and T cells from peripheral blood and of CD14 on monocyte-derived
macrophages. At the same concentrations, rStx1,,,; and rStx2.,,,. exhibited neither of these effects. Antibodies
in sera of cattle naturally infected with STEC recognized the rStx,,; toxoids equally well as the recombinant
wild type toxins. Immunization of calves with rStx1 . plus rStx2,, led to induction of antibodies neutralizing
Stx1 and Stx2. While keeping their antigenicity and immunogenicity recombinant Shiga toxoids are devoid of
the immunosuppressive properties of the corresponding wild type toxins in cattle and candidate vaccines to
mitigate long-term STEC shedding by the reservoir host.

Introduction

Enterohemorrhagic Escherichia coli (EHEC), a subset of
Shiga toxin-producing E. coli (STEC), are food-borne
pathogens which can evoke life-threatening diseases, such
as hemorrhagic colitis and hemolytic-uremic syndrome, in
humans. Cattle and other ruminants are primary reser-
voirs for EHEC serotypes that are frequently associated
with human disease, e.g.,, EHEC O157:H7. Calves become
infected with a plethora of different STEC strains early in
life via horizontal or vertical transmission. Although calves
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rarely develop clinical signs of STEC infection they may
shed these bacteria for several months and shed STEC
quantities may be considerably high at some sampling
points [1-4].

To prevent humans from EHEC infection, interventions
must be applied at several stages of the food chain, start-
ing in the animal itself and continuing in slaughterhouses,
processing plants, distributors, and households [5]. A sys-
tematic review of vaccinations to reduce the shedding of
E. coli O157 in the faeces of domestic ruminants revealed
that vaccination may be a sensible control option [6].
Current vaccination strategies are promising but only suc-
ceed partially in reducing E. coli O157:H7 excretion (as
reviewed by [5]). In some instances, e.g., when vaccinating
cattle against H7 flagellin, an important adhesion factor to
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bovine intestinal epithelium during early stages of colonization
[7], systemically induced H7-specific IgG may even impair
innate immune responses to E. coli O157:H7 when getting
into contact with the epithelium via neutralisation of
TLR5-mediated activation of epithelial cells [5].

Shiga toxins (Stx) are potent protein cytotoxins and
represent the principal STEC virulence factor in the
pathogenesis of human infections. Cumulating evidence
exist that Stx act as immunomodulating agents during
STEC infections in cattle. Stx1 alters the cytokine ex-
pression pattern in mucosal macrophages [8] and intrae-
pithelial lymphocytes [9] and suppresses the activation
and proliferation of mucosal [10] and peripheral lym-
phocytes in vitro [11]. The development of an adaptive
cellular immune response is significantly delayed follow-
ing experimental infection of calves with Stx2" STEC
0157:H7 compared to that in animals inoculated with
Stx-negative E. coli O157:H7 [12]. In vitro and in vivo
studies revealed that Stx operate during the early phases
of immune activation rather than depressing an estab-
lished immunity [11-14]. Consequently, Stx likely acts as
immunomodulator only upon first STEC infection of hith-
erto immunologically naive calves. Of note, a significant
portion of calves lacks anti-Stx antibodies at the time of
first encountering STEC [2]. We hypothesize that passive
(maternal) and active vaccination against Stx1 and Stx2
confers a protection against the toxins’ immunosuppres-
sive effects and subsequently enables the calves to actively
mount a rapid immune response against STEC strains cir-
culating in the respective cohort. Kuribayashi et al
showed that immunization of pregnant cows with Stxs led
to an enrichment of colostra with anti-Stx1 and anti-Stx2
antibodies [15]. Subsequent application of bovine colostral
anti-Stx2 to experimentally infected dogs indeed reduced
STEC shedding [16].

Development of anti-Stx antibodies is remarkably de-
layed after natural [2] and experimental STEC infection
of cattle [17]. Although Stx primarily targets CD8" cells
[11], the immunomodulating capacity of Stx may also
impair the humoral anti-Stx response. A strategy to cir-
cumvent this obstacle is the use of toxoid vaccines.
Chemically inactivated Stx2e, however, was only partially
effective in protecting piglets against oedema disease
[18]. A more promising approach is the inactivation of
Stx by genetic modification. Replacement of amino acids
E167 and R170, located within the enzymatically active
cleft of Stx2e [19,20] and vaccination of piglets with the
recombinant protein fully protected piglets during chal-
lenge with native Stx2e [21]. Similar results have been
reported for mice [22,23].

In order to follow a novel approach to add on or to im-
prove current vaccination strategies to mitigate STEC shed-
ding by cattle, the objectives of this proof-of-concept study
were to generate recombinant Shiga toxoids (rStx1., &
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rStx2,,u0) by site-directed mutagenesis and to assess the im-
munomodulatory, antigenic, and immunogenic properties
of the resulting proteins in cattle.

Material and methods

Generation of recombinant toxins and toxoids for in vitro
and in vivo applications

For generating recombinant Stx (rStxyr) and Stx mu-
tants (rStxp,), stxl and stx2 genes from the E. coli refer-
ence strain EDL 933 (ATCC 43895) were PCR amplified
(primers [5"— 3'], Stx1_for: GGAGTATTGTGTCATA
TGAAAAT, Stxl_rev: TATTCGAATTCAACGAAAAA
TAA, Stx2_for: TATATGCATATGAAGTGTATATTAT
TTAAA, Stx2_rev: AACCGTGAATTCAGTCATTATTA
AACTGCACT). After restriction of PCR products with
Ndel and EcoR], resulting fragments were ligated into a
compatible pET-24(b) + plasmid vector (Novagen, Merck
KGaA, Darmstadt, Germany). Recombinant plasmids
were transformed into E. coli BLR(DE3) and plasmid
DNA bearing the stxI and stx2 inserts, respectively, was
prepared for site-directed mutagenesis. To replace E167
and R170 with glutamine (Q) and leucine (L), respectively,
we used the QuickChange® Site-Directed Mutagenesis Kit
(Stratagene, Amsterdam, The Netherlands). Sequencing of
recombinant plasmids revealed, that the gene sequences
of the wild type toxins rStxlyT and rStx2wr were identi-
cal with the original sequences (Acc.No. AE005174 for
Stx1, NC_000924 for Stx2) and those of the mutant toxins
rStx1p,,e and rStx2,,,. contained the desired mutations
(E167Q, R170L; Table 1). Both, rStxyr and rStx,,, were
expressed in E. coli BLR(DE3). Control preparations were
obtained from E. coli BLR(DE3) transformed with an
empty vector (vector control). After incubation of the bac-
terial pellet with Polymyxin B (1 mg/mL) expressed toxin
was collected from the periplasmic space and depleted
from endotoxin (Detoxi-Gel™ Endotoxin Removing Gel,
Thermo Scientific, Nidderau, Germany).

Quantification of rStxywr was done by VCA and Stx
ELISA (see below), quantification of rStx,,,, only by Stx
ELISA. For adjustment of the vector control, the lowest
dilution determined for rStxyr/rStx,,c preparations to
be applied in functional assays was also used for the vec-
tor control. The content of endotoxin was 51 fg/mL or
less in rStxwT rStX;,. and vector control preparations
at working dilutions.

Vero cell cytotoxicity assay (VCA) and Vero cell
cytotoxicity neutralization assay (VNA)

The VCA was performed in 96-well microtiter plates
(Nunc, Wiesbaden, Germany) using Vero cells (ATCC
CRL 1587, LGC-Promochem GmbH, Wesel, Germany)
as previously described [24] to determine the cyto-
toxicity (verocytotoxic doses 50%, CDso/mL) of the
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Table 1 Comparison of the gene sequences of Stx1 and Stx2 before and after mutagenesis

Gene Relevant nucleotide sequence (codon triplets for amino acids 164 to 174 in 5’ to 3’ direction)*  Compared to wild type amino
acid replacements on position’

stxlwr  -gtg aca gct gaa gct tta cgt ttt cgg caa ata- none

stxTmee -gtg aca gct Caa gct tta Tt ttt cgg caa ata- E167Q, R170L

stx2wr  -gtc aca gca gaa gcc tta cgc ttc agg cag ata- none

stx2mue  -gtc aca gca Caa gcc tta cTc ttc agg cag ata- E167Q, R170L

*Bold letters indicate positions of replaced nucleotides, with small letters marking the nucleotides in wild type toxin sequences and capital letters marking

replaced nucleotides in mutant toxin sequences.
E = glutamine acid, Q = glutamine; R = arginine; L = leucine.

rStxyr preparations and for adjustment of stock solutions

The VNA was used for the determination of the
neutralization activity in serum of vaccinated calves and
was done as previously described [2] in order to determine
the titre of neutralizing antibodies [nAb titre] against
either wild type Stx1 or wild type Stx2 (Sigma-Aldrich
Chemie GmbH, Taufkirchen, Germany).

Enzyme-linked immunosorbent assay (ELISA)

To quantify rStx protein in the preparations, a commer-
cial Stx ELISA was used (Novitec® Verotoxin ELISA-Test,
HISS Diagnostics, Freiburg, Germany) following the man-
ufactures instructions. rStx,,,; concentrations used for the
functional assays were adjusted to reach an OD equivalent
to the OD of rStxyt stock solutions containing 20 000
CDso/mL. Stock solutions were further diluted accordingly
to reach a final concentration of 200 CD5o/mL or equiva-
lent doses.

Stx-specific antibodies in sera from naturally exposed
calves collected during a proceeding study [2] were ana-
lysed in a modified form of the ELISA. Briefly, 19 serum
samples with Stx1 nAb titres between 60 and 2000 (as de-
termined by VNA) were pre-diluted to achieve an approx.
50% reduction of the relative optical density [OD,].
Four serum samples with a Stx2 nAb titre of 30 were
used un-diluted. Serum samples were incubated with ei-
ther rStxy or rStx,,. preparations for 30 min at 37 °C.
Subsequently, pre-incubated rStx was used as sample in
the ELISA assay and subsequent steps were performed as
described by the manufacturer. OD,, was calculated by
the following formula: OD,¢ [%] = (OD;sx + serum sample -
ODvector control + serum sample)/(ODrStx + negative serum ~
ODvector control + serum sample) x 100.

Primary cell cultures

Peripheral blood mononuclear cells (PBMC) were isolated
as previously described [11]. Cells were diluted in cell
culture medium 1 (RPMI 1640, 10% fetal calf sera, 1%
Penicillin/Streptomycin, 0.03% 1 mM 2-B-mercaptoethanol)
to 1.5 x 10°/mL and aliquoted into a 96-well flat-bottom
plate (Greiner Bio-One, Frickenhausen, Germany) at 150 pL
per well (2.25 x 10°/well). Challenge material (rStxyr

rStxp or vector control, respectively) was added to reach
a final concentration of 200 CDs¢/mL or equivalent doses,
respectively. For proliferation the mitogen phytohem-
agglutinin P [PHA-P] was added in a final concentration
of 5 pg/mL. Plates were incubated for 96 h in 5% CO,
at 37 °C.

Ileal intraepithelial lymphocytes (ilEL) were isolated as
described elsewhere [25]. Cells were harvested and di-
luted in cell culture medium 2 (RPMI 1640, 20% fetal
calf sera, 1% Penicillin/Streptomycin, 1% Amphotericin
B, 0.01% Gentamicin) to 2 x 10”/mL. Nine millilitre of
this cell suspension were pipetted into a well of a 6-well
plate and challenge material (rStxyr rStxy,, or vector
control) was added to a final concentration of 200 CDsg/
mL or equivalent doses. Additionally, PHA-P was added
to a final concentration of 2.5 pug/mL. Plates were incu-
bated for 6 h in 5% CO, at 37 °C.

Monocyte-derived macrophages (MDM) were isolated
as described elsewhere [26,27]. Briefly, a whole blood
sample was centrifuged (2380 x g, 20 min) and the bufty
coat was collected. After several washing and lysis steps,
buffy coat was layered onto Ficoll for density centrifugation
(800 x g, 45 min). Cells were collected by taking the inter-
phase and washed three times with PBS buffer. Cells were
adjusted to 4 x 10%/mL in cell culture medium 3 (Iscove’s
Modified Dulbecco’s Medium (IMDM) without Phenol
Red, 20% fetal calf sera, 1% Penicillin/Streptomycin, 1%
Amphotericin B, 0.05% 100 mM 2-B-mercaptoethanol)
and 25 mL of this cell suspension were transferred to
Teflon bags (VueLife Bags, American Fluoroseal Corp.,
Gaithersburg, USA) and incubated for 8 days (37 °C,
5% CO,). At the end of the incubation period, cells were
harvested and diluted to 2x10°/mL in cell culture
medium 4 (IMDM without phenol red, 2% fetal calf sera,
1% Penicillin/Streptomycin, 1% Amphotericin B, 0.05%
100 mM 2-B-mercaptoethanol). Five millilitre of the cell
suspension was cultured in petri dishes (Greiner Bio-One,
Frickenhausen, Germany) for 18 h. Lymphocytes were re-
moved by careful washing and adherent MDMs were left
within the dishes in cell culture medium 4. Challenge ma-
terial was added in cell culture medium 4 to reach a final
concentration of 200 CD5o/mL or equivalent doses and in-
cubated for 6 h.
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Immunophenotyping

At the end of the respective incubation times (see above),
cells were resuspended and transferred to V-shape micro-
titre plates (Greiner Bio-One, Frickenhausen, Germany).
After centrifugation (300 x g, 3 min, 4 °C) supernatants
were flicked out. Pellets were resuspended in washing buf-
fer (PBS supplemented with 1% bovine serum albumin,
0.01% sodium azide, and 0.5% goat serum) as negative
control or with 50 pL of primary antibody dilution (di-
luted 1:50 through 1:500 in washing buffer). Antibodies
were purchased from VMRD (Labor Diagnostik Leipzig,
Leipzig, Germany; CD4 clone IL-A11, CD8f clone BAT82A,
CD14 clone CAM36A, CD21 clone GB25A, y8T/N24 clone
GB21A), AbDSerotech (Puchheim, Germany; CD77 clone
38-13) or kindly provided by Dirk Werling (The Royal
Veterinary College, London, United Kingdom; CD80 clone
N32/52-3, CD86 clone IL-A190). Cells were incubated for
20 min on ice, washed with washing buffer and resus-
pended in 50 pL of washing buffer with secondary anti-
bodies (fluorescein isothiocyanate (FITC)-labelled a-rat
IgM (Dianova GmbH, Hamburg, Germany); allophyco-
cyanin (APC)-labelled a-mouse IgG;, APC-labelled a-
mouse IgG,,, APC-labelled a-mouse IgG,;, (Jackson
ImmunoResearch Europe Ltd., Suffolk, United Kingdom))
supplemented with 7-amino actinomycin D (7-AAD; final
concentration 2 pg/mL; Sigma-Aldrich, Taufkirchen,
Germany). After 20 min on ice, cells were washed
with washing buffer and analysed with BD FACSCalibur™
Analyzer (Becton-Dickinson, Heidelberg, Germany). For
analysis of PBMC, following the last incubation step,
cells were incubated with 50 pL of Annexin V-phycoerythrin
[PE]-Dilution (1:500; Dianova GmbH, Hamburg, Germany),
washed with Annexin V binding buffer (10 mM HEPES
pH 7.4, 140 mM NaCl, 2.5 mM CaCl,), diluted in Annexin
V binding buffer and analysed. Cells were gated according
to their size and granularity. Only morphologically intact
cells were used for further analysis. Cells positive for 7-
AAD uptake or Annexin-V-PE binding were excluded and
defined as early apoptotic (positive for Annexin-V-PE),
late apoptotic (positive for Annexin-V-PE and 7-AAD),
and necrotic (positive for 7-AAD), respectively. Data
analysis was performed with FCSExpress (Version 2,
De Novo-Software, Thornhill, Ontario, Canada).

RNA isolation

At the end of the incubation period, ilEL were resus-
pended, transferred to 50 mL tubes, washed with PBS
(200 x g, 7 min), lysed in 600 pL RLT buffer (RNeasy
MiniKit, Qiagen, Hilden, Germany) supplemented with
1% B-mercaptoethanol, and stored at -70 °C.

All samples were thawed at 37 °C for 5 min, and then
homogenized by passing through a 20 G needle. RNA
isolation was performed with the RNeasy MiniKit fol-
lowing the manufacturers’ instruction with modifications
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described by Moussay et al. [9]. Reverse transcription
and real-time PCR using primers and probes labelled at
the 5'-end with the reporter dye FAM (6-carboxyfluores-
cein) and at the 3’-end with the quencher dye TAMRA
(6-carboxytetramethyl-rhodamine) was conducted as
described [9]. PCR amplification was performed on an
automated fluorometer (ABI PRISM™ 5700 Sequence
Detection System, Applied Biosystems) using 96-well
optical plates. Each sample was analysed in duplicates.
For analysis of the data, the comparative C; method
(AAC; method) was applied with first, normalization of
the C; values referring to the housekeeping gene GAPDH
and second, comparing the C; values for the quantitation
of IL-4-specific mRNA in cultures treated with challenge
material (rStxyy, rStX,,) and in cultures treated with vec-
tor control (control cultures) [9].

Immunization study

The experiment was carried out in strict accordance with
European and German laws for the care and use of animals,
approved by Thiiringer Landesamt fiir Lebensmittelsicherheit
und Verbraucherschutz, Bad Langensalza, Germany (per-
mit no. 22-268-04-04-105/11).

Prior to the experiment, two conventionally raised bull
calves aged 11 months tested negative for Stx-specific anti-
bodies (16 and 4 weeks before the trial by VNA). Calves
were tested for STEC shedding 16 weeks before the trial
and immediately prior to the 1st and the 2nd vaccination.
For this purpose coliform bacteria from fecal samples were
enriched by growth on Gassner agar (3 plates per sample)
[28]. Subsequently, the enriched bacterial culture material
was tested with a stxi/stx2-duplex-PCR modified from
Nguyen et al. [29]. While all fecal samples were stx-nega-
tive at the first and last sampling, in both calves genes en-
coding Stx1 and Stx2 were present in the fecal sample
taken prior to the 1st vaccination at low frequencies (only
1 of 3 enrichment cultures from these fecal samples tested
positive). Calves were double-vaccinated i.m. with both, a
rStx1,,, vaccine and a rStx2,,,,c vaccine on trial days 0 and
21. Immediately prior to application, vaccines had been
freshly prepared as follows: rStx1,,,. and rStx2,,,, prepara-
tions were diluted separately with NaCl solution (0.89%) to
1 000 000 CDsq equivalents in 1.4 mL and then supple-
mented with 0.6 mL of aluminium hydroxide (Alu-Gel-S,
Serva Electrophoresis GmbH, Heidelberg, Germany).
Blood samples were taken weekly, centrifuged, and sera
were frozen at —20 °C. Nine weeks after first immunization,
last samples were drawn. Detection of specific antibodies
in the sera was done by VNA. Titres below the detection
limit were given an arbitrary value of 30.

Statistical analysis
Unless otherwise indicated, data obtained after applying
rStxywrt and rStxy, preparations in biological assays



Kerner et al. Veterinary Research (2015) 46:38

were normalized relative to data obtained after applica-
tion of vector control.

Statistical analysis was done with “SPSS for windows”
(Version 15, SPSS Inc., Chicago, Illinois, USA). Single
factor variance analyses with repeated measurements were
carried out applying Greenhouse Geisser Test for all data
from in vitro testing of the preparations. Pearsons’s correl-
ation analysis was used to compare quantitative values from
the VNA. Two-tailed p-values with p <0.05 were consid-
ered significant. The following description was used: n.s. =
not significant (p > 0.05); * =p <0.05; ** = p<0.01; **=p <
0.001.

Results

Generation of Shiga toxins and toxoids

Lysates from E. coli BLR(DE3) transformed with plasmids
coding for either of the rStxywr possessed a considerable
Vero cytotoxicity (2.7 x 10° and 0.8 x 10° CDso/mL for
rStx1y and rStx2y, respectively; geometric mean of n =
4 determinations; Figure 1). Lysates containing rStXp,
only had low cytotoxic activities (40 and < 20 CD5o/mL for
rStx1 e and rStx2,,,, respectively) not different from ly-
sates of E. coli BLR(DE3) transformed with the empty ex-
pression vector (<20 CDso/mL). In order to functionally
test rStxyr and rStx,, at comparable yet biologically
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relevant concentrations, a concentration of 200 CDso/mL
was chosen and rStx,,, containing lysates were adjusted
to their rStxy containing counterparts according to the
results of an ELISA test (resulting working dilutions indi-
cated in Figure 1).

Viability and phenotype of bovine PBMC upon in vitro
challenge with rStxyt and rStx,u:

Purified wild type Stx1 from E. coli blocks activation and
proliferation of bovine lymphocyte subpopulations in vitro
without inducing cellular death [11]. Neither incubation
of PHA-P (phytohemagglutinin-P) stimulated PBMC with
rStxyr nor incubation with rStx,,, led to a significant in-
crease in the percentage of late apoptotic/necrotic cells
and the percentage of early apoptotic cells as compared to
PHA-P stimulated bovine PBMC cultures incubated in
the presence of the vector control (referred to as “control
cultures” throughout; data not shown).

Control cultures phenotyped after four days of in vitro
maintenance consisted of 13.2 + 6.4%, 9.8 + 4.9%, 30.0 +
8.4%, and 18.9 + 6.0% (mean * standard deviation; 7 = 3—6)
of CD4", CD8B*, y8T", and B cells (CD21"), respectively
(data not shown). Addition of rStxlywT or rStx2y prepa-
rations to the culture medium both significantly reduced
the portion of CD8B* PBMC while incubation with rStx,,

150 -

125

100

75

50

relative metabolic activity of Vero cells (%)

25

8 7 6 5

rStx dilution (10-fold series)

Figure 1 Effect of recombinant Shiga toxins and toxoids on the cellular metabolic activity of Vero cells. Cells were incubated for 96 h at
37 °C with 10-fold dilutions of endotoxin-deprived lysates prepared from E. coli BLR(DE3) transformed with plasmids encoding for rStx1yr (filled
circle, solid line), rStx1 . (open circle, dashed line), rStx2yyr (filled square, solid line), rStx2,,.: (0pen square, dashed line) or vector control (open
triangle, dashed line). Results of VCA are presented relative to data obtained with cells incubated with plain medium as negative control (set to
100%) and data from cells treated with 1% SDS as positive control (set to 0%). Data is depicted as means + standard deviations from duplicate
determinations in one representative out of four independent experiments. Missing error bars are within symbols. For functional assays with
bovine primary cell cultures, lysates containing rStxys were adjusted to reach a final concentration of 200 verocytotoxic doses 50% per
mL. Lysates containing rStx.,. were diluted to yield the same OD as the corresponding rStxyr—containing lysate in an ELISA assay (for
details see Material and methods). To visualize the verocytotoxic activities of the respective rStx working dilutions, the calculated dilution
factors are depicted by arrows and a corresponding symbol in the diagram.
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left the proportion of CD8B™ cells unaffected (Figure 2).
Similarly, incubation with rStxlyT and rStx2wr reduced
the portion of CD21" PBMC in the cultures compared to
rStx: treated cells. In turn, the portion of CD4" cells in-
creased after incubation with rStxyr (significant for
rStx2y only). Incubation with rStx,,, did not result in
significant changes in PBMC composition except a slight
but significant increase of CD21" PBMC after challenge
with rStx1,,, (Figure 2).

CD77 acts as the Stx receptor on a variety of cells
from different species including bovine lymphocytes [14]
and is up-regulated by bovine lymphocytes upon activa-
tion in vitro and in vivo [13]. Sustained down-regulation
of CD77 by bovine PBMC is a hallmark of the activity
purified wild type Stxl exerts in bovine PBMC cultures
[30]. Incubation with rStxlyT and rStx2vw also caused a
significant reduction of the percentage of PBMC express-
ing CD77 to about half the values detected in control
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cultures (Figure 3) while incubation with rStx1,,, and
rStx2,.¢ had no effect. In control cultures, 10.7 +
1.4% (mean + standard deviation; n=6) of all PBMC
expressed CD77 but the portion of CD77-expressing
cells varied between the PBMC subsets analysed. Four
days after initiation of cultures, 12.3 + 9.6%, 23.5 + 11.5%,
22.9 +12.6%, and 29.4 + 9.6% of CD4", CD8f", y8T", and
B cells (CD21%), respectively, co-expressed CD77. Effects
of rStxlyr and rStx2yw on CD77" cells differed between
subsets and showed no correlation with the percentage of
cells co-expressing CD77 in that subset. While a compar-
ably high proportion of CD8B" cells (Figure 4) and y8T
cells co-expressed CD77 and the portion of CD77" cells
was significantly reduced by exposure to rStxy (Figures 3
and 4), toxins exhibited minor effects on CD21" B cells
also expressing CD77 in high numbers in control cultures
(Figure 3). CD4" cells showed little CD77 expression
which was clearly albeit not significantly reduced in the

CD21* (n=6)

*

1.5

dok *
1 1
* *k
1.0
0.5
0.0

rStx1yr rStx1pny rStx2yr rStx2y

CD8B* (n=6)

1.5 B %k %k

Proportion of positive cells [x-fold vs control cultures]

rStx1yr rStx1my rStx2yr

rStx2nut

CD4* (n=3)

15

1.0 17

0.5

0.0
rStx1yr rStx1my rStx2pt rStx2ny

Yo8T* (n=5)

1.57

rStx1yr rStx1nu rStX2py rStx2ny

Culture conditions

Figure 2 Proportion of CD21*, CD4*, CD8B*, and y&T* cells in cultures of PHA-P stimulated bovine PBMC after incubation with
recombinant Shiga toxins and toxoids. Results are shown relative to data obtained from cultures incubated in the presence of the
vector control (control cultures; defined as 1.0, indicated by the dashed line). Data is depicted as means =+ standard deviations of 3 to 6
repetitive experiments as indicated. ANOVA was performed (1) comparing non-normalized data with the values from control cultures (asterisks
above bars) and (2) comparing values of normalized data obtained after incubation with rStx Tyt versus rStx1 mu, rStwr VErsus rStx2mu rStxlwr Versus
1St 2w, and rStx1 e Versus rStx2,, (asterisks above brackets). Significance levels were defined as p < 0.001 [***], p <001 [**], and p < 0.05 [*].
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Figure 3 Bovine PBMC subsets co-expressing CD77 after in vitro challenge with recombinant Shiga toxins and toxoids. Proportions of
bovine PBMC and of PBMC subsets co-expressing CD77 in PHA-P stimulated cultures are shown relative to data obtained from PHA-P stimulated
cultures incubated in the presence of the vector control (control cultures; defined as 1.0, indicated by the dashed line). Data is depicted as
means + standard deviations of 3 to 6 repetitive experiments as indicated. Statistical analysis was performed as described in legend to
Figure 2. Significance levels were defined as p <0.001 [***], p<0.01 [**], and p<0.05 [*].
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presence of rStxlyr only (analysis of variance [ANOVA],
p =0.378). Incubation with rStx1,,,; and rStx2,,,; did not
reduce CD77 expression by any of the PBMC subsets.
Changes in PBMC culture composition induced by
rStxywr were partially reflected by alterations in the pro-
portion of non-viable cells. The overall portions of early
apoptotic cells within lymphocyte populations were not
affected by the presence of rStxyr and rStx,,,, except a
decrease in early apoptotic CD8B" PBMC after incuba-
tion with rStx2,,,, (ANOVA; p = 0.009; data not shown).
However, wild type toxins induced a significant increase

of late apoptotic/necrotic cells within the CD21" popula-
tion (ANOVA; rStxlwr: p=0.004; rStx2wr: p = 0.036;
data not shown) and within the CD4" population
(ANOVA; rStxlyr: p=0.004; data not shown). Effects
became more apparent when analysing the percentage of
late apoptotic/necrotic cells in the CD77" and CD77~ sub-
sets of the lymphocyte populations separately (Figure 5).
Incubation with wild type toxins increased the portion of
CD77* late apoptotic/necrotic cells in the CD21*, CD4",
CD8B", and y8T" subsets even though differences did not
always statistically significant levels. CD77" cells within
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Figure 4 Effect of recombinant Shiga toxins and toxoids on CD77 expression by bovine CD8B* PBMC. Cells were incubated in culture
medium containing 5 ug/mlL PHA-P and rStxyr or rStx; as indicated. After four days of incubation cells were submitted to immunolabelling
and flow cytometry analysis. Percentages of CD8B" PBMC co-expressing CD77 (events in the upper right quadrant) are given in the upper right
corner of the dot plots. PBMC incubated in the presence of PHA-P and vector control were used as control (upper graph).

the subsets were less or not affected. Incubation with tox-
oids neither resulted in proportions of early apoptotic nor
of late apoptotic/necrotic cells that were significantly ele-
vated compared to control cultures for any of the subpop-
ulations tested irrespective of CD77 co-expression.

IL-4 transcription in bovine ilEL upon in vitro challenge
with rStxyr and rStx ¢

Ileal intraepithelial lymphocytes (ilEL) are also sensitive
to purified wild type Stx1 with a strong induction of IL-4
transcription being the most prominent and reproducible
functional implication [9,25]. In corroboration of these
findings, incubation of bovine ilEL for 6 h with rStxlyT

or rStx2y both led to a dramatic increase in the amounts
of IL-4-specific mRNA (Figure 6A). Again, incubation
with comparable amounts of rStx1,,, and rStx2,,, had
no detectable biological effect.

CD14 expression by bovine MDM upon in vitro challenge
with rStxyr and rStxu¢

Monocyte-derived macrophages (MDM) have recently
been discovered as yet another Stx-sensitive cell type in
cattle [31]. Incubation with rStxy or rStx,,, for 6 h did
not significantly alter the percentage of early apoptotic
cells as compared control cultures (data not shown).
However, MDM responded to the exposure to rStxlyr
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was performed as described in legend to Figure 2. Significance levels were defined as p <0.001 [***], p <0.01 [**], and p < 0.05 [*].

conditions

or rStx2ywr with a clear decrease in the number of CD14
molecules on the cellular surface (as deduced from quan-
titation of fluorescence intensities (MFI) for the detection
of this antigen). The effect was most prominent in the
CD77 co-expressing subset of MDM (Figure 6B, data not
shown for CD77~ MDM). The recombinant toxins had no

influence on the number of surface-expressed CD80 and
CD86 molecules on CD77" bovine MDM (data not
shown). Incubation with comparable amounts of rStx1,,
and rStx2,,, had no significant effect on CD14, CD80,
and CD86 expression by CD77" bovine MDM (Figure 6B;
data not shown for CD80 and CD86).
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Figure 6 Gene transcription in bovine ilEL and surface marker
expression on bovine MDM incubated for 6 h with rStxy or
rStXmue- (A) Relative amounts of gene transcripts for IL-4 harboured
by PHA-P-stimulated (2.5 mg/mL) bovine il[EL normalized to the
transcription of the housekeeping gene GAPDH. Vector control
cultures were used as reference and set to 100% (dashed line).
(B) Expression (i.e, mean fluorescence intensity; MFI) of CD14 on
bovine CD77* MDM relative to vector control cultures defined as
1.0 (dashed line). Data is depicted as means + standard deviations
from 5 independent experiments each. Statistical analysis was
performed as described in legend to Figure 2. Significance levels
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were defined as p <0.01 [**], and p <0.05 [*].

Recognition of rStxyt and rStx,,,: by sera from calves
naturally exposed to wild type toxins

Sera with known specific amounts of Stx antibodies, as
defined by VNA and western blotting in a previous study
[2], were used to occupy epitopes on rStxyet and rStx,,
antigens that were afterwards subjected to the ELISA
assay. As the titers of the different sera to Stx1 and Stx2
substantially differed with anti-Stx2 titers being just above
the detection limit of the VNA, anti-Stx1 containing sera
were pre-diluted to achieve an approx. 50% reduction of
the rStx binding to the ELISA plate. Subsequently, pairs of
values (rStxyt and rStx,,,,) obtained for the individual
sera at a given dilution were analysed by correlation ana-
lysis. The competitive ELISA revealed that naturally in-
duced antibodies recognized the corresponding rStxyr
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and rStxy, equally well (Pearson’s r=0.886; p<0.001;
Figure 7).

Immunization of calves with rStx1,,,: and rStx2,.:

Until trial day 21, the day of the second immunization
with both toxoids, serum samples of both calves tested
negative for Stx1 neutralizing antibodies [nAbs] (Figure 8).
Beginning one week later, anti-Stx1 nAbs were detect-
able in both calves. Stx1 nAb titres peaked on trial day
35 and remained on high levels through the end of the
trial. Stx2 nAb titres were detectable as early as trial
day 14. Titres of calf 1 fell below the detection limit
of 60 on trial day 21 and started to rise again beginning
on trial day 28. Calf 2 developed a Stx2 nAb titre begin-
ning with trial day 14, one week before the second vaccin-
ation. Titre rose constantly until the end of the sampling
period.

Discussion

The immunomodulatory and -suppressive effects of Shiga
toxins (Stx) disturb the development of an adaptive im-
mune response against STEC-specific antigens in the
course of the initial infection of that far naive calves
[11,12]. In order to develop an effective but biologically
safe antigen to vaccinate cattle against the immunologic-
ally distinct types 1 and 2 of Stx the objectives of this
study were to prove that recombinant Shiga toxoids de-
void of the enzymatic activity of the wild type toxins have
lost their activity against all types of bovine immune cells
identified as potential Stx targets thus far. For functional
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Figure 7 Antigenicity of recombinant Shiga toxins and toxoids

as assessed with calf sera harbouring naturally induced

Stx-specific antibodies. Results obtained with 23 sera in the

competitive ELISA are presented. Figure represents OD,¢ values of

defined rStxyr and rStx, samples, respectively, after pre-incubation

with serum (dashed line: trend line [y = 1.179x - 10.702]).
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Figure 8 Detection of Stx1 and Stx2 neutralizing antibodies (nAb) in sera from two calves vaccinated with rStx1,,,; and rStx2,,;.
Results from the Vero cell neutralization assay (VNA). Dashed line indicates the detection limit. Calves were vaccinated on days 0 and 21 of the
trial. A titre of 30 was attributed to all those samples that gave negative test results in the highest concentration tested.
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studies, a concentration of rStx of 200 CDso/mL was
chosen. Extensive previous studies had shown that puri-
fied Stx1 reliably induces maximum modulating effects on
bovine immune cells in vitro at this concentration [9].
Concentrations of 2000 CD5o/mL may induce effects that
cannot be fully neutralized by anti-StxB1 and therefore
not clearly ascribed to Stx1l even when purified toxin
is used [11]. Partially purified (i.e., endotoxin-deprived)
preparations were used in the current study causing some
depression of the metabolic activity of the robust Vero
cells when applied undiluted. As the aim of this study was
to provide a broad proof of loss of immunomodulating
function of rStx,,, in bovines and experiments were ex-
clusively conducted with primary cells availability of which
was limited, we refrained from conducting dose—response
assays for any of the parameters under study. Conse-
quently, we cannot rule out the possibility that the toxoids
may cause adverse effects when applied in significantly
higher concentrations. However, efficient induction of a
humoral immune response in two calves locally exposed
to 1 000 000 CDs5q equivalents upon vaccination points
against such assumptions. Having accomplished this

proof-of-principle study presented herein, an extensive ex-
periment is currently under way assessing the immuno-
modulating, immunogenic, and protective capacity of
rStxnu-based vaccines under field conditions.

Wild type Stx1 purified from a STEC field isolate blocks
the proliferation of bovine peripheral blood T cells, with
CD8" T cells in particular, and induces a down-regulation
of the Stx receptor CD77 on several lymphocyte subsets
without inducing significant cell death by apoptosis or
necrosis [11,13]. Results of the present study show that
non-purified endotoxin-deprived periplasmic preparations
containing recombinant rStxyr induce comparable bio-
logical effects in bovine PBMC cultures. Similar to stud-
ies with purified Stx1, addition of recombinant rStxy
containing periplasmic preparations did not significantly
affect the overall percentage of early or late apoptotic/
necrotic cells within major PBMC subsets. In-depth ana-
lysis of multicolour flow cytometry data, applied here for
the first time, provided evidence, however, that rStxyr
treatment has led to an increase in the portion of late
apoptotic cells in all lymphocyte populations. Notably, this
effect (1) predominantly affected the respective CD77"
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expressing cells of the subsets and (2) could not be con-
firmed when analysing for early apoptotic cells. Further
studies will be needed to dissect whether this effect can
also be induced by purified toxins or is augmented by aux-
iliary factors present in the periplasmic preparations.
Nevertheless, results presented here strongly imply that —
despite several reports linking differences in the virulence
of EHEC strains for humans to the Stx type or even sub-
type encoded for by the strains [32] - Stx1 and Stx2 do
not differ significantly in their biological activities in bo-
vines, the STEC/EHEC reservoir host, a finding that has
direct implications for vaccine development.

Incubation of PBMC with rStx1,,, and rStx2,,, nei-
ther influenced the percentage of lymphocytes express-
ing CD77" nor the overall subset composition. Toxoids
did not induce a down-regulation of CD14 in MDM cul-
tures and did not lead to an up-regulation of IL-4 tran-
scription in ilEL cultures, effects that occurred in the
presence of wild type toxins. Even though the molecular
mechanism by which Stx induce cell death in a variety
of cell lines and primary cells is well understood [33-35],
the molecular basis of the immunomodulatory effects of
wild type Stx to bovine immune cells is not entirely
clear. In most cells, Stx primarily inhibit protein synthesis
by acting on the 23S rRNA incorporated in ribosomes
[36]. THP-1 cells show an up-regulation of TNF-a upon
treatment with Stx1 [37], an effect traced back to the ribo-
toxic stress response triggered by the enzymatic activity of
Stx towards ribosomes. It would also be plausible that
cross-linking of CD77 molecules on the cellular surfaces
by the multivalent 5B plus 1A structured Stx has initiated
cellular responses independent from the enzymatic activ-
ity as toxin binding induces apoptosis in sensitive cell lines
[14]. We previously showed that incubation of bovine ilEL
neither with Stx1 holotoxin nor with purified Stx1B sub-
unit or with anti-CD77 antibody induces IL-4 transcrip-
tion [9]. By contrast, binding of rStxB1 to CD77 on bovine
PBMC induced a holotoxin like activity, e.g., an inhibition
of lymphocyte proliferation [14]. The results presented
here using genetically modified Stx devoid of verocyto-
toxic activity as well as lacking any detectable biological
activities of rStx1,,,; and rStx2,, in all in vitro systems
applied strongly suggest that the enzymatic activity is es-
sentially required for the immunomodulating effect of Stx
in cattle and underscore that the toxoids may represent
biologically safe vaccines.

Final prove of biological safety can only come from
immunization trials in vivo. Of note, the interferon-a re-
ceptor (IFNAR) harbours potential binding sites for
CD77 in its extracellular domains, structurally related to
CD77 binding sites of StxB subunits [38] raising the possi-
bility that Stx immunization may induce auto-antibodies.
The detrimental potential of vaccine-induced auto-
antibodies has become dramatically apparent by the
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occurrence of bovine neonatal panleucocytopenia (BNP).
In this clinical entity, prevalent in several European coun-
tries in recent years, anti-leukocytic antibodies induced by
vaccination of dams are transmitted to their offspring
causing severe bleedings and bone marrow depletion [39].
Anti-Stx1 antibodies can frequently be found in adult
cattle [2,40] and anti-Stx2 antibodies, although with
strikingly lower frequencies and titres, can also be de-
tected. Two calves could be successfully vaccinated by two
shots of vaccines containing rStx1,,, and rStx2,,,, and
immunization did not exert adverse effects indicative of
auto-antibodies.

Antigenicity of rStx,, was evaluated in comparison to
rStxywr in a competitive ELISA format using sera ob-
tained from naturally exposed calves with known anti-
Stx1 and anti-Stx2 titres [2]. Pre-incubation of the sera
with rStx;,, and rStxyr equally well reduced binding of
the toxins to the capture antibodies. We take this as a
strong hint that the structure of important epitopes being
the target of a significant portion of naturally induced anti-
bodies are conserved irrespective of the amino acid ex-
changes in the toxoids introduced by genetic modification.

To be used as vaccine component, inactivated Stx mole-
cules must remain immunogenic. Chemical inactivation of
Stx2e by formaldehyde treatment abolishes the cytotoxic
effect in vitro but application of the toxoid failed to pre-
vent piglets from developing edema disease upon intra-
venous challenge with wild type Stx2e [21]. By contrast,
inactivation of Stx2e by means of genetic amino acid ex-
change in the enzymatic cleft of the A subunit resulted in
a vaccine able to induce protective antibodies in piglets
[41]. Similarly, the survival rate of mice after Stx1 chal-
lenge could be raised to 100% when animals had been im-
munized with mutagenized Stx1 (E167Q, R170L) [23]. It
remains unclear whether the poor induction of an anti-Stx
response in cattle after natural STEC infection [2] is due
to an active immunosuppression by Stx, due to an insuffi-
cient antigen exposure by small amounts of toxins pro-
duced in vivo or due to poor immunogenicity of the
toxins. The latter may result from the structural similarity
of StxB subunit with bovine IFNAR and be the conse-
quence of a centrally induced immunological tolerance.
Nevertheless, i.m. application to calves of the toxoids gen-
erated and characterized in this study led to the induction
of substantial anti-Stx1 as well as anti-Stx2 titres, presum-
ably protective in that they at least are able to neutralize
the biological activity of Stx holotoxin in vitro. The study
design applied here does not allow for concluding on the
specificity of the antibodies to each of the toxoids. Kinetics
of shedding of Stx1- and Stx2-producing STEC strains as
well as kinetics and magnitude of maternal and endogen-
ous anti-Stx antibodies in calves substantially differ [2].
Further studies are worthwhile to separately optimize the
immunogenic capacity of the two toxoids and to assess
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their relative protective efficacy, e.g., by modifications of
the vaccine formulation and application scheme.

The STEC/EHEC pathovar consists of a plethora of
different E. coli strains varying in serotype and virulence
gene pattern. By definition, Stx’s are the only virulence fac-
tors harboured by all STEC strains. Up to now, success of
attempts to vaccinate cattle was mostly restricted to single
subpopulations of STEC, e.g. strains positive for O157
[42], harbouring the genes for Tir (translocated intimin re-
ceptor) [42], for adhesion factor intimin [43], Esp’s (E. coli
secreted proteins) A and B [44,45] or flagellin H7 [46]. Stx
rather act as immunomodulating agents during bovine
STEC infections [8-12] by affecting the early phases of
immune activation than by depressing an established
immunity [13,14]. Consequently, Stx may principally be
effective upon first STEC infection of hitherto immuno-
logically naive animals at the time they first encounter
STEC antigens. In the absence of Stx, animals may be able
to mount an efficient adaptive immune response with the
potential to prevent persistent STEC colonization of the
intestinal mucosa. However, Stx always co-occurs with
STEC antigens in spatial and temporal terms during infec-
tion. In this particular situation, Stx apparently hinders
calves from properly responding, creating an immuno-
logically privileged niche and thereby paving the way for
persistent colonization. Application of Stx toxoid-based
vaccines may enable calves to actively mount a primary
immune response to antigens other than Stx that are har-
boured by STEC strains circulating in the respective co-
hort. In case future studies show that this does not sulffice,
subsequent application of aforementioned vaccines as
booster shall be evaluated as to their ability to eventually
induce a robust anti-STEC adaptive immune response
mitigating long-term STEC shedding by cattle.
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