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Abstract 

Background  Alzheimer’s disease-related pattern (ADRP) is a metabolic brain biomarker of Alzheimer’s disease (AD). 
While ADRP is being introduced into research, the effect of the size of the identification cohort and the effect of the 
resolution of identification and validation images on ADRP’s performance need to be clarified.

Methods  240 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography images [120 AD/120 cognitive normals 
(CN)] were selected from the Alzheimer’s disease neuroimaging initiative database. A total of 200 images (100 AD/100 
CN) were used to identify different versions of ADRP using a scaled subprofile model/principal component analysis. 
For this purpose, five identification groups were randomly selected 25 times. The identification groups differed in the 
number of images (20 AD/20 CN, 30 AD/30 CN, 40 AD/40 CN, 60 AD/60 CN, and 80 AD/80 CN) and image resolutions 
(6, 8, 10, 12, 15 and 20 mm). A total of 750 ADRPs were identified and validated through the area under the curve 
(AUC) values on the remaining 20 AD/20 CN with six different image resolutions.

Results  ADRP’s performance for the differentiation between AD patients and CN demonstrated only a marginal 
average AUC increase, when the number of subjects in the identification group increases (AUC increase for about 0.03 
from 20 AD/20 CN to 80 AD/80 CN). However, the average of the lowest five AUC values increased with the increas-
ing number of participants (AUC increase for about 0.07 from 20 AD/20 CN to 30 AD/30 CN and for an additional 0.02 
from 30 AD/30 CN to 40 AD/40 CN). The resolution of the identification images affects ADRP’s diagnostic performance 
only marginally in the range from 8 to 15 mm. ADRP’s performance stayed optimal even when applied to validation 
images of resolution differing from the identification images.

Conclusions  While small (20 AD/20 CN images) identification cohorts may be adequate in a favorable selection of 
cases, larger cohorts (at least 30 AD/30 CN images) shall be preferred to overcome possible/random biological dif-
ferences and improve ADRP’s diagnostic performance. ADRP’s performance stays stable even when applied to the 
validation images with a resolution different than the resolution of the identification ones.
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Background
Alzheimer’s disease (AD) is the most common neuro-
degenerative brain disorder, affecting mostly the older 
population [1, 2]. Although other neurodegenerative syn-
dromes have different clinical courses and outcomes, the 
early clinical presentations may overlap. Therefore, an 
objective biomarker is needed to confirm the diagnosis at 
its early stages. Such a biomarker would improve treat-
ment efficiency and prognostic accuracy in subjects with 
dementia as well as improve the accuracy of diagnosis in 
the research trials [3].

The so-called AD-related pattern (ADRP) is a meta-
bolic brain biomarker of AD, which has been validated in 
previous work [4–8]. ADRP was derived with the appli-
cation of a scaled subprofile model/principal component 
analysis (SSM/PCA) in groups of 2-[18F]fluoro-2-deoxy-
d-glucose positron emission tomography (2-[18F]FDG-
PET) brain images [9] of AD patients and cognitively 
normal subjects (CN).

2-[18F]FDG-PET imaging can detect metabolic brain 
changes in patients with neurodegenerative disorders 
earlier than structural brain imaging [10]. It measures 
glucose consumption in brain tissue and is a proxy for 
neuronal activity and an index of synaptic function and 
density [11]. Brain metabolism is higher in regions with 
more vivid synaptic activity, like the brain cortex and 
deep brain nuclei, and lower in regions with less activity, 
as well as in regions affected by neurodegeneration [12].

SSM/PCA decomposes FDG distribution in the brain, 
shown in 2-[18F]FDG-PET images, into principal compo-
nents (PCs), which present normal and abnormal uptake. 
PCs represent brain regions that are functionally related 
and allow the detection of specific disease-related meta-
bolic patterns, such as ADRP [6, 13, 14].

An unresolved impediment for the translation of ADRP 
and other SSM/PCA based network patterns into clinical 
practice is presented by the need to evaluate systemati-
cally pattern’s stability regarding the number of analyzed 
2-[18F]FDG-PET images and variations in technical 
parameters of the images acquired on different scanners. 
Previous studies have shown that image reconstruction 
algorithms [15–17] or different image preprocessing soft-
ware [18] have a minor impact on the neurodegenerative 
disease-specific metabolic patterns. However, so far, the 
effect of the size of the pattern identification groups nor 
the image resolutions on the pattern’s diagnostic perfor-
mance has been thoroughly investigated.

In this study, we aimed to assess the effect of two criti-
cal parameters on ADRP diagnostic performance: (i) the 
size of the identification group and (ii) the resolution of 
the 2-[18F]FDG-PET images in identification and valida-
tion groups. Our findings could further be used in other 
SSM based analyses.

Subjects and methods
Subjects’ selection
We analyzed 2-[18F]FDG-PET brain images obtained 
from 240 subjects from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) database (https://​adni.​loni.​usc.​
edu/). The ADNI was launched in 2003 as a public–pri-
vate partnership led by Principal Investigator Michael 
W. Weiner, MD. The primary goal of ADNI has been to 
test whether serial magnetic resonance imaging (MRI), 
PET, other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the 
progression of mild cognitive impairment (MCI) and 
early Alzheimer’s disease (AD). Images were selected 
randomly from the ADNI database, fulfilling the criteria 
described below.

Cohort A consisted of images from 100 AD patients and 
100 CN patients and was used for the identification of ADRP 
patterns, whereas Cohort B included 20 AD patients and 20 
CN, which were used for ADRP validation.

Recording in a tomograph yielding a final image resolu-
tion of 6 mm full width at half maximum (FWHM) or less 
was a selection/inclusion criterion for the study. For both 
cohorts, only patients with AD diagnosis clinically con-
firmed at all follow-up sessions were selected. Similarly, 
CN were selected among subjects who were confirmed as 
cognitively normal at all follow-up sessions. Additional 
criteria for Cohort B were matching in age, gender, and 
disease duration with Cohort A.

The 2-[18F]FDG-PET images of AD patients were 
checked for severe brain atrophy, which could affect 
the identification of disease-related pattern, using an 
in-house computer program written in Matlab R2020a. 
Atrophy volume was calculated with the underlying 
assumption that voxels with intensity values below 30% 
of the maximal value within the brain represented cer-
ebrospinal fluid or brain atrophy. Potential members of 
the patient groups were excluded if their atrophy volume 
exceeded by more than 10% the mean atrophy volume 
in the CN group, whereupon we repeated the selection 
from within the ADNI database. More details on our 
PET-based atrophy screening algorithm and its valida-
tion against the established medial temporal lobe atrophy 
(MTA) [19] score can be found in Appendix 2.

Demographic data of the selected subjects in identifica-
tion Cohort A and validation Cohort B are presented in 
Table 1.

Image acquisition protocol
All images were collected from the ADNI database and 
had been thus acquired and preprocessed with the pro-
tocol requested by ADNI. In brief, 30–60  min prior to 
the start of scanning, all participants received intrave-
nously administered FDG with the activity of 185 MBq. 

https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
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Dynamic brain scans of six 5-min frames were acquired, 
co-registered, and averaged to minimize the motion arti-
facts and then re-oriented into a standard 160 × 160 × 96 
voxel image grid, having 1.5 mm cubic voxels. They were 
acquired on different scanners from two manufactur-
ers (General Electric and Siemens; Table 2). CN and AD 
subjects were similarly distributed across different scan-
ners. We believe that various scanners would not affect 
our survey, since images were harmonized with same 
normalization and different smoothing, based on scan-
ner resolutions. All scans were reconstructed with OSEM 
iterative reconstruction algorithm using parameters spe-
cific to the system used for scanning (https://​adni.​loni.​
usc.​edu/​metho​ds/​pet-​analy​sis-​method/​pet-​analy​sis/).

Sizes of identification groups
To study the effect of the identification group size on 
the ADRP, subjects were randomly selected from the 
identification Cohort A to groups of different sizes, fol-
lowing the rule that an average age and average disease 
duration should remain unchanged, 76.6 years, 5.1 years, 
respectively, and that gender was balanced in all groups. 

The following 125 groups with five different sizes were 
created:

•	 25 groups with 20 AD/20 CN subjects,
•	 25 groups with 30 AD/30 CN subjects,
•	 25 groups with 40 AD/40 CN subjects,
•	 25 groups with 60 AD/60 CN subjects and
•	 25 groups with 80 AD/80 CN subjects.

Twenty-five replications of each of the five different 
group sizes were used to reduce the effect of biological 
variability on the final result. Description of algorithm for 
assigning subjects to different identification groups and 
demographic data for all groups is presented in Appendix 
1.

Validation Cohort B did not undergo the grouping 
process described for Cohort A but comprised of 20 
AD patients and 20 CN, as originally selected from the 
database.

Image resolutions
To evaluate the effect of image resolution on ADRP per-
formance, we preprocessed the 125 groups with identifi-
cation images (Cohort A) and the validation image group 
(Cohort B) to obtain fictionally made six different image 
resolutions: 6, 8, 10, 12, 15, and 20  mm FWHM. 6  mm 
is the best achievable resolution in our scanner selection 
and 20  mm is above the upper limit of the image reso-
lutions in previously identified ADRP patterns [4–7, 20]. 
For this purpose, we spatially normalized each image 
with a standard Montreal Neurological Institute (MNI)-
based PET template and smoothed it with a Gaussian 
filter of a particular width, depending on the original 
scanner resolution. FWHMs of filters used for smoothing 
were calculated as a square root of the squared desired 
final resolution minus the squared effective scanner reso-
lution (assuming that the FWHM adds in squares). Filter 

Table 1  Demographic characteristics of subjects selected from 
the ADNI database. Images from Cohort A were used for ADRP 
identification, whereas images from Cohort B were used for 
ADRP validation

*Age, Disease duration and MMSE are given as mean ± standard deviation

Cohort A Cohort B

AD CN AD CN

N 100 100 20 20

Gender (M/F) 50/50 50/50 10/10 10/10

Age (yrs)* 76.6 ± 6.7 76.6 ± 6.0 76.6 ± 5.8 76.6 ± 5.2

Disease duration (yrs)* 5.1 ± 3.0 – 5.1 ± 2.8 –

MMSE* 23.3 ± 3.0 28.7 ± 1.7 22.9 ± 3.0 29.2 ± 1.1

Table 2  Scanner resolutions. Effective scanner resolution (ESR) and Gaussian filters are used for image smoothing to achieve different 
final resolutions

All values in the table are full width at half maximum, presented for in-plane/axial and are given in mm

Scanner ESR FWHM of Gaussian filter used for smoothing

Final resolution 
6 mm

Final resolution 
8 mm

Final resolution 
10 mm

Final resolution 
12 mm

Final resolution 
15 mm

Final 
resolution 
20 mm

HRRT (Siemens) 4.5/4.5 3.3/3.4 6.0/6.0 8.7/8.7 10.9/10.9 14.1/14.2 19.4/19.4

Biograph HiRes/mCT 
/1093/1094/1080 
(Siemens)

5.5/5.5 2.3/2.4 5.5/5.5 8.3/8.4 10.6/10.7 13.9/13.9 19.2/19.2

Discovery 600, 690, RX, 
STE (General Electric)

5.5/6.0 2.3/0.7 5.5/5.0 8.3/8.0 10.6/10.4 13.9/13.8 19.2/19.1

HR + (Siemens) 6.0/6.0 0.3/0.7 5.0/5.0 8.0/8.0 10.4/10.4 13.8/13.8 19.1/19.1

https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
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FWHMs for smoothing the images from each selected 
scanner are presented in Table 2. Based on six final image 
resolutions, six subgroups were formed from each of the 
125 previously created groups of identification subjects 
(750 subgroups) and the one validation group (6 sub-
groups). Image normalization and smoothing were done 
in Statistical parametric mapping 12 (SPM12; Institute of 
Neurology, UCL, London, UK) software running in Mat-
lab R2020a (MathWorks Inc., Natick, MA).

A schematic presentation of group formation and pre-
processing for the identification of various versions of 
ADRP is presented in Fig. 1.

ADRP identification
For ADRP identification, the standard SSM/PCA formu-
lation was applied [21] to each of the 750 identification 
groups (25 replications of groups with 5 different sizes, 
each with 6 different image resolutions). A total of 750 
versions of ADRP were obtained; for clarity, their names 
include a number of the identification subjects (20sub to 
80sub), a consecutive number of the identification group 
with this particular size (1–25), and an image resolution 
in mm FWHM (6fwhm to 20fwhm). For example, ADRP-
20sub-1-6fwhm for ADRP was identified from images 
of 20 AD patients and 20 CN, where the identification 
group was the first replication of this size, with an image 
resolution of 6 mm. A probabilistic gray matter mask was 
created by thresholding on 35% of the maximum voxel 
value. A specific disease-related pattern was determined 
as a PC or a linear combination of PCs, associated with 
maximum separation of AD patients’ and CN subjects’ 
scores, which were found with logistic regression that 

aims to find the lowest Akaike Information Criterion 
(AIC) value.

All 25 replications of the patterns identified from the 
identification groups with the same size and the same 
image resolution were averaged across spatially equiva-
lent voxels. We obtained 30 average patterns, each char-
acterized by a specific size of identification group and a 
specific resolution of identification images (e.g., ADRP-
20sub-6fwhm). The average patterns were displayed and 
visually assessed.

Diagnostic performance of ADRP
The area under the curve (AUC), calculated from the 
receiver operating characteristic (ROC) curve, was con-
sidered as a measure of the ADRP diagnostic perfor-
mance. We used a voxel-based topographic profile rating 
(TPR) analysis [21] to calculate the expression of each of 
the 750 versions of ADRP in validation Cohort B at all six 
image resolutions. Consequently, for each of the 750 pat-
terns, six ROC curves were determined, and six AUC val-
ues were calculated.

We compared AUC values across different identification 
group sizes, different resolutions of identification images, 
and different resolutions of validation images. For each 
group of 25 replications of ADRP characterized by the 
same identification group size and resolution of identifica-
tion images (e.g., ADRP-20sub-1-6fwhm to ADRP-20sub-
25-6fwhm), we calculated the average AUC and the average 
of the lowest five AUC values (i.e., the bottom 20% of all 
cases). This last value was considered an indicator of poor 
identification group selection, which may be a random out-
come due to biological variability among the subjects. All 

Fig. 1  Group formation. All patients from ADNI were divided into two cohorts. From the identification Cohort A, groups of different sizes were 
formed, each with 25 replications. Each such group was further preprocessed to obtain 6 groups with the same subjects but different image 
resolutions. From validation Cohort B, 6 different image resolution groups were made
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the analyses were done with Matlab R2020a. SPM12 was 
used for creating a visual presentation of ADRP.

Results
ADRP identification
A total of 750 versions of ADRP were identified from the 
same number of identification groups. They were deter-
mined as different linear combinations of the first five 
PCs. Expression of all versions of ADRP in correspond-
ing identification groups was abnormally elevated in AD 
patients compared to CN subjects (p < 0.001).

Generally, the ADRP patterns were characterized by a 
relative decrease of metabolism in the precuneus, poste-
rior cingulate cortex, anterior cingulate cortex, medial 
temporal lobe, and inferior parietal lobe and a relative 
increase of metabolism in the pons and cerebellum. Exam-
ples of average ADRPs, identified from images with reso-
lution 15 mm FWHM for different sizes of identification 
groups (ADRP-20sub-15fwhm, ADRP-30sub-15fwhm, 
ADRP-40sub-15fwhm, ADRP-60sub-15fwhm and ADRP-
80sub-15fwhm), are presented in Fig. 2a. Average ADRPs, 
identified from groups of 20 AD/20 CN for different image 
resolutions (ADRP-20sub-6fwhm, ADRP-20sub-8fwhm, 
ADRP-20sub-10fwhm, ADRP-20sub-12fwhm, ADRP-
20sub-15fwhm, ADRP-20sub-20fwhm), are presented in 
Fig.  2b. Besides the regions presented in all ADRP ver-
sions, additional small hypermetabolic or hypometabolic 
regions are observed in individual versions of the pattern. 
For example, the hypermetabolic caudate nucleus is seen 
in versions of ADRP identified from images with a resolu-
tion of 6 mm FWHM, and the hypermetabolic thalamus 
is seen in ADRPs identified from images with a resolution 
of 6–15 mm (Fig. 2b). We can observe that patterns iden-
tified from images with better resolution show sharper 
details. Thirty average patterns for all sizes of identifica-
tion groups and all image resolutions are in Appendix 3 
(Fig. 6).

Diagnostic performance of ADRP
AUC values for different identification group sizes and 
resolutions of identification images, in dependence on 
the resolution of validation images, are presented in 
Fig. 3.

AUCs for ADRPs with identification group size 20 
AD/20 CN (Fig. 3, upper row) have a wide range of values 
(0.58–0.89), reflecting the biological variability, which is 
narrowing toward larger group sizes. For 30 AD/30 CN, 
the AUCs are 0.67–0.89; for 40 AD/40 CN, the AUCs are 
0.67–0.87; for 60 AD/60 CN, the AUCs are 0.69–0.85; 
and for 80 AD/80 CN, the AUCs are 0.70–0.84. Standard 
deviations are 9% of AUC for 20 AD/20 CN, reducing to 
2% and 3% for 60 AD/ 60 CN and 80 AD/80 CN, respec-
tively. Mean values and standard deviations of AUCs for 

all 25 replications of ADRP with the same group size and 
resolution, describing the spread of the curves, are pre-
sented in Appendix 3 (Fig. 7).

In the plot of average AUC values (Fig. 3, middle row), 
an average behavior of ADRPs of a particular identifica-
tion group size and image resolution can be observed. For 
identification group sizes 20 AD/20 CN and 30 AD/30 
CN, image resolution 8  mm has the highest AUCs. For 
group sizes 40 AD/40 CN and 60 AD/60 CN, the 10 mm 
and 12  mm resolution patterns perform better (have 
higher AUC) than others. For identification group size 
80 AD/80 CN, the patterns identified from images with 
resolutions 10 mm and 20 mm perform better than oth-
ers. By comparing consecutive plots in the middle row of 
Fig.  2, we can see that increase in average AUC due to 
identification group size is only about 3% from size 20 
AD/20 CN to 80 AD/80 CN.

The average of the lowest five AUC values (Fig. 3, bot-
tom row) is the smallest for 20 AD/20 CN group size 
and increases substantially (for about 0.07) for 30 AD/30 
CD group size for all image resolutions. An additional 
increase (about 0.02) is seen for 40 AD/40 CN, and then, 
the plateau is reached. The best performance is again at 
8 mm for 20 AD/20 CN and 30 AD/30 CN and at 10 mm 
and 12 mm for larger identification group sizes. For small 
identification groups, the average of the lowest five AUC 
values is 10% lower compared to the average AUC value; 
for larger groups, the values are similar.

Regarding the changes in validation image resolution, 
we can see (Fig. 3, upper row) that the variations in AUCs 
are smaller than the variations in AUCs between the 
replications of the patterns with the same identification 
group sizes. The average AUC (Fig. 3, middle row) is very 
similar for validation images with resolutions from 6 to 
15 mm but decreases (AUC decrease for about 0.01) for 
20 mm in all group sizes and all resolutions of identifica-
tion images. Similarly, the average of the 5 lowest AUCs 
(Fig. 3, bottom row) decreases toward 20 mm validation 
image resolution; the decrease is most pronounced in the 
20 AD/20 CN group size (up to 0.03).

Discussion
ADRP is a metabolic brain biomarker for AD and has 
potential for translation to clinical practice [8, 22, 23]. So 
far, various ADRP patterns have been identified and vali-
dated on different cohorts, from brain images acquired 
with different scanners, reconstructed with various algo-
rithms, and smoothed with various filters. However, the 
effect of variation of these technical parameters on ADRP 
has not yet been thoroughly investigated. In this study, 
we systematically evaluated the impact of the size of the 
identification group and the impact of the image resolu-
tion of both identification and validation images on the 
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Fig. 2  ADRP patterns. Examples of average ADRP patterns for a identification images with resolution 15 mm FWHM, for various sizes of 
identification groups: 20 AD/20 CN, 30 AD/30 CN, 40 AD/40 CN, 60 AD/60 CN and 80 AD/80 CN and b for identification group size 20 AD/20 CN, 
for image resolutions 6, 8, 10, 12, 15 and 20 mm. All displayed patterns are averaged over 25 replications of ADRP identified from the identification 
group of the same size and with the same image resolution. Red color represents metabolic hyperactivity, and blue color represents metabolic 
hypoactivity
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ADRP’s diagnostic performance. The purpose of con-
ducting such study was also to enable other researchers 
to estimate the ideal sample for their future SSM-based 
projects. The 2-[18F]FDG-PET images were randomly 
selected from the ADNI database. Since the ADNI data-
base is an extensive multisite dataset, it is ideal for the 
derivation and validation of network biomarkers.

We identified 750 versions of ADRP and studied their 
AUC values for the discrimination of AD patients from 
healthy control subjects. All newly identified patterns 
had hypo- or hypermetabolic regions similar to those 
reported in previously published ADRPs [6, 7, 20, 24, 25]. 
Visually, the differences between patterns identified from 
identification groups that differed in sizes and resolutions 
were minor.

Nevertheless, we observed a wide spread of the AUC 
values among the 25 replications of ADRPs that were 
identified from the identification groups with the same 
sizes and image resolutions. These variations among 

AUCs were decreasing with the growing size of the 
identification group (at 20 AD/20 CN identification 
group size standard deviation of AUC was up to 9%, 
whereas at 60 AD/ 60 CN and 80 AD/80 CN, it dropped 
to 2% and 3%). This most likely implies that the bio-
logical variability among the subjects is less expressed 
in larger groups. By averaging AUC over the replica-
tions of the ADRPs identified from the same group size 
and image resolution of the identification images, we 
noticed that by increasing the size of the identification 
group, the best average AUC increased only slightly 
(from 20 AD/20 CN to 80 AD/80 CN subjects the AUC 
increased for about 3%). Generally, AUC values were 
the highest for medium resolution of the identifica-
tion images (range from 8 to 15 mm) and were at these 
values also not sensitive to minor variations in image 
resolution. Larger groups favored worse identification 
image resolutions (for groups > 40 AD/40 CN the high-
est AUC is for FWHM > 10 mm, but for smaller groups, 

Fig. 3  Dependence of AUC on the resolution of validation images for different sizes and resolutions of identification images. In the upper row, the 
plots show AUCs for all 25 replications of ADRP with the same size of identification group and for 6 resolutions of identification images (different 
colors). The average curves of 25 AUCs for each identification image resolution are in the middle row. In the bottom, row are the average curves of 
the lowest five AUCs for each resolution of identification images. Columns correspond to different identification group sizes. On the horizontal axes 
are different image resolutions of validation images. Different line colors represent different identification image resolutions
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the highest AUC is at FWHM < 10  mm). Considering 
only the results of the average AUCs would mean that 
groups of 20 patients and 20 healthy controls can be 
sufficient for successful pattern identification. However, 
to reduce the effect of biological variability, using an 
identification group 30 AD/30 CN shall be beneficial. 
Our results also imply that smoothing out more details 
in the images when increasing the group size may pro-
duce a more robust pattern.

We further examined the average of the lowest five 
AUC values from the ADRPs with equal sizes of iden-
tification cohorts. For group sizes of 40 AD/40 CN and 
above, we could see that the behavior was very similar 
to the average AUC. Nevertheless, for smaller identifi-
cation groups, especially for the 20 AD/20 CN one, the 
average of the lowest five AUC values is lower (about 
10%) compared to the average AUC value. This suggests 
that the 20 AD/20 CN group size may be too small for 
a reliable pattern performance and that identification 
groups of size at least 30 AD/30 CN tend to have better 
performance. It also implies that due to biological vari-
ability or possible poor selection of subjects, a pattern 
identified from small cohorts could have compromised 
performance.

The performance of ADRP was not affected signifi-
cantly by the resolution of validation images in pro-
spective analyzes, implying that a properly identified 
ADRP can be used successfully with new images even 
if they have a different resolution than the identifica-
tion images, as long as it is in the range between 6 and 
15 mm.

In this study, we had a chance to observe an effect of 
biological variability demonstrated with group repeti-
tions, and this could be compared to the performance 
of the previously published patterns. Perovnik et  al. [8] 
report AUC values of 0.95 and 0.98 for ADRP identified 
from 20 AD/20 CN subjects and validated with two dif-
ferent sets of subjects. Iizuka et al. [25], with 50 AD/50 
CN identification subjects, report AUC values between 
0.80 and 1 for ten different samplings of identification 
and validation group. Mattis et al. [24] identified ADRP 
on 20 AD/20 CN ADNI data and obtained an AUC value 
of 0.86 for the identification and 0.87 for the validation 
cohort (personal communication). Two other authors 
report AUC values for the ADRP pattern but calculated 
only for identification subjects. Habeck et  al. [4] com-
pared the performance of five replications of ADRP, 
identified with different groups of 20 AD/20 CN sub-
jects, and obtained AUC values between 0.87 and 0.97. 
Meles et  al. [7] report an AUC value of 0.95 for ADRP 
identified on a small sample of 15 AD/18 CN subjects.

Our AUC values, calculated for validation subjects, 
are comparable to Iizuka et  al. [25] and Mattis et  al. 
[24] but lower than Perovnik et  al. [8], whose ADRP 
has been identified in AD patients pathologically con-
firmed with a cerebrospinal fluid biomarker. Other 
authors report AUCs for the identification groups, 
which are expectedly higher than for validation groups. 
It could be seen that results that stem from ADNI data 
reach similar AUCs, probably due to the multisite 
nature of the data, and are different from the results 
obtained from single-center scans. Habeck et  al. [4] 
and Iizuka et  al. [25] also confirm the spread of AUC 
values for group repetitions and imply that the selec-
tion of the subjects may have a significant impact on 
the AUC value. The reason for somehow lower AUC 
values in our study and their wider spread, especially 
in smaller identification groups, is possibly caused by 
the random selection of subjects from the ADNI data-
base. In the selection process, we considered patients’ 
diagnoses but not their detailed clinical data (i.e., dis-
ease duration, cognitive status), which could improve 
subject selection. It should also be noted that subjects 
in our study were scanned on four different scanners 
with considerably different configurations (whole-
body PET scanner vs. dedicated brain PET scanner) 
and different scanner generations. Due to these differ-
ences, images were likely more heterogeneous regard-
ing noise level, and these differences could not be 
fully corrected with scanner-specific image smooth-
ing. Additionally, it should be emphasized that our 
reported AUC values stem from the validation images, 
while others generally reported AUC values that stem 
from the identification image sets, which may cause a 
possible overfitting bias.

Our findings about the appropriate resolution of the 
ADRP identification images can be roughly compared to 
the image resolutions chosen by the authors in previous 
studies. Smoothing with 10 mm [6, 7, 20, 24] or 12 mm 
[4, 5] FWHM Gaussian kernel is reported, leading to the 
image resolution of about 11.4 mm or 13.2 mm FWMH 
for Siemens Biograph mCT and worse for other scanners. 
This is compliant with the highest AUCs for patterns 
identified from images with resolutions between 8 and 
15 mm FWHM in our study.

Nevertheless, we found that the effect of image reso-
lution on the pattern’s diagnostic performance is rather 
small, which is in accordance with previous research 
exploring the influence of other technical parameters 
of the 2-[18F]FDG-PET images on other disease-spe-
cific metabolic patterns. In Tomše et al. [15], we esti-
mated the effect of 2-[18F]FDG-PET reconstruction 
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algorithms on the expression of the Parkinson’s dis-
ease-related pattern (PDRP). The reported AUC val-
ues for differentiation between patients and healthy 
controls are stable regardless of the reconstruction 
algorithm; around 0.95. Even so, it was stressed that 
for the prospective determination of pattern expres-
sion in a new subject, scaling with a group of CN sub-
jects’ images scanned and preprocessed with the same 
protocol is needed. Similarly, stable AUC values were 
achieved for PDRP also by Peng et al. [18], who stud-
ied the effects of PET scanners and spatial normaliza-
tion with different softwares and reported AUC values 
between 0.96 and 0.97 for different SPM versions. Wu 
et  al. [16] studied PDRP scores in two populations 
scanned with different scanners and reconstruction 
algorithms and obtained AUC values between 0.98 and 
0.99. Moeller et  al. [17] also confirmed a high repro-
ducibility of the PDRPs across four independent pat-
tern identification populations each scanned with a 
different PET scanner.

Our study has some limitations. Firstly, random 
machine selection of patients’ images from the publicly 
available ADNI database might differ from the recruit-
ment of patients to the prospective studies with the origi-
nal purpose of disease-specific pattern identification. 
From the database, the patients were selected according 
to their clinical diagnosis, which may be wrong in around 
one-third of patients [26]. Additionally, our data on the 
scanner’s characteristics were limited to the type of scan-
ner and the reported effective resolution, which we then 
used to calculate the filter’s FWHM needed to reach 
the final image resolution. Other factors can play a role 
in the quality of the images, such as image count rates, 
depending upon injected radioactivity, body mass, blood 
glucose level, medications, possible sleeping, room light-
ing, ambient sound levels, and staff interactions with the 
subjects. Image resolution can also be affected by motion 
artifacts.

Further assessments of ADRP’s diagnostic performance 
should check whether AUCs from a single site testing set 
are systematically greater than analogous values from the 
multisite data, e.g., ADNI, and whether AUCs would 
increase over time as AD progresses.

Conclusions
In this study, we systematically addressed the effects of 
the number of 2-[18F]FDG-PET images in the identifica-
tion group and the effect of the image resolution in the 
identification and validation groups on the diagnostic 
performance of ADRP.

We showed that an average AUC of the ROC curve 
for the differentiation between AD patients and healthy 
controls only marginally increases in larger (more than 
20 AD/20 CN) identification subject groups. However, in 
case of a poorer selection of patients, the AUC increases 
with an increasing number of participants. Therefore, to 
reduce the effect of biological variability, an identification 
group of 30 AD/30 CN or a larger size shall be beneficial. 
We believe that this result shall be applied to the iden-
tification of other metabolic patterns using SSM/PCA 
analysis.

Based on our findings, the identification image 
resolution should stay within a range of 8–15  mm. 
SSM/PCA-based network patterns can be applied to 
images acquired with different scanners yielding dif-
ferent image resolutions, if it is within the range of 
6–15 mm.

Appendix 1: groups selection
A total of 125 groups from Cohort A, comprised of 
100 AD and 100 CN with random selection, were pro-
duced. The first 25 groups consisted of 20 AD patients 
and 20 normal controls (CN), which were balanced in 
gender, and had similar average age and disease dura-
tion. The second 25 groups consisted of 30 AD/30 CN 
subjects, the third 25 groups consisted of 40 AD/40 CN 
subjects, the fourth 25 groups consisted of 60 AD/60 CN 
subjects, and the fifth 25 groups consisted of 80 AD/80 
CN subjects. Algorithm for assigning subjects to differ-
ent identification groups randomly assigned patients to 
individual subgroups until average age and disease dura-
tion differed less than 1  year and 0.5 from average age 
and disease duration of the whole Cohort A. Algorithm 
also checked the number of repeated subjects in differ-
ent subgroups and if the number of repeated subjects 
was greater than some threshold (for different groups 
sizes different) the new subgroup was rejected and 
another selection was done. Algorithm is presented in 
Fig. 4. Demographic data for each group are presented in 
Tables 3, 4, 5, 6, 7.

It should be noted that the threshold for the num-
ber of matching subjects, which is higher for larger 
subgroups, does not constitute an inherent source 
of selection bias. We empirically determined the 
(approximate) lowest threshold for the maximal num-
ber of repeated subjects. We started a subgroup selec-
tion with a certain small number of repeated subjects 
(explained later) and if the solution could not be found 
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in a reasonable time (a few hours), we relaxed a crite-
rion for the number of repeated subjects until we got 
a solution. Generally, if we have n subjects and we try 
to get a combination with k subjects, we have C(n, k) 
possible combinations (binomial coefficient). When 
taking all the combinations, each particular combina-
tion has up to (k-1) common subjects with any other 
combination (at least one subject must be different). 
We can select a subset of all possible combinations, 
where more than one subject is different in any pair 
of selected combinations. But there are limitations to 
that; for example, if k > n/2, we can’t find two combina-
tions with zero common subjects. It can be shown that 
two distinct combinations with k subjects, drawn from 
a set of n subjects have at least 2 k-n common subjects. 
This gives us the lower limit of 20 common subjects 
when 60 subjects is drawn out of 100 subjects and 60 
common subjects when 80 subjects is drawn out of 
100 subjects. For 20, 30 and 40 subjects drawn out of 
100 subjects, we can have some combinations with 
no common subjects. Those were initial limits for the 
number of repeated subjects in the groups selection 

algorithm. However, the number of repeated subjects 
may be higher when more than two combinations are 
drawn. In addition to that, our selected subgroups 
were not just random subgroups, but we also required 
that all subgroups matched in average age and gender. 
Therefore, the final number of repeated subjects were 
higher than the 2 k-n.

Appendix 2: atrophy screening
PET-based algorithm for atrophy screening assesses rela-
tive size of the cerebrospinal fluid compartment for each 
prospective AD patient and compare it to the assessment 
for the average 2-[18F]FDG-PET image of 20 healthy con-
trols. Relative size of the cerebrospinal fluid was assessed 
by the following procedure:

•	 the brain is segmented with the help of an atlas,
•	 within the brain segment from the atlas, those voxels 

that are below 30% of the maximum 2-[18F]FDG-PET 
value are considered to represent cerebrospinal fluid,

Fig. 4  Algorithm for assigning subjects to different identification groups
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•	 the proportion of brain segment that consists of 
the cerebrospinal fluid is calculated to get the rela-
tive size of the cerebrospinal fluid (measured in per-
cents).

If the relative size of the cerebrospinal compartment 
for prospective AD patient was higher than the rela-
tive size of the cerebrospinal compartment for average 
normal control for more than 10 percentage points, 
the prospective AD patient was excluded due to exces-
sive atrophy. We arbitrarily defined a threshold of 10 
percentage points as we empirically observed that 

patients with severe atrophy had the relative size of 
the cerebrospinal compartment that exceed by more 
than 10 percentage points the relative size of normal 
controls.

In order to verify our PET-based atrophy screen-
ing algorithm, we evaluated MTA scores for those 
patients, where the MR image was available. Out of 120 
AD patients, 101 had a MR image available. Their MTA 
scores range between 0 and 3. For 41 AD patients out 
of 101, their MTA score was abnormal, but still none of 
them had MTA score above 3. We correlated the MTA 
score with our PET-based percentage score and found 

Table 3  Demographic data of 20AD/20 CN identification groups

Group 1 Group 2 Group 3 Group 4 Group 5

CN AD CN AD CN AD CN AD CN AD

Age [years] 76.3 ± 5.9 76.5 ± 6.5 76.8 ± 5.6 76.6 ± 5.9 77.1 ± 6.2 76.7 ± 6.9 76.6 ± 6.3 76.7 ± 7.3 76.2 ± 6.2 77.0 ± 8.8

DD [years] – 5.0 ± 3.1 – 5.1 ± 3.0 – 5.1 ± 2.8 – 5.1 ± 2.8 – 5.2 ± 2.5

MMSE 28.6 ± 1.5 23.4 ± 3.0 28.6 ± 1.3 23.9 ± 2.2 28.8 ± 1.2 22.7 ± 2.9 29.1 ± 1.4 23.3 ± 3.8 28.6 ± 1.8 24.5 ± 2.5

Group 6 Group 7 Group 8 Group 9 Group 10

CN AD CN AD CN AD CN AD CN AD

Age [years] 76.8 ± 5.8 76.9 ± 5.1 76.9 ± 6.9 76.2 ± 7.9 77.0 ± 4.0 77.0 ± 8.7 76.3 ± 7.0 76.9 ± 6.3 77.0 ± 7.3 76.9 ± 5.1

DD [years] – 5.1 ± 3.0 – 5.3 ± 3.1 – 5.3 ± 2.4 – 5.2 ± 2.9 – 5.0 ± 3.0

MMSE 28.5 ± 2.4 24.9 ± 2.1 28.8 ± 1.0 24.0 ± 2.0 28.7 ± 1.3 22.8 ± 3.7 28.8 ± 1.2 22.2 ± 2.7 29.0 ± 1.4 23.8 ± 2.8

Group 11 Group 12 Group 13 Group 14 Group 15

CN AD CN AD CN AD CN AD CN AD

Age [years] 77.0 ± 7.2 76.8 ± 8.4 76.4 ± 5.2 76.4 ± 6.2 76.7 ± 6.3 76.3 ± 7.1 76.4 ± 7.1 76.9 ± 6.3 77.0 ± 5.1 77.0 ± 6.0

DD [years] – 5.0 ± 2.8 – 4.9 ± 2.7 – 5.0 ± 2.7 – 5.2 ± 2.4 – 4.9 ± 2.4

MMSE 29.4 ± 0.9 23.1 ± 3.3 29.0 ± 1.5 23.6 ± 2.7 28.5 ± 1.3 22.3 ± 3.5 28.5 ± 2.4 22.3 ± 3.3 28.7 ± 1.7 23.8 ± 2.7

Group 16 Group 17 Group 18 Group 19 Group 20

CN AD CN AD CN AD CN AD CN AD

Age [years] 77.1 ± 5.8 76.9 ± 7.2 76.6 ± 4.9 76.9 ± 5.7 76.7 ± 6.8 77.0 ± 6.1 76.3 ± 7.1 77.0 ± 5.5 76.4 ± 6.1 75.5 ± 5.6

DD [years] – 5.2 ± 2.9 – 4.9 ± 2.6 – 4.9 ± 3.2 – 4.9 ± 3.8 – 5.0 ± 2.5

MMSE 28.3 ± 2.3 22.8 ± 1.8 28.4 ± 1.8 24.4 ± 3.5 28.9 ± 1.4 23.7 ± 2.5 29.1 ± 1.5 22.2 ± 3.0 29.3 ± 1.1 23.1 ± 2.2

Group 21 Group 22 Group 23 Group 24 Group 25

CN AD CN AD CN AD CN AD CN AD

Age [years] 76.9 ± 7.4 77.1 ± 6.2 76.5 ± 6.2 77.0 ± 7.7 76.8 ± 6.4 76.7 ± 7.6 76.7 ± 5.5 76.9 ± 6.1 76.5 ± 6.3 76.3 ± 8.1

DD [years] – 5.0 ± 3.1 – 5.3 ± 4.5 – 5.1 ± 2.6 – 5.3 ± 3.1 – 5.1 ± 2.7

MMSE 28.3 ± 1.3 23.6 ± 2.8 28.5 ± 2.5 24.3 ± 3.6 28.3 ± 1.9 23.0 ± 2.7 28.9 ± 1.4 23.7 ± 2.5 28.8 ± 1.3 23.6 ± 2.8
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a reasonable correlation of the two atrophy measures 
(please see the correlation plot in Fig.  5). When we 
selected patients with our method, only three patients 
were excluded due to excessive (above 10%) atrophy. 
Two of them had MR images, and their MTA scores 
were indeed higher than the MTA scores of the studied 
patients, i.e., 3.25 and 3.5 (red spots in Fig. 5).

We can observe in Fig.  5 that the worst agreement 
between the methods is in the middle range of MTA val-
ues. Patients with low MTA (≤ 1) have consistently low 
PET score (< 4%), and patients with higher MTA (> 3) 
have PET score consistently above 8%.

Table 6  Demographic data of 60 AD/60 CN identification groups

Group 76 Group 77 Group 78 Group 79 Group 80

CN AD CN AD CN AD CN AD CN AD

Age [years] 76.5 ± 6.5 75.9 ± 7.0 76.9 ± 5.6 76.2 ± 6.4 77.0 ± 6.0 76.0 ± 7.1 76.1 ± 6.3 76.4 ± 5.6 77.0 ± 5.6 76.6 ± 7.1

DD [years] 5.2 ± 3.3 5.3 ± 3.1 5.0 ± 3.1 5.0 ± 3.1 5.1 ± 3.3

MMSE 28.7 ± 1.3 23.6 ± 2.5 28.6 ± 1.4 23.2 ± 2.8 28.9 ± 1.4 23.2 ± 3.1 28.9 ± 1.3 23.6 ± 2.7 29.0 ± 1.3 23.0 ± 3.0

Group 81 Group 82 Group 83 Group 84 Group 85

CN AD CN AD CN AD CN AD CN AD

Age [years] 76.1 ± 6.2 77.7 ± 6.8 75.8 ± 6.2 76.3 ± 6.6 76.3 ± 6.7 76.6 ± 7.1 77.0 ± 5.9 76.1 ± 6.6 77.2 ± 5.5 76.4 ± 7.3

DD [years] 5.4 ± 3.4 5.1 ± 3.4 5.5 ± 3.1 4.7 ± 2.5 5.2 ± 3.3

MMSE 28.5 ± 1.8 23.2 ± 2.8 28.7 ± 1.7 23.4 ± 2.4 28.5 ± 1.9 23.5 ± 2.7 28.8 ± 1.3 23.2 ± 2.7 28.8 ± 1.4 23.3 ± 3.4

Group 86 Group 87 Group 88 Group 89 Group 90

CN AD CN AD CN AD CN AD CN AD

Age [years] 76.2 ± 6.2 76.9 ± 7.2 76.6 ± 5.3 76.0 ± 6.8 77.2 ± 5.6 76.0 ± 6.3 76.6 ± 5.7 76.9 ± 6.6 76.0 ± 6.2 75.9 ± 6.8

DD [years] 5.2 ± 2.9 5.3 ± 3.2 4.6 ± 2.6 4.7 ± 2.6 5.3 ± 3.2

MMSE 28.8 ± 1.4 23.0 ± 3.3 28.7 ± 1.8 23.7 ± 2.8 28.7 ± 1.8 23.4 ± 3.2 28.7 ± 1.8 23.1 ± 3.3 28.6 ± 1.8 23.3 ± 3.3

Group 91 Group 92 Group 93 Group 94 Group 95

CN AD CN AD CN AD CN AD CN AD

Age [years] 76.0 ± 6.1 76.4 ± 6.6 77.0 ± 5.5 76.3 ± 6.8 76.3 ± 6.3 76.7 ± 7.0 76.3 ± 6.1 75.7 ± 6.6 76.5 ± 5.9 77.1 ± 6.9

DD [years] 5.6 ± 3.3 5.3 ± 3.2 5.2 ± 2.9 4.8 ± 3.1 5.0 ± 2.9

MMSE 28.6 ± 1.8 23.2 ± 3.1 28.5 ± 1.8 23.1 ± 2.8 28.4 ± 1.8 23.0 ± 3.0 28.8 ± 1.3 23.3 ± 3.1 28.6 ± 1.8 23.5 ± 3.1

Group 96 Group 97 Group 98 Group 99 Group 100

CN AD CN AD CN AD CN AD CN AD

Age [years] 76.7 ± 6.4 76.5 ± 7.2 76.8 ± 6.2 75.7 ± 6.9 76.4 ± 5.8 76.7 ± 7.0 76.8 ± 5.9 77.1 ± 6.5 76.7 ± 6.0 77.0 ± 6.7

DD [years] 4.9 ± 3.0 5.1 ± 3.2 5.0 ± 3.1 5.3 ± 3.2 5.2 ± 2.8

MMSE 28.6 ± 1.8 23.2 ± 2.9 28.8 ± 1.7 23.5 ± 2.5 29.0 ± 1.2 23.3 ± 2.9 28.6 ± 1.8 23.1 ± 3.1 28.6 ± 1.9 23.1 ± 3.2
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Table 7  Demographic data of 80 AD/80 CN identification groups

Group 101 Group 102 Group 103 Group 104 Group 105

CN AD CN AD CN AD CN AD CN AD

Age [years] 76.8 ± 6.3 76.8 ± 6.9 76.2 ± 6.3 76.5 ± 6.5 76.3 ± 6.2 76.6 ± 6.9 75.8 ± 5.9 76.0 ± 6.2 76.8 ± 5.7 76.7 ± 7.1

DD [years] 5.2 ± 3.2 5.0 ± 3.1 5.2 ± 3.1 5.0 ± 3.1 5.3 ± 3.2

MMSE 28.5 ± 1.7 23.3 ± 2.8 28.8 ± 1.6 23.1 ± 3.0 28.7 ± 1.7 23.1 ± 3.1 28.7 ± 1.7 23.1 ± 2.9 28.7 ± 1.5 23.1 ± 3.1

Group 106 Group 107 Group 108 Group 109 Group 110

CN AD CN AD CN AD CN AD CN AD

Age [years] 75.6 ± 5.7 76.3 ± 6.6 76.3 ± 6.1 76.4 ± 6.5 76.8 ± 6.3 76.6 ± 6.8 76.5 ± 6.1 77.1 ± 6.6 76.8 ± 6.1 77.1 ± 6.7

DD [years] 5.0 ± 3.2 5.0 ± 2.7 5.0 ± 2.8 4.8 ± 2.7 5.2 ± 3.2

MMSE 28.6 ± 1.7 23.3 ± 3.0 28.6 ± 1.8 23.3 ± 2.6 28.7 ± 1.7 23.2 ± 3.0 28.7 ± 1.7 23.0 ± 3.0 28.6 ± 1.7 23.4 ± 3.0

Group 111 Group 112 Group 113 Group 114 Group 115

CN AD CN AD CN AD CN AD CN AD

Age [years] 77.0 ± 6.0 76.6 ± 6.8 76.3 ± 6.0 76.7 ± 6.5 76.5 ± 5.8 77.3 ± 6.4 76.9 ± 5.9 76.4 ± 6.8 76.6 ± 6.1 76.2 ± 7.0

DD [years] 5.0 ± 3.1 5.3 ± 3.1 4.8 ± 3.1 5.2 ± 3.0 5.1 ± 3.1

MMSE 28.6 ± 1.7 23.4 ± 2.9 28.7 ± 1.6 23.2 ± 3.1 28.7 ± 1.8 23.0 ± 2.9 28.6 ± 1.7 23.3 ± 3.0 28.7 ± 1.5 23.3 ± 3.1

Group 116 Group 117 Group 118 Group 119 Group 120

CN AD CN AD CN AD CN AD CN AD

Age [years] 76.4 ± 6.3 76.1 ± 6.8 76.5 ± 6.3 76.4 ± 6.7 77.2 ± 6.1 76.0 ± 6.8 76.0 ± 6.0 76.2 ± 7.0 76.5 ± 5.8 76.3 ± 7.0

DD [years] 5.2 ± 3.1 4.9 ± 3.1 4.5 ± 2.4 5.0 ± 2.6 5.0 ± 3.0

MMSE 28.6 ± 1.7 23.1 ± 3.0 28.7 ± 1.6 23.4 ± 2.9 28.7 ± 1.6 23.2 ± 2.9 28.7 ± 1.7 23.3 ± 3.1 28.7 ± 1.5 23.2 ± 3.0

Group 121 Group 122 Group 123 Group 124 Group 125

CN AD CN AD CN AD CN AD CN AD

Age [years] 77.0 ± 6.3 76.2 ± 6.9 77.1 ± 6.2 76.6 ± 6.7 76.7 ± 5.9 76.1 ± 6.4 76.7 ± 6.2 76.8 ± 6.8 76.6 ± 5.9 76.9 ± 6.7

DD [years] 5.2 ± 3.2 5.3 ± 3.1 5.0 ± 3.1 4.9 ± 2.8 4.9 ± 3.0

MMSE 28.6 ± 1.7 23.1 ± 2.8 28.8 ± 1.4 23.1 ± 3.1 28.6 ± 1.8 23.6 ± 3.0 28.8 ± 1.4 23.3 ± 3.2 28.8 ± 1.3 23.3 ± 3.2

Fig. 5  Correlation plot between the MTA score and our PET-based score



Page 16 of 19Štokelj et al. EJNMMI Research           (2023) 13:47 

Appendix 3: patterns identified from different 
sizes of identification subject groups and different 
image resolutions
All average patterns displayed for 20 AD/20 CN, 30 
AD/30 CN, 40 AD/40 CN, 60 AD/60 CN, and 80 AD/80 

CN identification groups are shown in Figs. 6, 7 presents 
the average AUC value with standard deviation for all 
sizes of identification cohorts. It could be seen that with a 
growing number of identification cohorts, standard devi-
ations are getting smaller.

Fig. 6  Display of average patterns identified from a 20 AD/20 CN, b 30 AD/30 CN, c 40 AD/40 CN, d 60 AD/60 CN, and e 80 AD/80 CN identification 
subjects
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Abbreviations
AD	�	  Alzheimer’s disease
ADRP		�  Alzheimer’s disease-related pattern
CN		�  Cognitively normal
SSM/PCA		�  Scaled subprofile model/principal component 

analysis

2-[18F]FDG-PET	� 2-[18F]fluoro-2-deoxy-d-glucose positron emission 
tomography

PC		�  Principal component
FWHM		�  Full width at half maximum
AUC​		�  Area under the curve
ROC		�  Receiver operating characteristic

Fig. 7  Average and standard deviation of AUC values across 25 different identification groups a 20 AD/20 CN, b 30 AD/30 CN, c 40 AD/40 CN, d 60 
AD/60 CN and e 80 AD/80 CN. AUCs for patterns in six different image resolutions of identification and validation images are shown. Different colors 
represent different image resolutions in identification groups
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