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Abstract 

Purpose:  Small molecules targeting fibroblast activation protein (FAP) have emerged as a new group of tracers for 
positron emission tomography (PET) in 2018. While most of the existing literature has been focussed on the applica-
tion of FAP-specific PET in various kinds of cancers, some researchers have, both intentionally or unintentionally, used 
FAP-specific PET in patients with non-cancerous diseases. The purpose of this systematic review is therefore to sum-
marize the available evidence of FAP-specific PET for non-malignant indications.

Methods:  The MEDLINE database was searched for studies presenting the clinical use of FAP-specific PET, the records 
were screened according to PRISMA guidelines and articles containing patients suffering from non-malignant dis-
eases were included.

Results:  Sixteen studies with 303 patients were included. FAP-specific PET has been used in cardiac imaging, 
IgG4-related disease, benign tumors as well as various kinds of inflammation. Two prospective studies on FAP-specific 
PET for IgG4-related disease show its potential to differentiate inflammatory from fibrotic lesions, which could be used 
to determine the management of these patients.

Conclusion:  While publications on FAP-specific PET for non-malignant indications are mostly limited to case reports 
and incidental findings, the first retrospective and prospective studies present promising results for IgG4-related as 
well as cardiovascular disease that warrant further research. Several currently recruiting trials will add to the body 
evidence in the next few years.
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Introduction
The development of small molecules targeting fibroblast 
activation protein (FAP) as tracers for positron emis-
sion tomography (PET) in 2018 has sparked considerable 
interest mainly in the oncological community [1, 2].

FAP has dipeptidyl peptidase as well as endopeptidase 
activity and its expression is limited on normal adult tis-
sue. The expression can, however, increase significantly 

during tissue modelling, wound healing as well as in 
diseases such as arthritis, atherosclerosis and different 
cancers.

While most studies therefore evaluate the application 
of FAP-specific PET in patients with various kinds of 
cancers, the use of FAP-specific PET in non-malignant 
indications has initially been limited to occasional case 
reports [3].

However, as studies on FAP tracers in cancer began 
to grow in number and size, the amount of incidental 
findings of non-malignant diseases began to increase 
[4]. In addition, the promising results from the early 
case reports have caused the first dedicated studies on 
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FAP-specific PET for non-malignant indications to be 
conducted which in turn have been met with more inter-
est [5, 6].

Herein, we therefore conducted a systematic review 
of the use of FAP-specific PET in non-malignant indi-
cations to summarize the available evidence, to indicate 
areas where the available evidence is limited and to high-
light interesting case reports that might inspire future 
research.

Methods
The review was conducted according to the PRISMA 
guidelines as applicable [7]. Studies published in Eng-
lish not earlier than 2018 that used FAP-specific PET in 
humans for any kind of non-malignant indication, either 
intentionally or unintentionally, were included. No limits 
regarding size of the patient collective or length of follow-
up were applied. The MEDLINE database was searched 
on September 16th 2020 via the freely accessible PubMed 
interface. The query was designed to show results whose 
titles contained either of the words “fibroblast”, “FAP” 
or “FAPI” in combination with either “positron”, “PET” 
or “Imaging” (example syntax: “((Fibroblast[Title]) OR 
(FAP[Title]) OR (FAPI[Title])) AND ((PET[Title]) OR 
(Positron[Title]) OR (Imaging[Title]))”). After exclusion 
of duplicates, the titles were screened and only original 
research publications proceeded to full-text screening. 
All articles that did not contain any patients suffering 
from non-malignant disease or did not provide any infor-
mation in addition to the presence of the disease were 
excluded. Risk of bias in individual studies was assessed 
by gathering the conflict of interest (COI) with a concrete 
relation to the submitted work and funding statements as 
reported in each publication.

Results
The inclusion workflow is depicted in Fig.  1. The query 
returned 52 publications and no duplicates. During 
screening of the records, 18 results were excluded due 
to presenting only preclinical results [2, 8–17], being a 
dataset [18] or a commentary/editorial [19–24]. Dur-
ing screening of the full-text articles, 18 articles were 
excluded as they only provided information on FAP-spe-
cific PET in cancer patients [25–42]. Ultimately, 16 arti-
cles were included [4–6, 43–55] whose characteristics as 
well as the respective number of patients are depicted in 
Table 1.

Sources of bias
A conflict of interest (COI) related to the submitted 
work was present in three publications (19%). A patent 
application for quinoline-based FAP targeting agents for 
imaging and therapy in nuclear medicine was the most 

frequent COI and present in two publications (13%). A 
funding source was named in nine publications (56%). 
The most frequent funding source was the Chinese Acad-
emy of Medical Sciences (CAMS) Initiative for Innova-
tive Medicine in five publications (31%).

Cardiac imaging
Totzeck et  al. published the first case report on cardiac 
imaging using FAP-specific PET in 2019 [54]. The patient 
previously diagnosed with metastasized pancreatic ade-
nocarcinoma had a history of coronary artery disease and 
had received several systemic antineoplastic therapies 
(gemcitabine, Nab-Paclitaxel, modified FOLFIRINOX). 
Though he presented without signs of acute or chronic 
coronary syndromes, FAP-specific PET showed a strong 
uptake of the left ventricular myocardium which at that 
time had an ejection fraction of 41%. The authors hypoth-
esize that this enhancement might be a possible sign of 
FAP activation due to cardiotoxic tissue damage.

Shi et  al. performed FAP-specific PET on a patient 
with nonischemic chronic heart failure (CHF) induced 
by inflammation and fibrosis activation [44]. The strong-
est uptake was found in the left ventricular inferior wall 
and the left atrium (SUVmax = 2.60 and 2.39 respec-
tively). The uptake in the right ventricle and atrium was 
slightly less (SUVmax = 2.10). The ejection fraction (EF) 
was slightly better for the right ventricle (left ventricu-
lar ejection fraction = 12.7%, right ventricular ejection 
fraction = 18.2%).

The first study that retrospectively analyzed the activity 
of FAP in the hearts of a larger collective of patients was 
published by Heckmann et  al. and comprised a total of 
229 patients with metastasized cancer in a modeling (185 
patients) and a confirmatory cohort (44 patients) [5]. In 
addition to undergoing FAP-specific PET, patients were 
screened for multiple cardiovascular risk factors, car-
diac medication, antineoplastic systemic therapies and 
prior radiotherapy to the chest. The multivariate model-
ling found an association between an increased uptake 
on FAP-specific PET and a hypothyroid metabolic state, 
overweight, diabetes mellitus as well as prior radiother-
apy to the chest. Focal accumulation of the tracer was 
associated with coronary artery disease, the presence of 
cardiovascular risk factors and aspirin intake. While the 
uptake in patients with only a single cardiovascular risk 
factor was limited, the combination of risk factors caused 
a pronounced increase. In addition, a patient scanned 
while currently undergoing radiotherapy to the thorax 
showed a strong increase in myocardial tracer uptake.

IgG4‑related disease
Luo et  al. published a case report of a patient with 
IgG4-related disease (IgG4-RD), a systemic inflammation 
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associated with the infiltration of IgG4-secreting plasma 
cells in the inflamed tissue, who underwent FAP-spe-
cific PET in 2019 [55]. On FDG PET, the patient exhib-
ited enhancement in multiple lymph nodes in the head 
and neck as well as the mediastinum, the right lung, the 
parotid and submandibular gland. While FAP-specific 
PET also showed enhancement in the submandibular 
and parotid gland as well as the pulmonary nodules, the 
FDG-avid lymph nodes were negative but instead there 
was uptake in the uncinate process of the pancreas.

A case report by Pan et  al. reported similar findings 
regarding FAP-negative FDG-avid lymph nodes, but an 
enhancement in the lacrimal glands that had not been 
spotted on FDG PET [52].

Two studies then compared FDG to FAP-specific PET 
in a prospective setting:

Luo et  al. recruited 26 patients with IgG4-RD who 
underwent both PET imaging with both tracers within 
one week [47]. The study confirmed the propensity of 
FAP-specific PET to show involvement in the pancreas, 
bile duct, liver and lacrimal glands while FDG-avid lymph 
nodes were mostly negative.

The most recent study by Schmidkonz et  al. enrolled 
27 patients with IgG4-RD who underwent FDG and FAP-
specific PET within two days [6]. In addition, a patholo-
gist scored the extent of inflammation and fibrosis from 
previous biopsies using a semi-quantitative scale. Seven 
patients underwent their PET/CTs within two days 
prior to the initiation of rituximab therapy and repeated 
them within two days of therapy completion roughly 
seven months later. While lesions whose histopathology 
results showed strong lymphoplasmacytic infiltration of 
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IgG4-positive cells had a stronger uptake on FDG PET, 
lesions with lots of activated fibroblasts expressing FAP 
were more positive on FAP-specific PET. In addition, 
antiinflammatory therapy showed only a partial reduc-
tion of enhancement in fibrotic lesions.

Tuberculosis
Hao et  al. published a case report on a patient with a 
history of pulmonary tuberculosis and previous anti-
tuberculous therapy [46]. When the patient presented 
with headache, lower back pain as well as limited mobil-
ity, a brain MRI revealed multiple enhancing lesions and 
Mycobacterium tuberculosis was found in the cerebro-
spinal fluid. FDG PET showed hypermetabolic lesions 
in the lumbar spine and hilar lymph nodes. Due to high 
background enhancement of the brain tissue, the lesions 
discovered on MRI were not visible. FAP-specific PET 
showed lesions in both lungs, the lower abdomen, lower 
spine and brain consistent with the findings from the 
MRI.

In a study by Chen et  al., FAP-specific PET was con-
ducted for a variety of indications with inconclusive find-
ings on FDG PET [4]. The two patients with tuberculosis 
also exhibited a strong uptake in several lesions.

Benign tumors
The description of benign tumors on FAP-specific PET 
has been limited to occasional cases.

Chen et al. published a case report on a patient with a 
history of rectal cancer who underwent FDG PET prior 
to surgery which showed multiple pleural nodules as well 
as a solitary pulmonary nodule in the left lung with low 
uptake [51]. FAP-specific PET showed equally low uptake 
in the pleural nodules but an increased uptake in the pul-
monary nodule. A subpleural nodule was biopsied but 
diagnosed as benign while the pulmonary nodule was 
found to be a primary adenocarcinoma of the lung.

Zhao et  al. published a case report on a patient with 
cirrhosis and three liver nodules that were found on 
contrast-enhanced MRI but not visible on FDG PET 
[50]. While the cirrhotic liver showed an increased 

Fig. 2  Comparison of 6 patients with IgG4-related disease (IgG4-RD) undergoing FDG and FAP-specific PET. FAP-specific PET detected IgG4-RD in the 
pancreas (patient #1, 2, 3, 4) bile duct/liver (patient #1, 2, 3), retroperitoneal fibrosis (patient #5), lung/pleura (patient #6), and salivary gland (patient 
#1, 3). Positive Iymph nodes on FDG PET show no enhancement on FAP-specific PET (patient #2, 3) (Fig. 2). This research was originally published in 
JNM. Luo et al. Fibroblast activation protein targeted PET/CT with 68Ga-FAPI for imaging IgG4-related disease: comparison to 18F-FDG PET/CT. J Nucl 
Med. 2020. ©SNMMI [47]
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background on FAP-specific PET, the nodules showed 
only low activity and were therefore clearly visible. One 
of the nodules was diagnosed via biopsy as hepatic ade-
noma and none of the nodules showed change on a fol-
low-up MRI at three months.

Shi et al. conducted a study on 17 patients presenting 
with suspicious hepatic lesions on CT, MRI or ultrasound 
and ultimately underwent surgery or biopsy [48]. The 
only patient who was confirmed to have ‘benign nod-
ules with granulomatous tissue’ presented with negligi-
ble uptake (SUVmax = 0.72). The same applies to patients 
with hepatic adenoma and pancreatic cystadenoma in the 
study by Chen et al. [4].

The only publication that showed a moderate uptake 
for a benign tumor is a case report by Hayrapetian et al. 
on an infrascapular Elastofibroma dorsi in a patient with 
esophageal cancer [45].

Other inflammation
Luo et al. published a case report on a patient with pan-
creatic cancer and tumor-associated pancreatitis [53]. 
While FDG PET revealed a nodular lesion in the unci-
nate process, FAP-specific PET showed intense activity in 
the whole enlarged pancreas masking the lesion that was 
later confirmed as pancreatic ductal carcinoma.

Pang et  al. published a case where FAP-specific PET 
was able to detect gastric signet cell carcinoma in a 
patient with a history of prostate cancer [49]. The authors 
note a bilateral uptake in the adrenal glands which they 
hypothesize to be hormonotherapy-induced chronic 
inflammation associated with androgen blockage.

The study by Chen et  al. describes high uptake in 
another patient with pancreatitis and two patients with 
unspecified “post-treatment inflammatory reaction” but 
low uptake in two patients with esogastritis [4].

Xu, Zhao, Ding et al. presented a patient with prostate 
cancer with known arthritis of the left shoulder that also 
showed intense uptake on FDG as well as FAP-specific 
PET [43].

Discussion
As FAP-specific PET is a fairly novel imaging modality, 
the number of prospective studies is still low.

The cases where FAP-specific PET has been used in 
patients with benign tumors hint at a low tracer uptake. 
However, benign tumors that contain a large amount 
of active fibroblasts can exhibit stronger enhancement 
which is illustrated by the patient with elastofibroma 
dorsi [45]. Larger, prospective studies are warranted 
to provide information regarding the accuracy of FAP-
specific PET for differentiating malignant from benign 
and potentially fibrotic lesions in different regions of the 
body.

Since even the role of FDG PET in tuberculosis is still 
being discussed, the cases of FAP-specific PET for tuber-
culosis are insufficient to draw meaningful conclusions. 
While FAP-specific PET could have an advantage in areas 
such as the brain where FDG PET shows a high back-
ground enhancement, the uptake of FDG in tissue with 
increased metabolism could be beneficial to reveal new 
lesions that have not yet undergone fibrotic remodelling. 
A head-to-head comparison between FAP-specific PET 
and FDG, ideally with follow-up imaging after the appli-
cation of anti-tuberculous therapy, could help to clarify 
the role of FAP-specific PET in this disease. The same 
applies to other tracers that have been tested for this 
indication without demonstrating clear superiority or 
inferiority such as 68Ga-citrate [56].

The fact that FAP-specific PET can show a strong 
uptake in inflamed tissue has been viewed as a possible 
obstacle for its application in oncology since determin-
ing the extent of a tumor can be difficult when the sur-
rounding tissue is inflamed which is demonstrated by 
the case report of the patient with tumor-associated pan-
creatitis [53]. Since increased metabolism is thought to 
precede the recruitment of activated fibroblasts, future 
studies could investigate if there is a possible application 
for FAP-specific PET to differentiate between acute and 
chronic inflammation and thereby predict the response 
to antiinflammatory therapy.

In IgG4-RD, FAP-specific PET was able to iden-
tify lesions characterized by fibrosis that subsequently 
responded worse to antiinflammatory therapy compared 
to lesions that were characterized by inflammation. If 
adequate treatment options were available for both types 
of lesions, FAP-specific PET could be used in a trial set-
ting to determine whether it is able to improve the man-
agement of these patients.

In cardiac imaging, FAP-specific PET showed an 
association with various risk factors, especially in com-
bination with each other. Similar results regarding an 
association of FAPI uptake with coronary artery disease, 
age and left ventricular ejection fraction were obtained 
in another retrospective study by Siebermair et  al. on 
32 cancer patients [57]. Together with preclinical data 
highlighting the role of FAP in myocardial infarction and 
FAP-specific PET of small animals, the application of 
FAP-specific PET in humans might provide more insights 
into the role of fibroblasts in acute as well as chronic 
heart disease [17, 58, 59]. Another question of interest 
could be whether the cardiac FAP signal intensity can 
serve as another prognostic, maybe even predictive, bio-
marker in addition to the already established cardiovas-
cular risk factors.

Establishing the role of FAP-specific PET would also 
benefit from comparisons to other tracers that are mostly 
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being investigated in the role of acute myocardial infarc-
tion such as the CXCR4 ligand 68Ga-pentixafor [60–62].

The findings that prior radiotherapy to the chest was 
associated with increased uptake and that a patient cur-
rently undergoing radiotherapy to the chest showed an 
even stronger uptake are particularly interesting from a 
radiation oncology perspective to better understand and 
potentially manage treatment-related side effects..

While it has been known for several decades that 
higher doses to the heart of 30 Gy or more can cause car-
diotoxicity within the first years following radiotherapy, 
investigating the effects of lower doses to the heart is con-
siderably more difficult as the latency period between the 
application of radiotherapy and the development of heart 
disease is longer [63]. Radiation-related heart disease can 
manifest itself as pericarditis, pericardial fibrosis, myo-
cardial fibrosis as well as coronary artery disease and sev-
eral cardiac avoidance techniques such as heart blocks, 
prone breast boards and respiratory gating methods have 
been implemented to reduce its incidence. Being able to 
non-invasively analyze the activation of fibroblasts dur-
ing or after radiotherapy could provide more insight into 
the pathophysiology of radiation-related heart disease 
and in turn enable radiation oncologists to tailor their 
therapy to the individual patient. Since sparing organs 
at risk in close proximity to the target volume requires 
compromise to the target coverage or the constraints of 
other organs at risk, one might, for example, investigate 
if cardiac toxicity could also be reduced by sparing parts 
of the heart that already show increased fibroblast activa-
tion prior to radiotherapy instead of the heart as a whole.

Considering that radiotherapy is a mainstay of treat-
ment for breast cancer as well as in functionally inop-
erable patients and that many systemic therapies have 
cardiotoxic side effects as well, progress in the under-
standing of radiation-related heart disease has the poten-
tial to improve outcomes for many patients [64].

With the expanding application of stereotactic body 
radiation therapy (SBRT) for smaller primary tumors of 
the lung or in the oligometastatic setting, this potential is 
likely to increase [65].

In addition to the heart, FAP-specific PET could be 
used to image fibrotic activity in a variety of organs. A 
case report by Sonni et al. describes a 36-year-old patient 
with cervical cancer who underwent FAP-specific PET 
that showed “symmetric, diffuse, peripheral bilateral 
breast uptake” that the authors hypothesize to be caused 
by hormonal stimulation since the patient had recently 
received gonadotropin injections for oocyte retrieval 
[66].

The capability of FAP-specific PET to detect fibrotic 
remodelling non-invasively and potentially earlier than 

other imaging modalities could be used in a variety of 
different organs and diseases. Future studies could try 
to assess whether FAP-specific PET at baseline is bet-
ter at predicting radiation pneumonitis than conven-
tional pretreatment imaging. In addition, FAP-specific 
PET might be used to monitor other diseases that are 
primarily characterized by inflammation and/or fibrotic 
remodelling such as systemic sclerosis and vasculitis.

In addition to imaging and monitoring disease, mol-
ecules targeting FAP have always been of interest for 
delivering therapies in a targeted fashion. While this 
interest has historically been focussed on oncology, 
bringing antiinflammatory drugs to the areas that are 
the most affected by inflammation and subsequent 
fibrosis could provide additional treatment options in 
non-malignant diseases as well by limiting side effects 
associated with the systemic distribution of antiinflam-
matory drugs.

Possible limitations at study level include the pres-
ence of a patent and/or equity COI in several of the 
included publications. A possible limitation at review 
level is that the search was limited to the MEDLINE 
database which is, however, mitigated by the fact that 
FAP-specific tracers are currently only used by a lim-
ited number of research groups whose results are 
published in MEDLINE-indexed journals. Another 
limitation is that the total number of patients who 
received FAP-specific PET for a given indication can-
not be determined exactly as it cannot be excluded that 
some publications from the same group contain at least 
a subset of patients that is analyzed more than once. 
Lastly, co-authors of this review are in part represented 
as co-authors on one of the included articles [5].

As of September 2020, searching clinicaltrials.gov 
yielded five recruiting or not yet recruiting prospective 
trials on FAP-specific PET for non-malignant indica-
tions (Table  2). Four studies on rheumatoid arthritis, 
inflammatory bowel disease, IgG4-RD and Crohn’s dis-
ease are estimated to be completed by October 2021, 
while another trial on FAP-specific PET in liver fibrosis 
is estimated to be completed by December 2023.

Conclusion
While the research on FAP-specific PET for non-
malignant indications is still in the stage of generating 
hypotheses and not changing practice, the studies that 
have been published show promising results that war-
rant further research, especially in cardiac imaging and 
immunology/rheumatology. Several studies on FAP-
specific PET for non-malignant indications will provide 
additional evidence in the next few years.
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