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Abstract

Background: Peptide receptor radionuclide therapy (PRRT) plays an important role in the treatment of
neuroendocrine tumors (NET). Pre-therapeutic dosimetry using the area under the measured time-activity curve
(AUC) is important. The sampling schedule for this dosimetry determines the accuracy and reliability of the
obtained AUC.
The aim of this study was to investigate the effect of reduced number of measurement points (i.e., gamma camera
image acquisition or serum measurements) on treatment planning accuracy in PRRT using 111In-labeled-
diethylenetriaminopentaacetic acid-octreotide (DTPAOC; Octreoscan™).

Methods: Pre-therapeutic biokinetic data of 15 NET patients were investigated using a recently developed
physiologically based pharmacokinetic (PBPK) model. Two parameter sets were determined (standard or iterative
approach) and used for calculation of time-integrated activity coefficients (TIACs) for the tumor, kidneys, liver,
spleen, serum, and whole body. TIACs obtained using the full data sets were used as reference. To evaluate the
effect of sampling on individual treatment planning, reduced sampling schedules were generated omitting either 1,
2, 3, or 4 organ and serum measurements or all serum measurements for each patient. Relative deviations (RDs)
between these and reference TIACs were calculated and used as criterion for treatment planning accuracy. An
RD < 0.1 was considered acceptable.

Results: When omitting serum measurements, TIAC accuracy remained acceptable (RD < 0.1) for the standard
approach. The kidney TIACs could be estimated for both approaches with acceptable RDs using two time points
(t = 4 h; 2 d); tumor RDs were <0.3. The iterative approach reduced the range of RD, but did not further reduce the
number of needed measurement points (i.e., to achieve an RD <0.1). For both approaches RDs for liver, spleen and
whole body were larger than 0.1. However, in the clinical setting these RDs are less relevant as liver and spleen are
not organs at risk due to the low absorbed doses.

Conclusions: When using a priori information of a PBPK model structure combined with Bayesian information
about PBPK model parameter distribution, the administered activity could be determined with acceptable accuracy
using only two time points (4 h, 2 d) and thus allow a considerable reduction of needed data for individual
dosimetry.
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Background
Peptide receptor radionuclide therapy (PRRT) is per-
formed in the treatment of neuroendocrine tumors
(NET), where somatostatin analogues (DOTATOC,
DOTATATE) are radiolabeled with 177Lu, 90Y, or 111In
for pre-therapeutic and therapeutic purposes [1–3].
Treatment planning is based on pre-therapeutic mea-
surements using 111In-labeled analogues, especially when
90Y is used as a radiolabel for therapy [4]. Several nu-
clear medicine centers determine the therapeutic
absorbed dose based on the area under the pre-
therapeutic time-activity curve [5–7]. These areas are
normalized by the administered activity yielding time-
integrated activity coefficients (TIACs; formerly: resi-
dence times [4]), which are directly proportional to the
absorbed doses. Thus, for a precise evaluation of the
therapeutic absorbed doses, a reliable and accurate esti-
mation of these areas is essential. This is performed by
applying a model, e.g., a sum of exponential functions or
physiologically based pharmacokinetic (PBPK) models
[8]. Recent work [9] showed pre-therapeutic and thera-
peutic biodistributions may change depending on the
injected amount of peptide as well as the used peptide.
In using a PBPK model, these changes can be described
and predicted. Additionally, a PBPK model allows imple-
mentation of a priori information, which increases the
ratio of number of measurements and fit parameters. A
value for that ratio of >3 [8] is sufficient for accurate de-
termination of parameter values and AUCs. On the con-
trary, using, e.g., five measurement points, this value is
2.5 or 1.25 if using 1 or 2 exponentials.
The model parameters influence the estimation of the

area under the time-activity curves (AUCs). A reliable
and accurate estimation of the fit parameters in turn is
affected by the sampling schedule [10–13].
The reduction of the number of required measure-

ment time points would reduce patient burden and radi-
ation exposure to staff. Therefore, it is important to
know the dependence of the sampling schedule on treat-
ment planning accuracy.
One aspect of improving the prediction accuracy of a

PBPK model is using a priori knowledge, for example,
the information about the parameter distribution in the
investigated patient population. This information can be
introduced into a PBPK model as Bayes parameter
values, i.e., an implementation of population mean
values and their respective standard deviation. In treat-
ment planning of leukemia patients using radiolabeled
anti-CD66 antibodies, this improved model performance
and allowed an accurate prediction of biodistribution of
the therapeutic agent [14].
However, population information, e.g., in the form of

Bayes parameters [15–18], has not yet been imple-
mented into a PBPK model to optimize or simplify the

sampling schedule, i.e., to reduce the number of mea-
surements without scrutinizing estimation accuracy.
The aim of this work was to investigate the effect of

sampling schedules with fewer measurement points on
treatment planning accuracy for PRRT using 111In-labeled
diethylenetriaminopentaacetic acid-octreotide (DTPAOC;
Octreoscan™, Mallinckrodt plc, Chesterfield, UK) using a
PBPK model and Bayes parameters. Two different
algorithms were employed to determine the Bayes param-
eter values.

Methods
Data acquisition
In total, data of 15 patients with proven neuroendocrine
tumors (NETs) were included in the study. Radiolabeling
was performed as described elsewhere [9]. Planar whole-
body scans using a double-head γ-camera (Siemens,
Erlangen, Germany) were performed at 0.75, 4 h, 1, 2,
and 3 or 5 d after the administration of 8.1 ± 0.5 μg radi-
olabeled DTPAOC (Octreoscan™, Mallinckrodt plc,
Chesterfield, UK) with a mean 111In activity of 143 ±
17 MBq for prediction of the absorbed doses [9]. The
quality control of the product was performed as
described in the instruction leaflet. In all cases, the
radiochemical purity was above 98 %. Images were at-
tenuation and scatter corrected as described in [9].
Organ activity values were determined for accumulating
organs using ULMDOS software [19], with scatter cor-
rection and an effective attenuation correction based on
the first whole-body measurement in conjugate view
mode. Blood samples were drawn at 5 min, 0.5, 1, 2, 4 h,
and 1, 2, 3, or 5 d.

PBPK model
To describe the biodistribution of radiolabeled peptides,
a recently developed PBPK model [9] was used. Physio-
logical processes, e.g., absorption, distribution, internal-
ization, and excretion (ADME) were implemented.
Distribution of the injected peptide was modeled via
blood flow circulating between the organs (tumor, kid-
neys, liver, and spleen). These organs show high somato-
statin receptor subtype 2 (sst2) expression and/or
unspecific uptake (mainly the kidneys). Free passage of
the peptide between interstitial and vascular spaces was
assumed for the tumor, liver, and spleen [20]. Other or-
gans were merged into one compartment (rest).
The intravenous injection of the radiolabeled com-

pound into the patients was modeled as a bolus injection
in the main blood compartment.
The PBPK model consists of two equal subsystems,

which are connected by the competition of labeled and un-
labeled peptide for the same receptors and physical decay
of the label. Specific binding to somatostatin receptors sub-
type 2 and degradation of bound peptide was considered.
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The kidney model describes unspecific uptake as well as re-
lease of still intact peptide back into the serum [9].

Parameter fitting
Within the PBPK model, different types of parameters
were used: Model parameters refer to all parameters
used in the PBPK model, may they be fitted or fixed pa-
rameters. Fitting parameters are those of the model pa-
rameters whose values are estimated in the fitting
process. They can be set as adjustable or Bayes parame-
ters. Adjustable parameters may have an upper and
lower bound but no further constraints, whereas Bayes
parameters have a constraint in the form of a mean
value and a standard deviation.
To evaluate the impact of a priori population informa-

tion on optimizing the sampling schedule (i.e., to reduce
the number of measurement points), two different algo-
rithms were employed to determine population Bayes
parameter values. For the first algorithm (standard
approach), the software Simulation, Analysis, and Modeling
(SAAM II; version 2.3, The Epsilon Group, Charlottesville,
USA) was used [21]. This software provides a framework
for model development. Using the built-in Rosenbrock
optimization algorithm, the model parameters were fitted
to biokinetic data.
For the second algorithm (iterative approach), the

software PopKinetics (version 2.2, The Epsilon Group,
Charlottesville, USA) was used. For both approaches, the
same optimizer was used and the main difference is how
Bayes parameters were determined. A more detailed de-
scription of both algorithms is presented in the following
subsections.
All organ activity measurements were used during the

fitting process (simultaneous fitting of all data). How-
ever, the effects on TIAC estimation accuracy were only
evaluated for the tumor and kidney as these are the tar-
get and dose-limiting organs of this therapy.
Either set of Bayes parameter values derived from the

standard and iterative approach algorithms was imple-
mented as starting values in the PBPK model to predict
time-integrated activity coefficients for different sam-
pling schedules.

Standard approach
Model parameters were fitted to pre-therapeutic bioki-
netic data (gamma camera and blood samples) of each
patient individually (Table 1). In this approach, a
combination of individual (adjustable) and population
(Bayes) parameters were used: the receptor numbers for
the tumor RT, kidneys RK, liver RL, remainder of body
RR, the tumor volume VT, the degradation rate of bound
peptide in the tumor λdeg, T, and the glomerular filtration
rate GFR were implemented as adjustable parameters;
the degradation rates for kidneys λdeg, K, liver λdeg, L,

spleen λdeg, S, remainder of the body λdeg, R, the relative
blood flow to the tumor fT, and the relative excretion
fraction by the kidneys fex were implemented as Bayes
parameters. The starting values for these parameters
were implemented as population mean and standard de-
viation as reported in recent work [9]. Computational
settings were selected as described elsewhere [9].

Iterative approach
First, model parameters were fitted to biokinetic data of
each patient individually as described in the standard ap-
proach above. Second, population mean and standard
deviation for all parameters were calculated. Subse-
quently, these values were introduced as Bayes param-
eter values for each individual patient, constraining the
possible parameter values based on the mean and stand-
ard deviation. Iteratively, the algorithm fitted the model
parameters anew and updated the values until the con-
vergence criterion or the maximum number of iterations
was reached [14]. In contrast to the standard approach,
this iterative approach includes only Bayes parameters.
The convergence criterion of the implemented algo-

rithm was set to 10−4, relative and absolute error to 0.01
and 0.1, respectively. The maximum number of itera-
tions was set to 200, and a data-based variance model
was chosen. These estimated population parameters
were then used as starting values (Table 1).

Sampling schedule
To investigate the effect of the altered sampling sched-
ules on the estimation accuracy of TIACs in PRRT,

Table 1 Model parameters and start values of the fitting
parameters

Parameter Standard approach Iterative approach

RK [nmol] 1.4a 2.1 ± 0.8b

RL [nmol] 2.1a 1.8 ± 0.7b

RS [nmol] 3.8a 3.5 ± 3.1b

RR [nmol] 6.4a 7.3 ± 2.5b

VT [l] 0.3a 0.2 ± 0.3b

fT [ml/min/g] 0.2 ± 0.1b 0.25 ± 0.06b

fex [%] 96 ± 1.0b 96c

GFR [ml/min] 57.4a 64.4 ± 15.1b

λdeg,T [10−4/min] 1.1a 1.5 ± 0.6b

λdeg,K [10−4/min] 1.1 ± 0.1b 1.1c

λdeg,L [10−4/min] 0.5 ± 0.1b 0.5c

λdeg,S [10−4/min] 1.6 ± 0.1b 1.6c

λdeg,R [10−4/min] 1.3 ± 0.1b 1.3c

# of fitting parameters 13 8
aAdjustable parameters
bBayes parameters with mean ± SD
cFixed parameter values

Maaß et al. EJNMMI Research  (2016) 6:30 Page 3 of 9



biokinetic data of each patient were modified in five
cases (Table 2; Fig. 1): omitting either one up to four
time points for every organ and the corresponding
serum measurements (case I–IV) or omitting all serum
measurements but including all organ time points (case
V). As there are eight serum measurements but only five
organ measurements, serum measurements were omit-
ted with respect to the corresponding (time-wise) organ
measurement(s). For example, omitting an organ meas-
urement at t = 2 d, the corresponding serum measure-
ment at the same time was omitted. However, for the
first organ measurement (t = 0.75 h), the serum meas-
urement at t = 1 h was omitted. Other possible combina-
tions of omitting organ and serum measurements were
not investigated.
These artificially generated reduced sampling sched-

ules (total 31/patient) were then implemented in the
PBPK model, and the model parameters were fitted
again to these data (using either standard or iterative
Bayes parameter values as a priori knowledge, Table 1).
For each case, AUCs for the tumor, kidneys, liver, spleen,
serum, and whole body were calculated by integration of
the fitted curves (over 14 d). The obtained AUC values
were divided by the amount of radiolabeled substance
administered to determine TIACs individually.

Validation and statistical analysis
Reference TIACs ãref were determined patient-wise by
using the full data set (providing maximum information)
and the parameter values determined by the standard
approach. TIACs based on the altered sampling sched-
ules ãfit were calculated for both approaches. Treatment
planning accuracy was quantitatively evaluated by calcu-
lating the relative deviation (RD) according to:

ð1Þ

An RD < 0.1 was considered as an acceptable deviation
in treatment planning accuracy in any further analysis.
Coefficients of variation (CV; ratio of standard devi-

ation over the corresponding value) were calculated for

all investigated cases to investigate the accuracy of the
estimated TIACs.
An overview of the workflow is presented in Fig. 1.
Additionally, the adjusted R2 values were calculated for

all cases and both approaches (i.e., standard and iterative).

Results
Visual inspection showed good fits for all cases and both
parameter sets. Accordingly, the adjusted R2 value was
larger than 0.9. The population means and standard
deviations for the individual time-integrated activity
coefficients ãref using the standard parameter values
were 2.5 ± 4.3, 1.2 ± 0.3, 1.5 ± 0.5, 1.9 ± 1.1, 14.6 ± 4.1,
and 0.9 ± 0.1 h for the tumor, kidneys, liver, spleen,
whole body, and serum, respectively.
CVs of the estimated TIACs were calculated for all

cases and were precise (<25 %) or acceptable (<50 %),
except for cases III and IV (Table 2) using the standard
parameter set.
Relative deviations (RD) were calculated for all cases

and averaged over all organs and all patients. The lowest
RD (best case) and largest RD (worst case) for every in-
vestigated case are presented in Table 3. The corre-
sponding CVs for the lowest RD are presented in
Table 4.
The lowest RDs for the tumor and kidneys (averaged

over all patients) are presented in Fig. 3. As expected,
TIAC accuracy reduces considerably (i.e., larger RDs)
when fewer measurement points were taken into ac-
count in combination with parameter values derived
using the standard approach. However, the application
of population-based parameters (iterative approach)
helped to reduce the systematic offset and the range of
the RD (min, max), especially for the tumor up to three-
fold (Table 3). For both approaches, the RDs of the
TIACs in the kidneys were similar for all cases.
Overall, the acceptance criterion for the standard ap-

proach was fulfilled when omitting the time point t = 2 h
or when omitting the serum measurements (Table 3).
Using the population-based parameter values, the criter-
ion was not fulfilled for any case I–V.

Table 2 Overview of the investigated sampling schedules

Case Measurement Number of
omitted time
points

Number of
combinationsa

Total no. of
measurementsb

Ratio of no. of measurements to fit parameters

Standard approach Iterative approach

Reference Organ + serum 0 1 33 2.5 4.1

I Organ + serum 1 5 27 2.1 3.4

II Organ + serum 2 10 21 1.6 2.6

III Organ +serum 3 10 15 1.2 1.9

IV Organ + serum 4 5 9 0.7 1.1

V Organ 8 (serum) 1 25 1.9 3.1
aThe number of different sampling schedules when omitting each measurement point once
bFive organ data per time point and 8 for serum measurements

RD = (ãfit – ãref )/ãref.
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For the kidneys, the criterion was fulfilled in any case
when using either standard- or population-based param-
eter values (averaged over all patients), except for case
IV (iterative approach). However, for the tumor, only
case V (omitting all serum measurements) for the stand-
ard approach fulfilled the acceptance criterion.
The RDs for the liver, spleen, and the whole body did not

fulfill the criterion. Moreover, they were not considered in
any further analysis, as these organs are neither dose limit-
ing nor express a considerable sst2 receptor density.

Discussion
In general, the presented PBPK model could describe
the investigated data adequately in all cases, i.e., visual
inspection and the coefficients of variation for the
TIACs were precise or acceptable (Table 4; [22]).

Including population information as a priori know-
ledge during the fitting process helped to considerably
improve prediction accuracy and reduce the correspond-
ing standard deviations when averaged over all organs
and all patients (Table 3). When looking at the accuracy
of TIAC estimation for tumor (averaged over all pa-
tients) for each case (Fig. 3), the application of popula-
tion information reduced the range of accuracy as well;
for the kidneys, the accuracy seems minorly affected in-
dicating that the information about the population im-
plemented in the model was sufficient to compensate for
a reduced data set.
The acceptance criterion held true for the kidneys in

all cases (except case IV). Typically, the activity to ad-
minister is determined based on a maximum absorbed
dose to the kidneys. With the presented approach (PBPK

Fig. 1 Schematic overview of the workflow. Based on existing activity measurements, a reference and reduced sampling schedule (“case”) were
generated. The reference sampling schedule includes all available biokinetic data for a given patient. To describe the biokinetics, the parameters
of the employed PBPK model were fitted. After parameter fitting (standard or iterative approach), the areas under the time-activity curves were
determined and subsequently, the time-integrated activity coefficients were calculated. The same methodology is applied to the sampling schedules
omitting alternated numbers of measurement points. At the end, the derived time-integrated activity coefficients (TIACs) are quantitatively compared
and evaluated for treatment planning accuracy by calculating the relative deviation (Eq. (1))

Table 3 Mean relative deviations of the fitted and reference TIACs averaged over all patients and all organs. For cases I to IV, the
combination of omitted measurement points that gave the best and worst results in terms of the lowest and largest relative
deviation (above and below the dashed line) are presented

RD [%] Standard approach Iterative approach

Case Omitted time point Mean ± SD Min Max Omitted time point Mean ± SD Min Max

0 – (Reference) – 1 ± 5 −6 13

I 2nd 0 ± 4 −6 9 4th 2 ± 6 −10 13

4th −1 ± 6 −16 9 3rd 0 ± 11 −19 26

II 2nd, 4th 0 ± 6 −11 13 1st, 3rd 0 ± 7 −14 15

3rd, 5th 6 ± 39 −36 133 3rd, 5th 1 ± 11 −13 31

III 1st, 3rd, 5th 5 ± 17 −13 51 1st, 3rd, 5th 0 ± 8 −12 18

2nd, 3rd, 5th 22 ± 58 −26 175 3rd, 4th, 5th 22 ± 86 −34 309

IV –a 1st, 2nd, 4th, 5th 6 ± 13 −15 37

–a 1st, 3rd, 4th, 5th 16 ± 55 −26 188

V 1st–8thb 0 ± 3 −7 9 1st–8thb 1 ± 5 −6 14
aNo fitting was performed for the standard approach, because an equal number of data and fitting parameters were present
bOnly serum measurements omitted
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model and reduced sampling schedule), an accurate esti-
mation of the absorbed dose in the kidneys may be
achieved by using only two measurement time points,
i.e., 4 h and 2 d (Fig. 2). This would optimize the clinical
workflow considerably (by shortening the sampling
schedule) and reduce patient burden and working load
of staff. Note that this procedure is only applicable when
using a PBPK model as the number of available meas-
urement points (Table 2) is still larger than the number
of fitting parameters (13 or 8 for the standard or itera-
tive approach), which would not be the case when using
sums of exponential functions for each organ. These re-
sults are only applicable for patients undergoing PRRT
treatment planning using 111In-DTPAOC, and the stated
protocol as the biodistribution and, e.g., clearance via
the kidneys strongly depends on the radiopharmaceutical
[23]. However, using the here presented approach, treat-
ment planning for other radiolabeled compounds may
be optimized similarly.
The acceptance criterion was not fulfilled for the

tumor. Therefore, when the calculation of the activity to
administer is based on a desired or prescribed dose in
the tumor, this approach could over- or underestimate
the absorbed dose to the tumor of some patients when
omitting already one single time point (Fig. 3). These
differences may be due to a large variability in tumor
properties, e.g., size, receptor density, and perfusion.

The differences in TIAC estimation for the liver,
spleen, and the whole body were not further considered,
as these organs are neither dose limiting nor express a
considerable sst2 receptor density [24].
Omitting the serum measurements had a minor effect

on the accuracy for both the tumor and kidneys for the
standard investigation. Therefore, these measurement
points may be omitted in future treatment planning,
when the same (or at least a sufficiently similar) sam-
pling schedule is considered. Note, however, that these
data may nevertheless be needed for proper calculation
of red bone marrow absorbed dose.
Based on the provided sampling schedule, the esti-

mated TIACs were set as reference. However, this sam-
pling schedule may be inherently suboptimal. If fewer
measurement points are considered, the influence of
each single remaining data point will become more
prominent. Clearly, the number of fitting parameters
limits the number of required measurements to achieve
a sufficiently precise estimation of TIACs and hence
absorbed doses. When looking at the estimated standard
deviations of the fitting parameters (for both approaches,
standard, and iterative), these increase with decreasing
number of measurements (results not shown). This in
turn was reflected in the estimation of the TIACs.
Therefore, conducting a precise estimation of TIACs is
limited if too many time points (measurements) are

Table 4 Coefficients of variation (CV) of the estimated TIACs for the best cases (Table 3)

CV [%] Standard approach Iterative approach

Case Omitted time point Mean ± SD Min Max Omitted time point Mean ± SD Min Max

I 2nd 7 ± 5 1 22 4th 7 ± 4 1 18

II 2nd, 4th 9 ± 8 1 28 1st, 3rd 5 ± 4 1 16

III 1st, 3rd, 5th 8 ± 9 1 31 1st, 3rd, 5th 6 ± 6 1 21

IV –a –a –a –a 1st, 2nd, 4th, 5th 6 ± 3 4 16

V 1st–8thb 7 ± 6 0 23 1st–8thb 7 ± 5 1 20
aNo fitting was performed for the standard approach, because equal numbers of data and fitting parameters were present
bOnly serum measurements omitted

Fig. 2 Biodistribution and model fit for a typical patient for the full data set (left) and a reduced data set (right, case III) using the parameter
values of the standard approach
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omitted. To overcome this problem, simulations could
be performed to determine when (in contrast to how
often) the biodistribution should be measured. This
may reduce the standard deviations of the fitting
parameters and may yield a globally optimal sampling
schedule.
A possible limitation of the presented study was

the number of investigated patients (N = 15). To
evaluate that the patient population is of sufficient
size, e.g., to determine reliable parameter values, the
Jackknife resampling method may be applied [14].
This method investigates the impact of a single pa-
tient with respect to the full population and to the
outcome of the fitting procedure (i.e., parameter
values and thus TIACs values).

Further reduction in the size of the measurement data
may be achieved by improving the quality of the data,
i.e., when using PET imaging or by implementing more
a priori knowledge about the population and the investi-
gated disease. Further research could also be aimed at
designing more individualized optimal sampling sched-
ules. Subgroups of patients may be based on differences
in pharmacokinetic properties (e.g., kidney clearance) or
general biodistribution. For these groups, an optimal
sampling schedule may be determined by possibly re-
ducing the location and/or number of measurement
points even further. However, this approach needs the
assumption that patients can be categorized into suffi-
cient different subgroups. This information would also
be required a priori to any modeling to ensure that

Fig. 3 Box plot showing median, 25 and 75 % quartiles, min and max of the RD of AUC estimation for the best case (least RD) and the reference
data set for the tumor (a, b) and kidneys (c, d) indicating mean and standard deviation. Left panels show the results for the standard approach
(a, c). Note that for case IV, the number of available data points is smaller than the number of fit parameters. Therefore, a fit could not be
performed. Right panels (b, d) show the corresponding results for the iterative approach. Cases I–IV represent omitting 1, 2, 3, or 4 organ and
serum measurements; case V represents omitting all eight serum measurements
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the correct sampling schedule is assigned for a certain
patient group.

Conclusions
The sampling schedule considerably affects estimation
accuracy of time-integrated activity coefficients and thus
treatment planning for NET patients in PRRT with
111In-DTPAOC.
In this patient group, the combination of individual

and population information in the PBPK model showed
the least effect on the estimation accuracy when the sec-
ond time point (t = 2 h) or all serum measurements were
omitted. Thus, in the future treatment planning, these
data points may be omitted, if the absorbed dose to the
red bone marrow is not of interest. The absorbed dose
in the kidneys may be determined with acceptable accur-
acy using only two time points (4 h and 2 d).
The application of a priori knowledge using the iterated

approach and physiologically based pharmacokinetic mod-
eling allowed reduction of the standard deviation of the
accuracy, but did not help to further reduce the number
of measurement points.
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