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Abstract

Background: Knowledge graphs can represent the contents of biomedical literature and databases as subject-
predicate-object triples, thereby enabling comprehensive analyses that identify e.g. relationships between diseases.
Some diseases are often diagnosed in patients in specific temporal sequences, which are referred to as disease
trajectories. Here, we determine whether a sequence of two diseases forms a trajectory by leveraging the predicate
information from paths between (disease) proteins in a knowledge graph. Furthermore, we determine the added
value of directional information of predicates for this task. To do so, we create four feature sets, based on two
methods for representing indirect paths, and both with and without directional information of predicates (i.e.,
which protein is considered subject and which object). The added value of the directional information of predicates
is quantified by comparing the classification performance of the feature sets that include or exclude it.

Results: Our method achieved a maximum area under the ROC curve of 89.8% and 74.5% when evaluated with
two different reference sets. Use of directional information of predicates significantly improved performance by 6.5
and 2.0 percentage points respectively.

Conclusions: Our work demonstrates that predicates between proteins can be used to identify disease trajectories.
Using the directional information of predicates significantly improved performance over not using this information.

Protein-protein interactions
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Background

Knowledge graphs can be used to represent the biomed-
ical knowledge published in literature and databases [1].
Knowledge is formalized as subject-predicate-object tri-
ples, where pairs of entities are related to each other by
predicates [2]. By integrating triples from a variety of
sources, knowledge graphs can be used to perform com-
putational analyses on the comprehensive body of bio-
medical knowledge [3]. Previous work has used such
analyses to identify new relationships between pairs of
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entities, e.g., between drugs and diseases [4, 5], genes
and phenotypes [6, 7], or between diseases [8, 9].

Much research has been performed with knowledge
graphs that only consist of proteins, commonly referred
to as protein-protein interaction networks. Through the
involvement of proteins in metabolic, signaling, immune,
and gene-regulatory networks, protein-protein inter-
action networks can help to mechanistically explain dis-
ease and physiological processes [10-12]. Even though
predicates further specify the types of interactions be-
tween proteins, thereby providing additional information
that can be analyzed, protein-protein interaction net-
works usually do not use them. Instead, most methods
analyze the network topology of proteins [12]. However,
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we have recently shown that analyses that are performed
on protein knowledge graphs benefit from predicate in-
formation [13].

By using the predicates that specify the mechanisms
by which proteins interact, temporal pathobiological re-
lationships may also be identified, although this has not
been demonstrated yet. A key application for such tem-
poral analyses is the identification of disease trajectories,
which are commonly occurring temporal sequences of
diseases diagnosed in patients [14, 15]. An example of a
disease trajectory found in a study by Jensen et al. [14] is
rheumatoid arthritis-precedes-heart failure, where pre-
cedes is defined as “occurs earlier in time. [...]” [16]. The
occurrence of the reverse, heart failure-precedes-
rheumatoid arthritis, was found to occur significantly
less frequently in the same study, and therefore was not
classified as a trajectory.

Identifying relationships between diseases is an im-
portant and popular research topic for protein-protein
interaction networks (see Related work section). In such
analyses diseases are represented by so-called disease
proteins, which are proteins encoded by genes that are
associated with a disease [17, 18]. Often cited benefits
include an improved understanding of the biological
mechanisms underlying disease interactions [8, 19, 20],
and the ability to anticipate the next disease, thereby
providing the knowledge necessary to improve treatment
plans and interventions [14, 21]. However, the temporal
aspects of relationships between diseases still require
further investigation. We therefore aim to automatically
determine whether a given sequence of two diseases
forms a trajectory. We do so by leveraging the predicate
information from paths between (disease) proteins in a
knowledge graph. We also determine whether there is
added value in using directional information of predi-
cates for this task.

Related work

Previous authors have mostly focused on identifying un-
directed relationships between diseases with protein net-
works [19-23]. For example, Kontou et al. created a
disease-disease graph, where an edge between diseases
indicated that they shared at least one disease gene [23].
Sun et al. calculated the similarity between diseases
based on their shared disease proteins, shared physio-
logical processes associated with these proteins, or the
graph structures between the proteins [20]. Li and Agar-
wal identified which biological pathways were associated
with diseases via their disease proteins, and identified re-
lationships between diseases based on the number of
shared pathways [19]. Menche et al. identified so-called
disease modules, which are clusters of closely interre-
lated disease proteins [22]. They found that short dis-
tances between the modules of diseases were predictive
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for pathobiological relationships. Contrary to Kontou
et al,, they demonstrated that sharing disease proteins is
not a requirement for diseases to be related to each
other.

To our knowledge, Bang et al. were the only ones to
use a directed protein-protein interaction network to
identify disease trajectories [21]. The disease proteins of
pairs of diseases were used to identify shared biomolecu-
lar pathways, after which the locations of the disease
proteins within these pathways were determined. The
disease with most upstream disease proteins was classi-
fied as the first within the sequence of diseases. Add-
itionally, 13 million Medicare records were used to
calculate two relative risk scores for each pair of dis-
eases, corresponding with the two possible temporal se-
quences of the disease pair. If the sequence determined
with the protein pathways concurred with the sequence
that generated the largest relative risk, that sequence
was identified as a trajectory. Between a total of 2604
diseases, their method suggested 61 trajectories. These
were evaluated with the biomedical literature, where fur-
ther leads were found for 16 of them. Because the au-
thors only evaluated the trajectories that were suggested
by their method, it is unclear how many trajectories the
method failed to identify.

Materials & methods

Reference sets

The ability of our method to identify disease trajectories
was evaluated with two reference sets, which have iden-
tified disease trajectories by different means. The first
reference set consisted of statistically-derived disease tra-
jectories from a large retrospective study of Danish hos-
pital data, while the second set consisted of literature-
validated disease trajectories that were based on a small
prospective study of Dutch general-practitioner data.

Jensen reference set

The first reference set was based on a study of Jensen
et al. [14]. They retrospectively identified 4014 disease
trajectories from 6.2 million electronic patient records of
Danish hospitals based on diagnoses assigned over 14.9
years. All diagnoses in these patient records were repre-
sented as International Statistical Classification of Dis-
eases and Related Health Problems 10th Revision (ICD-
10) codes. Jensen used the hierarchy within the ICD-10
to aggregate all diagnoses to a high abstraction level,
resulting in 681 two-digit codes, such as “Malignant neo-
plasm of breast” (C50) or “Type 2 diabetes mellitus”
(E11).

Jensen derived the disease trajectories from the Danish
hospital data in a two-step process. First, they identified
sequences of two diseases that were diagnosed within 5
years from each other in at least 10 patients, and which
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had a relative risk higher than 1. Subsequently, the direc-
tion of each sequence had to be corroborated by a bino-
mial test that compared the frequency of the sequence to
the frequency of its reversed sequence. Sequences that ful-
filled both criteria were classified as disease trajectories.

To represent the diseases in the Jensen set on the pro-
tein level, we used the expert-annotated associations be-
tween proteins and diseases from the manually curated
subset of DisGeNet [18]. The Unified Medical Language
System (UMLS) MRCONSO table was used to map the
ICD-10 codes of the Jensen trajectories to the UMLS
identifiers that are used in DisGeNet. Two diseases, “Ac-
cidental poisoning by and exposure to other gases and
vapours” (E47) and “Influenza due to identified zoonotic
or pandemic influenza virus” (J09), were lost because
their ICD-10 codes could not be mapped to a UMLS
identifier. Because only 25% of the high-level diseases in
the Jensen set were represented within DisGeNet, we
used the “narrower” and “child” relationships from the
UMLS MRREL table to identify subclasses of all diseases.
By expanding the diseases with their subclasses, the per-
centage of diseases to which disease proteins could be
assigned was increased to 68% (465 of 679 diseases).

From the 4014 disease trajectories in the Jensen set,
there were 2530 trajectories where disease proteins
could be assigned to both diseases (63%). These 2530
trajectories, which were used as positive cases in this ref-
erence set, contained 453 of the 465 diseases to which
disease proteins could be assigned (97%). On average,
diseases had 90 disease proteins assigned to them (me-
dian: 29, interquartile range: 7-94). Disease proteins
were on average assigned to 6.2 diseases (median: 3,
interquartile range: 2—-8).

A set of 168,870 non-trajectories was constructed by
creating all possible sequences of the 453 included dis-
eases, minus the trajectories that were described by Jen-
sen. The set of non-trajectories thereby included
random pairs of diseases, the reversed temporal se-
quences of these random pairs, as well as the reversed
temporal sequences of the trajectories. In the following,
we will refer to the trajectories and non-trajectories as
positive and negative cases to align with common ter-
minology in the machine learning field.

Van den Akker reference set

The second reference set was based on a prospective co-
hort study on disease susceptibility by Van den Akker
et al. [24]. They followed a Dutch cohort of 3460
patients over 2 years, during which their general practi-
tioner notes were examined for sequences of Inter-
national Classification of Primary Care (ICPC) codes
that represent chronic, permanent, and recurrent dis-
eases. In the Netherlands, each citizen is registered with
a general practitioner, who acts like a gatekeeper for
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secondary and tertiary medical care, and is responsible
for maintaining a complete medical history of the
patient.

A total of 473 unique sequences of diseases were
found in this cohort, containing 122 distinct diseases.
Each sequence was manually evaluated using the pub-
lished biomedical literature and medical handbooks.
There were 65 sequences of diseases where the literature
stated that the first disease increased the susceptibility of
acquiring the second disease, and 408 sequences where
no evidence of increased susceptibility was found. To
maintain consistent terminology, we will refer to se-
quences with increased susceptibility as trajectories or
positives and to sequences without increased susceptibil-
ity as non-trajectories or negatives.

To assign disease proteins to these 122 diseases we
followed the same procedure as for the Jensen set by
using the MRCONSO table to map the ICPC codes to
UMLS identifiers, after which the MRREL table was used
to group them with their subclasses. Disease proteins
could be assigned to 97 diseases, which formed 55 tra-
jectories and 316 non-trajectories. On average, diseases
had 137 disease proteins assigned to them (median: 49,
interquartile range: 17-167). Disease proteins were on
average assigned to 3 diseases (median: 2, interquartile
range: 1-4).

To determine whether our method could also identify
the correct temporal sequence of the trajectories, 54
additional non-trajectories were created by reversing the
sequence of the diseases in the literature-supported tra-
jectories (the reverse sequence of one trajectory was
already included as a non-trajectory in the data from the
general practitioners).

Knowledge graph

The predicates between proteins were extracted from
the Euretos Knowledge Platform (EKP), a commercially
available knowledge graph (http://www.euretos.com). In
the EKP, information from more than 200 knowledge
sources from a wide variety of domains in the life sci-
ences is represented as triples. The biomedical entities
such as proteins, drugs, or diseases that form the sub-
jects and objects of these triples are represented in the
knowledge graph as vertices, each of which has one or
more identifiers associated with it from external data-
bases. Mappings between the entities described in the
different knowledge sources underlying the knowledge
graph were made by matching their identifiers. The
predicate and provenance of each triple are specified as
part of an edge between the two vertices that represent
the subject and object. The direction of the predicate
goes from subject to object. The predicates in the under-
lying knowledge sources were matched to a standardized
set of 203 predicates. If an exact match was not
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available, a predicate was manually mapped. If there
were no explicit predicates in a database that was used
as a knowledge source, the predicates were manually de-
rived from the database schema. A path between two
vertices is defined as a sequence of triples, or possibly a
single triple, connecting the vertices.

The contents of the EKP are represented as documents
in a NoSQL database, which allows them to be flexibly
modelled and indexed. The EKP can be run on a
reasonably-powered server, requiring an 8-core proces-
sor and 60GB of memory as a minimum. It has previ-
ously been used in pre-clinical research for drug efficacy
screening [13], prioritizing existing drugs as repurposing
candidates for autosomal dominant polycystic kidney
disease [25], and pathway enrichment [26].

Feature sets & machine learning

The paths between the disease proteins were extracted
from the EKP. To keep our graph comprehensible, we
only extracted paths that consisted of one or two triples,
i.e,, paths where two disease proteins are connected by
at most one intermediate protein. Within this range,
three scenarios for the paths between the disease proteins
of two diseases A and B were distinguished (Fig. 1.):

1) Overlap, where A and B share a disease protein,
optionally with a path to itself, e.g. a disease protein
of which two copies bind with each other
(homodimerization).

2) Direct path, where a disease protein of A and a
disease protein of B are part of one triple.
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3) Indirect path, where one intermediate protein
connects the disease proteins of A and B, requiring
a sequence of two triples.

Two different methods to represent indirect paths be-
tween disease proteins were compared. The first method
constructed so-called metapaths [5], where the sequence
of predicates in an indirect path was used as single feature.
The second method, which we refer to as split paths, con-
sidered each predicate in the indirect paths as a separate
feature [13]. Each method was tested both with and with-
out directional information of predicates. Predicates were
either considered to all be undirected, or predicates were
categorized as being directed or undirected based on ex-
pert assessment (described in the Assessment of predicate
directionality section below), which we refer to as the
Mixed variation. In the overlap scenario, where the subject
and the object were the same protein, predicates were al-
ways considered to be undirected.

All features were binary. Figure 2 shows the four
feature sets that are derived from the example
shown in Fig. 1. We also experimented with feature
sets where all predicates were directed as indicated
by the subject and object of the triple in the EKP.
However, because some predicates are explicitly de-
fined as being undirected, using any directional in-
formation from triples with these predicates would
contradict these definitions. Nonetheless, for the
sake of completeness we have chosen to present
these results in Additional file 1.

Random forests were trained to classify the sequences of
diseases as positive or negative. Classification performance

~
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Fig. 1 Schematic overview of the overlap, direct, and indirect scenarios that were extracted from the knowledge graph. Both diseases A and
disease B have three disease proteins (DP) associated with them according to the manually curated subset of DisGeNet. DisGeNet describes that
DP1 is known to be associated with both diseases, while the knowledge graph describes that it has a “binds with” relationship to itself. DP2 and
DP4 have a direct “inhibits” relationship, and DP3 and DP5 are connected through an indirect path, by an intermediate protein (IP). The arrows
between the proteins indicate which protein is the subject of the “inhibits” predicate, and which one its object. The “binds with” predicate was
considered to be undirected by the experts, and therefore does not have a direction. Based on the paths in the knowledge graph, four feature
sets are created, based on two methods to represent indirect paths, and both with and without the directional information of predicates
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Fig. 2 The four feature sets that were derived from the paths between the disease proteins in Fig. 1. All features are binary: Black fields indicate a
“True” value, while empty fields indicate a “False” value. For the “Mixed” feature sets, the “Binds with” predicate is assessed to be undirected by
experts, while the “Inhibits” predicate is assessed to be directed
J

was measured with the area under the receiver operator
characteristic curve (AUC) of a 10-fold cross-validation
experiment [27, 28]. We report the mean and standard de-
viation of the AUCs of 10 repeated cross-validation exper-
iments. The same folds that were used in the experiments
with undirected predicates were also used in the experi-
ments with directed predicates, after which the differences
between the test folds were tested for significance with a
two-sided, paired t-test.

To control for the differences in prevalence and num-
ber of cases between the two reference sets, we also re-
port the classification performance after undersampling
the number of positive and negative cases in the Jensen
set to match those in the Van den Akker set.

For the best performing classifiers we also report sensi-
tivity and specificity at the probability cutoff for which the
Youden index (sensitivity + specificity — 1) is largest [29].

Machine learning and evaluation of results were per-
formed in R [30] with the packages caret [31], ranger
[32], and pROC [33].

Assessment of predicate directionality

Three experts with a strong biomedical background and
familiarity with knowledge graphs assessed the direction-
ality of 47 distinct predicates that were found in the ex-
tracted paths. They were provided with definitions of
these predicates which were obtained from the Pathway
Commons resource [34]. If not available, definitions
were sought through the National Library of Medicine
[35], or the OBO foundry [36]. The assessors could
categorize each predicate as “directed”, “undirected”, or
“don’t know”. To establish directionality, a predicate had
to be categorized as directed or undirected by a majority
(i.e., two or three) of the assessors. Predicates that con-
tain a negation (e.g., “does not interact with”) were auto-
matically categorized the same as the corresponding
predicate without negation (“interacts with”), and there-
fore not presented to the assessors. For some predicates
the categorization was straightforward. For example,
Pathway Commons defines the predicate “interacts with”
as “This is an undirected relation between participant
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proteins of a molecular interaction. [...]” , and the predi-
cate “catalysis precedes” as “This relation defines di-
rected interactions between proteins. [...]” [34]. Six
predicates did not reach a majority in the first round
and were anonymously commented upon by the asses-
sors to motivate their categorization. These comments
were shared between the assessors, after which they
could update their initial choice. Each predicate was
then categorized with a majority.

Table 1 shows the 12 predicates that were categorized
as undirected by the three experts. The other 35 predi-
cates were categorized as directed. A complete overview
of the predicates can be found in Additional file 2.

Results

Extracted paths

In total, 6859 distinct disease proteins were assigned to
the diseases in both reference sets, three of which could
not be mapped to the EKP. Another 430 (6.3%) of the
disease proteins were not found in any of the extracted
paths. From these disease proteins, 314 had no relation-
ship to any other protein in the EKP.

The remaining 6426 disease proteins were involved in
1,338,310 direct paths and 833,546,575 indirect paths,
while 2581 disease proteins had 7354 paths to them-
selves. All paths were based on 2,015,738 distinct triples,
which contained 17,132 different proteins and 47 differ-
ent predicates.

The overlap scenario, where the two diseases in the
trajectory share at least one disease protein (scenario 1,
Feature sets & Machine learning section), occurred in
58% of the positive cases of the Jensen set, and 95% of
the positive cases of the Van den Akker set. No indirect
paths (scenario 3, Feature sets & Machine learning sec-
tion) were found between the disease proteins of 119
positive cases (4.7%), and 18,217 negative cases of the

Table 1 Predicates categorized as undirected as a result of the
assessment process

Undirected Predicates
binds with

coexists with

does not coexist with
forms protein complex with
interacts with

does not interact with

is associated with

is compared with

is functionally related to

is spatially related to

is the same as

ortholog is associated with
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Jensen set (10.8%), and one positive case (1.8%) and 15
negative cases (4.1%) of the Van den Akker set.

Classification results

The classification performance for both reference sets is
shown in Table 2. Mixed metapaths performed best,
achieving mean AUCs of 89.8% for the Jensen set and
74.5% for the Van den Akker set. Overall, classification
performance on the Van den Akker set was 9.9 to 15.3
percentage points lower than on the Jensen set, while
standard deviations were 9.6 to 11.3 percentage points
higher. Metapaths performed 4.1 to 7.0 percentage
points better than split paths. The performance of the
mixed feature sets was 1.9 to 6.5 percentage points
higher than the undirected feature sets. All differences
between mixed and undirected feature sets were signifi-
cant (p-values for Jensen metapaths and split paths: <
0.001; Van den Akker metapaths: 0.02, split paths 0.001).

To quantify how much of the difference in AUC be-
tween the two reference sets could be attributed to their
difference in size, the Jensen set was undersampled to
the same number of positive and negative cases as the
Van den Akker set. With the exception of the mixed
metapaths, performance dropped below the performance
that was achieved with the Van den Akker set. The
standard deviations also increased from 0.9-1.7% to 8.4—
12.3%. The latter values are comparable to the standard
deviations on the Van den Akker set.

Figure 3 shows the receiver operating characteristic
(ROC) curves of the mixed metapath classifiers that per-
formed best. For the Jensen set, sensitivity and specificity
at the maximum Youden index were 79.2% and 82.4%,
respectively, while for the Van den Akker set these were
73.6% and 64.3%.

Error analysis

For our best classifier (mixed metapath features, trained
on the Jensen set), we analyzed the top-15 false-positive
and the top-15 false-negative cases, searching the litera-
ture for information that might explain the errors. The
results of our analysis of the false positives are shown in
Table 3. Overall, the first 10 out of the top 15 false posi-
tives appear to be omissions from the Jensen set rather
than misclassifications. For two false-positive cases, po-
tential mechanisms have been suggested, but the current
evidence is inconclusive on whether those mechanisms
are valid. For the remaining three false-positive cases no
literature could be found, which may therefore be inter-
esting leads for further investigation.

Table 4 shows the results for the top-15 false nega-
tives. For six false negatives, the second disease was
likely to be caused by the treatment of the first disease.
For example, the radiation that is used to treat the ma-
lignant neoplasm of the larynx may compromise the
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Table 2 Classification results for the four feature sets for both reference sets

Jensen set Jensen set - undersampled Van den Akker set
Metapaths Split paths Metapaths Split paths Metapaths Split paths
Undirected 833(1.7) 783 (1.7) 64.2 (12.1) 619 (12.3) 725(11.8) 684 (13.0)
Mixed 89.8 (0.9) 828 (1.2) 82.3 (84) 69.6 (13.1) 74.5 (10.5) 703 (11.4)

The values in the columns indicate the mean AUC and its standard deviation in % of 10 cross-validation experiments

immune system around the throat and mouth, thereby
increasing susceptibility to oropharyngeal candidiasis
[54]. Two false-negative trajectories are likely to have
mechanical causes, rather than molecular pathways. The
trajectory from malignant neoplasms of the ovary to nu-
trient deficiency can be explained by the blocking of the
intestines by the ovarian tumor, thereby blocking the en-
tire digestive system [53]. For four of the false-negative
trajectories, no description could be found in the litera-
ture, making their assessment impossible. Assessment of
the three remaining false negatives is speculative. For ex-
ample, the trajectory from transient ischemic attacks
(TIA) to vitamin B12 deficiencies may be an artifact of
the medical record keeping. Vitamin B12 is known to
protect against TIAs [52], so what may often happen is
that a vitamin B12 deficiency is only diagnosed after the
more acute TIA has been treated in an emergency room.

Discussion

Our work demonstrates that disease trajectories can be
identified with the predicates between proteins in a know-
ledge graph. To do so, our machine-learning based meth-
odology needed to successfully identify both the correct
pairs of diseases, as well as their correct temporal se-
quences. Overall, representing indirect paths as metapaths
performed superior as compared to representing them as
split paths. Using the directional information of predicates
significantly improved performance over not using this

information. Undersampling the Jensen set to the same
number of positive and negative cases as the Van den
Akker set showed that its lower performance and higher
standard deviations could partially be explained by its small
size.

In previous work, Bang et al. [21] identified disease trajec-
tories by calculating the relative risk between two diseases
and combining this with the relative position of disease pro-
teins in biomolecular pathways. Their method is fully
dependent on shared disease proteins between the two dis-
eases, whereas our method also works when there are only
(in) direct paths between disease proteins. In the Jensen set,
this holds for 42% of the trajectories. Performance compari-
son of the methods is difficult because Bang et al. only vali-
dated the disease trajectories that were suggested by their
method, but did not validate the non-trajectories. Thus,
only the precision of their method can be calculated but no
insight is provided in the number of false-negative trajec-
tories. A final complication for the comparison between the
two methods is the claim of Bang et al. to discover causal
relationships between diseases, rather than only temporal
ones. Unfortunately, they refer to an example to define
causal relationships between diseases, making it difficult to
pinpoint how these differ from disease trajectories.

Although we do not foresee direct clinical application
of our work, our high performance may persuade ex-
perts to further examine the protein paths underlying
some positively classified trajectories, either known or
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Table 3 Assessment of the top 15 false-positive trajectories
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First disease ICD-10 Second disease ICD-10 Assessment
Mental and behavioural disorders due to F10 Alzheimer's disease G30 Described in literature [37]
use of alcohol
Essential (primary) Hypertension 110 Alzheimer's disease G30 Described in literature [38]
Osteoporosis without pathological fracture M81 Alzheimer's disease G30 Described in literature [39]
Non-insulin-dependent diabetes mellitus ET1 Alzheimer's disease G30 Described in literature [40]
Other disorders of pancreatic internal E16 Alzheimer's disease G30 Described in literature [41]
secretion
Schizophrenia F20 Other septicaemia Ad1 Described in literature, but commonly
occurs via intermediate diseases such
as agranulocytosis and pneumonia [42]
Lupus erythematosus 193 Other disorders of N39 Described in literature [43]
urinary system
Disorders of vestibular function H81 Alzheimer's disease G30 Described in literature [44]
Lupus erythematosus L93 Respiratory failure, not J96 Described in literature [45]
elsewhere classified
Unspecified Dementia FO3 Dementia in Alzheimer’s FOO Further specification of diagnosis
Disease
Retinal vascular occlusions H34 Cystitis N30 No relationship found in literature
Chronic ischaemic heart disease 125 Other septicaemia A41 Cardiac troponins are suggested to be
biomarkers for sepsis [46]
Hyperplasia of prostate N40 Alzheimer's disease G30 No relationship found in literature
Hyperparathyroidism and other disorders E21 Alzheimer's disease G30 Suggested in literature (via calcium) [47]
of parathyroid gland
Asthma 145 Umbilical hernia K42 No relationship found in literature

newly suggested. Interpreting these protein paths might
provide additional clues about the mechanism through
which the first disease leads to the second. Identifying
and understanding these mechanisms is likely to im-
prove prevention, prediction of disease progression,
intervention, and drug development, thereby indirectly
supporting clinical practice and health-care policy. For
now, such detailed examinations of the protein paths
were beyond the scope of this project.

A downside of working on the protein level was that not
all disease trajectories could be studied. More than a third
of the trajectories of the Jensen set, and a fifth of the Van
den Akker set was lost because disease proteins could not
be assigned to one or both of the diseases in a trajectory.
Even when disease proteins could be assigned to both dis-
eases, alternative explanations were sometimes more
plausible. For example, our analysis of the false-negative
cases suggested that some trajectories could be explained
mechanically, or were likely due to a side effect of the
treatment for the first disease. To determine the true per-
formance of our method, a validated set of trajectories that
are caused by biomolecular mechanisms would be needed.
Alternatively, the range of trajectories that can be analyzed
may be broadened by linking diseases to other types of
disease information available in the EKP, e.g., information
about drugs or physiological processes.

The two reference sets that were used in this research
were both based on patient data, but differed in many
other respects. The sequences of diseases in the Jensen
set were classified as trajectories based on statistics
calculated from 15years of nationwide hospital data.
Despite this large volume of data, our analysis of the
false-positive cases showed that the set of trajectories
was incomplete. The literature evaluation underlying the
Van den Akker set ensures that such omissions are un-
likely to occur there. Furthermore, the negatives in the
Van den Akker set either were observed in patients, or
were reversals of literature-supported trajectories. Be-
cause the negative cases in the Jensen set were based on
randomization, this set is likely to contain pairs of dis-
eases that never co-occur within patients. Finally, the
types of diagnoses within the trajectories differ between
the two reference sets. The hospital patients in the
Jensen set are more likely to suffer from more serious
and complicated diseases than patients visiting a general
practitioner in the Van den Akker set. On the other
hand, the Van den Akker set only included chronic, per-
manent, and recurring diseases, thereby excluding dis-
eases that are acute and rapidly treatable.

Only the definitions from Pathway Commons stated
whether the predicate was directed or not. The defini-
tions of predicates from other knowledge sources,
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Table 4 Assessment of the top 15 false-negative trajectories
First disease ICD-10 Second disease ICD-10 Assessment
Thyrotoxicosis [hyperthyroidism] E05 Other disorders of eye H57 Likely side effect of treatment [48]
and adnexa
Irritable bowel syndrome K58 Spondylosis M47 No relationship found in literature
Vitamin B12 deficiency anaemia D51 Other septicaemia A41 Vitamin B12 has been hypothesized as treatment
for sepsis [49]
Mental and behavioural disorders due F10 Acute and transient F23 Described in literature, but no clear role for protein
to use of alcohol psychotic disorders interactions [50]
Gonarthrosis [arthrosis of knee] M17 Erysipelas A46 No relationship found in literature
Senile cataract H25 Other disorders of lens H27 Likely side effect of treatment [51]
Transient cerebral ischaemic attacks G45 Vitamin B12 deficiency D51 Only reverse described in literature, that vitamin B12
and related syndromes anaemia protects against stroke [52]
Malignant neoplasm of ovary C56 Deficiency of other E61 Likely mechanical cause [53]
nutrient elements
Malignant neoplasm of larynx 32 Candidiasis B37 Likely side effect of treatment [54]
Other intervertebral disc disorders M51 Somatoform disorders F45 No relationship found in literature
Gonarthrosis [arthrosis of knee] M17 Other local infections L08 No relationship found in literature
of skin and subcutaneous
tissue
Benign neoplasm of brain and other D33 Other septicaemia A41 Likely intermediate through infection, which follows
parts of central nervous system surgery or weakening of the immune system after
(radiation) treatment
Insulin-dependent diabetes mellitus E10 Other disorders of eye H57 Diabetes is a risk factor for many eye diseases [55],
and adnexa but it is not clear whether these fall under this ICD-10
code
Noninflammatory disorders of ovary, N83 Ventral hernia K43 Likely side effect of treatment [56]
fallopian tube and broad ligament
Other intervertebral disc disorders M51 Other polyneuropathies G62 Likely mechanical cause [57]

including the National Library of Medicine, left room
for interpretation. As a result, six predicates required a
second round of assessment before a majority was
achieved between the assessors. With ontologies playing
increasingly important roles in data standardization and
sharing [58], the directionality of predicates should al-
ways be clear. The Relationship Ontology already sup-
ports categorization of predicates as directed or
undirected, which it refers to as asymmetric or symmet-
ric predicates, but unfortunately is far from complete
and did not cover the predicates in our set [59].

A potential new application for our method would be
to identify trajectories for rare and low-prevalence dis-
eases, where insufficient patient data is available for
studies such as those performed by Jensen or Van den
Akker. Because our method identifies trajectories based
on a protein network, it is independent of the prevalence
of a disease. Furthermore, many of the estimated 5 to 8
thousand rare diseases have well known genetic causes
[60], making them highly suitable to be analyzed with
our method.

A possible extension of our work would be the identi-
fication of longer disease trajectories, e.g. the trajectories
consisting of sequences of four diseases that were also

described by Jensen et al. [14]. However, as far as we are
aware all available knowledge-graph methods limit
themselves to identifying relationships between two en-
tities. Expanding the current methods to identify longer
sequences should therefore be a separate investigation.

Conclusions

Our work demonstrates that disease trajectories can be
identified with the predicate information from a know-
ledge graph. We also demonstrate and quantify the
added value of using directional information of predi-
cates for this task. Our work thereby enables the discov-
ery of temporal relationships with predicate information
from knowledge graphs.
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