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Abstract

Background: With the improvements to text mining technology and the availability of large unstructured
Electronic Healthcare Records (EHR) datasets, it is now possible to extract structured information from raw text
contained within EHR at reasonably high accuracy. We describe a text mining system for classifying radiologists’
reports of CT and MRI brain scans, assigning labels indicating occurrence and type of stroke, as well as other
observations. Our system, the Edinburgh Information Extraction for Radiology reports (EdIE-R) system, which we
describe here, was developed and tested on a collection of radiology reports.
The work reported in this paper is based on 1168 radiology reports from the Edinburgh Stroke Study (ESS), a
hospital-based register of stroke and transient ischaemic attack patients. We manually created annotations for this
data in parallel with developing the rule-based EdIE-R system to identify phenotype information related to stroke in
radiology reports. This process was iterative and domain expert feedback was considered at each iteration to adapt
and tune the EdIE-R text mining system which identifies entities, negation and relations between entities in each
report and determines report-level labels (phenotypes).

Results: The inter-annotator agreement (IAA) for all types of annotations is high at 96.96 for entities, 96.46 for
negation, 95.84 for relations and 94.02 for labels. The equivalent system scores on the blind test set are equally high at
95.49 for entities, 94.41 for negation, 98.27 for relations and 96.39 for labels for the first annotator and 96.86, 96.01,
96.53 and 92.61, respectively for the second annotator.

Conclusion: Automated reading of such EHR data at such high levels of accuracies opens up avenues for population
health monitoring and audit, and can provide a resource for epidemiological studies. We are in the process of
validating EdIE-R in separate larger cohorts in NHS England and Scotland. The manually annotated ESS corpus will be
available for research purposes on application.
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Background
The goal of the EdIE-R system [1] is to label each
report with an indication of what the radiologist was
able to observe in the scan image, for example, small
vessel disease, ischaemic stroke etc. Like most other sys-
tems for extracting information from electronic health-
care records, we use text mining techniques to identify the
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relevant parts of the report which can then be used as a
basis for predicting the document-level labels.

Text mining systems typically apply Named Entity
Recognition (NER), Relation Extraction (RE) and nega-
tion detection. NER is used to identify words or phrases
that are ‘entities’ relevant to the text mining task and
RE links entities when they are related in some rele-
vant way. Negation detection identifies contexts where the
author is stating that entities or relations do not exist. For
example, Fig. 1 shows different types of annotations: two
ischaemic stroke entities, infarcts and infarction, two tem-
poral modifiers, old and acute, and a location modifier,
thalamic. The first ischaemic stroke entity enters
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Fig. 1 Example of entity, relation and negation mark-up

into two relations, one with a temporal modifier and one
with a location modifier, while the second ischaemic
stroke entity is in a relation with a temporal modifier.
These latter two entities are marked as negative (crossed
out) because they are in the scope of the negative word No.
Annotations such as these are output by the text mining
system and are then used as the basis for the assignment
of labels to the reports.

In order to develop NER and RE components, decisions
need to be made about which entities and which rela-
tions the system should identify. These decisions are best
made through dialogue between the domain experts, who
know what information they would ideally like to access,
and text mining experts, who can judge which pieces of
information can be identified with sufficient accuracy.
In addition, manually annotated subsets of the data are
needed to train and develop the components as well as to
evaluate their performance.

In building EdIE-R, we used the process of annotation
as a means to focus the radiologist/text miner dialogue
at the same time as developing the prototype system. We
used an agile development methodology where iterations
of system development were interleaved with annotation
iterations. After initial scoping, automatic annotations
from the system were presented to the domain experts
for correction using the BRAT annotation tool [2]. The
system and manual annotations were compared and dis-
agreements were resolved either by adjusting the man-
ual annotation or by improving the system. We iterated
over the process a number of times with both system
and manual annotation improving in each cycle. This
method has several advantages. First, it allows both teams
to work simultaneously, unlike methods where all the
annotation is done in advance of system development.
Second, discussion of the system and manual disagree-
ments allows the text miners to come to a much clearer
understanding of the meaning of the domain language
and the domain specialists to understand the limitations
of the technology. Through negotiation, several changes

to the annotation scheme were made during the iterative
process. Third, doing annotation as correction tends to
reduce insignificant differences between manual and sys-
tem annotation.

Related work
Named entity recognition is a well-established task in
NLP. The CoNLL shared-task evaluations [3] established
benchmarks for NER evaluation and prompted research
into supervised machine learning methods for NER, for
example, the Stanford NER tagger [4]. Rule-based tech-
niques are also still used for NER: see e.g. the ANNIE
NER tagger which is part of GATE [5]. Relation extraction
is often included as a subtask in text mining applications
[6] with approaches to it ranging from rule-based through
supervised to unsupervised machine learning.

Text mining technology for the biomedical domain has
been a subject of research for two decades with several
community initiatives to provide data and a forum for
shared tasks, such as BioCreative [7] and BioNLP [8].
Both of these organised shared tasks in NE and RE: see
[9, 10] for our contributions. More recently the shared
task approach has been used for electronic health records
(EHRs) by the LOUHI workshops, e.g. LOUHI’17 [11] or
LOUHI’18 [12]. There are many individual studies apply-
ing information extraction to EHRs, see [13] for a review
of some of these. Negation detection has been recognised
as an important step, particularly in medical text mining,
with the NegEx algorithm [14] being frequently used.

Several researchers have applied NLP and text mining
approaches to radiology reports. Pons et al. (2016) provide
a useful systematic review of NLP in radiology [15]. They
include 67 different studies which they group according
to 5 distinct purposes, namely diagnostic surveillance,
cohort building for epidemiological studies, query-based
case retrieval, quality assessment of radiologic practice,
and clinical support services. Conditions targeted by the
systems are various and include appendicitis, pneumonia,
renal cysts, pulmonary embolism, liver conditions and

Fig. 2 EdIE-R processing pipeline



Alex et al. Journal of Biomedical Semantics 2019, 10(Suppl 1):23 Page 3 of 11

general metastases, to name but a few. Across all these
application areas the NLP systems surveyed tend to have
the same broad structure where a flow diagram showing
the individual components looks much like our diagram
of the EdIE-R system shown in Fig. 2 below.

Two recent studies by Hassanpour and Langlotz (2016)
and by Cornegruta et al. (2016) describe machine
learning methods for entity recognition from radiol-
ogy reports [16, 17]. Hassanpour and Langlotz [16]
tested two existing feature-based machine learning clas-
sifiers for this task. Their annotation scheme contains
four broad types of named entities (Anatomy, Anatomy
modifier, Observation and Observation modifier) as well
as strings expressing Uncertainty. They used NegEx
to identify negation in the text as a feature feed-
ing into their models. The machine learning classifier
both result in an average F1-score of 85% for 10-fold
cross-validation on a data set containing 150 manu-
ally annotated radiology reports from three different
institutions.

Cornegruta et al. [17] describe work on analysing a
large corpus of historical chest X-ray reports. Their sys-
tem described is interestingly similar to ours in the way
the report text is annotated with named entity and nega-
tion mark-up although the entity list (Body Location,
Descriptor, Clinical Finding, Medical Device) is both
smaller and more complex in that disjoint entities are
permitted. No relation extraction is performed but nega-
tion mark-up is included. The NER method uses a bidi-
rectional LSTM (BiLSTM) neural network architecture,
which is contrasted with a baseline system which uses
string matching look-up against RadLex [18] and Medical
Subject Headings (MeSH) [19] concepts combined with
parsing, plus NegEx for negation detection. The BiLSTM
NER tagger significantly outperforms the baseline but
it is worth noting that, in general, rule-based and
machine learning approaches attain similar levels of per-
formance on NER if the rule-based system uses more
sophisticated techniques than string matching, as ours
does.

There has also been some work on summarising radi-
ology reports. Most recently, Zhang et al. [20] proposed
a state-of-the-art neural network-based approach to sum-
marisation of radiology impressions. An impression is the
“Conclusion” section of a radiology report summarised by
the radiologist after dictating or writing down their find-
ings presented in the image. Automating this step is an
extremely useful task that can save radiologists a lot of
effort and time. Two different radiology reports describ-
ing similar symptoms and conditions, however, are not
guaranteed to result in the same summary text. The out-
put of summarisation therefore does not lend itself well
for large-scale data analysis in the same way as classifica-
tion of symptoms and conditions does, for example, for

identifying patients with the same findings for epidemio-
logical studies.

With a specific focus on stroke, Flynn et al. (2010) [21]
developed a system for analysis of brain scan radiology
reports from Tayside, Scotland, i.e. EHR reports which
are very similar to the those in the ESS data set [22].
Their aim was to improve on the coding of the reports
which were frequently given generic ‘stroke’ codes even
when a more precise code could be determined by look-
ing at the report. Their method used a keyword matching
step looking for affirmative or negative uses of key words
from a stroke lexicon. They report results which were
acceptably accurate in identifying ischaemic stroke (94.7%
positive predictive value (precision)) on a dataset of 150
reports manually classified as ischaemic stroke. Their
method performed less reliably in identifying intracere-
bral haemorrhage (76.7% positive predictive value) on a
dataset of 150 reports manually classified as intracere-
bral haemorrhage. The paper does not report sensitivity
(recall) scores as the data only contains positive examples
of either type.

To the best of our knowledge, EdIE-R is the first sys-
tem that performs named entity extraction, negated entity
detection, relation extraction and document level labelling
with the goal to classify radiology report with types of
stroke, tumours and other information. The extracted
entities (positive or negative) and relations are all used to
do the final classification (labelling) step. The information
captured in and about the reports include a compre-
hensive set of entities and labels. We provide a detailed
evaluation of EdIE-R for all the steps it is designed to
perform using standard natural language processing eval-
uation metrics, including precision, recall and F1-score.
Compared to the previous study [21] we therefore test
on an unseen test set of random radiology reports which
contain positive and negative examples of the information
EdIE-R is designed to extract and label.

Method
Annotation scheme
There are four aspects to the annotation of brain scan
reports in our data: entities, relations, negation mark-up,
and labels. These are all illustrated in Fig. 3, a screen grab
of an annotated report loaded into the BRAT tool. As
shown, each report is preceded by a list of all possible
labels but only those that have been marked as selected are
labels for the report. Entities, relations and negation have
been annotated within the textual body of the report.

Entities are of two types, observations or mod-
ifiers. The full set of observation entities are:
ischaemic stroke, haemorrhagic stroke,
stroke (unknown type), tumour:meningioma,
tumour:metastasis, tumour:glioma, tumour,
subdural haematoma, small vessel disease,
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Fig. 3 An annotated report

atrophy, microbleed, subarachnoid ha
emorrhage and haemorrhagic transformation.
The four modifier entities, which are used to identify loca-
tion (deep vs. cortical/lobar) and recency (old vs. recent)
of an observation, are loc:deep, loc:cortical,
time:old, time:recent.

Relations link a subset of observation entities, namely
stroke and microbleed entities, with modifier entities.
Strokes may be associated with both a location and a
time, while microbleeds are associated only with loca-
tion. Some words or phrases, such as POCI (Posterior
Circulation Infarct) in Fig. 2, carry both observation and
modifier meaning and in these cases nested entities are
used. Here there is a mod-loc relation between the
loc:cortical entity and the ischaemic stroke entity
but we do not require this to be made explicit in the
annotation since the nesting implies it.

There is a close relationship between the entity
and relation names and the labels. For example,
the label Ischaemic stroke, cortical, old has
been chosen and this clearly relates to the two occur-
rences of an ischaemic stroke entity in a relation

with both a loc:cortical and a time:old modifier.
The annotators are instructed not to select labels unless
there is explicit linguistic evidence to support the choice.
Occasionally they will be able to infer labels from implicit
information but they are asked not to annotate these cases
as the aim is to model linguistically explicit information
not human expertise.

Proper identification of negation and its scope is
essential to achieving high accuracy. We model negation
in the annotation as an attribute on entities, which is
visualized in BRAT as a crossing out. Wherever the
text contains negation scoping over entities, the anno-
tators must add the negative attribute. The negative
example in Fig. 2, No acute haemorrhage, masses or
extra-axial collections, is a clear and simple case but
syntactically more complex cases occur, e.g. cases where
the negation marker is distant from the entities within
its scope. There are cases where the radiologist is unable
to positively identify or exclude an observation, as for
example in a small focus of acute infarct cannot be com-
pletely excluded. The annotators are asked to mark these
cases as negative, as only clearly positive observations
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should contribute to the labels assigned to the
reports.

The EdIE-R system
EdIE-R is a rule-based text mining system which we devel-
oped in tandem with manual data annotation in the form
of correction of the system output. The presentation of
the data in the BRAT tool, as illustrated in Fig. 2, is the
view that the annotators see, but this is a format that has
been derived from the data structure which the system
manipulates and outputs, which is an XML data structure.
We have developed the system’s text analysis components
using the LT-XML2 programs, which are the core of our
XML rule-based text mining software [23]. Our most
recent software release, the Edinburgh Geoparser [24],
contains all of our general-purpose components, such as
the tokeniser, NER tagger and chunker, which we have
adapted to the brain scan report domain in EdIE-R.

As shown in Fig. 3, the EdIE-R system has a pipeline
architecture. Scan reports are converted from their orig-
inal format into an initial XML format and subsequent

components incrementally add annotations to the XML
structure, with each stage making computations over the
annotations of previous stages. The document zoning
step segments the reports into sections including clinical
details, the report itself and the radiologist’s conclusion.
It also adds metadata which includes all of the possi-
ble labels that can be assigned; by the final stage of the
pipeline an attribute on each label indicates whether that
label has been selected. An example of a report in XML
after document zoning is shown in Fig. 4. We combine
NER and label mark-up in this way so that manual anno-
tation of all levels of analysis can be done at the same
time.

Subsequent steps of the pipeline do linguistic process-
ing. The tokeniser splits textual content into paragraphs,
sentences and word tokens, with punctuation characters
also treated as tokens. The C&C POS tagger [25] labels
each word with its syntactic category. The default C&C
model has been trained on modern U.S. newspaper text
and although it performs well on most text types, it is not
wholly suitable for the medical text in our reports. For this

Fig. 4 XML format after document zoning
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Fig. 5 Example lexical entries

reason, we also use a model trained on the Genia biomed-
ical corpus [26]. After running the POS tagger with each
of the models we apply a correction stage to moderate dis-
agreements between them. After POS tagging, we apply
the morpha lemmatiser [27] to analyse inflected nouns
and verbs and compute their lemma (morphological
stem). The output of POS tagging and lemmatization

is stored in attribute values on word token
elements.

The fifth step in the pipeline is the NER component,
which incorporates lexical lookup. From examples in the
development set we manually curated two lexicons, one
for observations (e.g. the atrophy entity inter-cerebral
volume loss and the ischaemic stroke entity lacunar

Fig. 6 XML representation of entities and relations in Fig. 1
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Table 1 The annotated ESS data sets

Reports Of which CT Of which MRI Sentences Words

Development

dev1 18 18 0 158 1651

dev2 25 16 9 231 2671

dev3 80 78 2 888 6833

dev4 82 74 8 833 6935

dev5 82 69 13 965 8,061

dev6 77 67 10 762 6078

Total 364 322 42 3837 32,229

Test

test1 89 74 15 969 7,919

test2 92 82 10 996 8,226

test3 85 82 3 890 6697

Total 266 238 28 2855 22,842

event) and one for modifiers (e.g. the time:old enti-
ties old, previous and established), e.g. see Fig. 5. The
process of lexical lookup results in the addition of fur-
ther attributes to the word tokens of matching words and
phrases. The lexicons are applied one after the other, first
the observations lexicon and then the modifiers, so that
some words or phrases can be marked as both observa-
tion and modifier to achieve the nested entity mark-up
described above.

The next stage of processing performs a shallow syntac-
tic analysis using our chunker [28] to segment sentences
into phrases or word groups, i.e. syntactic structures
headed by nouns (noun groups), verbs (verb groups) etc.
The purpose of doing this is to create a useful data struc-
ture for dealing with nested entities and coordinations of
entities as well as to define the scope of negation mark-
ers in terms of structure rather than just word sequences.
At this stage complex negative noun groups such as No
acute haemorrhage, masses or extra-axial collections have
an appropriate structure to allow information from the
negative article No to be propagated through the group so
that all three observation entities (haemorrhage, masses,
extra-axial collections) are marked as negative.

Relation Extraction is the final stage of the text min-
ing part of the system. In this component some pairs
of entities are linked in relations held as structures in
standoff XML mark-up as illustrated in Fig. 6. There
are two possible relations, location and time, which hold
between stroke entities (ischaemic, haemorrhagic
or unknown type) and modifiers. In addition, a
microbleed entity can be in a relation with a location
modifier.

Negation arising from the verb particle not, for exam-
ple in Very acute infarction may not be visible on CT, is
handled as part of the relation extraction module because

Table 2 Annotations in the data sets

Annotated by Positive
entities

Negative
entities

Relations Labels

dev1 Both: reconciled 197 85 68 46

dev2 Both: reconciled 242 116 85 62

dev3 Both: reconciled 670 324 230 192

dev4 Annotator 1 600 284 195 167

dev5 Annotator 2 708 302 212 174

dev6 Annotator 1 524 280 169 151

Total 2941 1391 959 792

test1 Annotator 1 605 291 203 159

test2 Annotator 1 786 337 278 192

test3 Annotator 1 572 333 206 167

Total 1963 961 687 518

test1 Annotator 2 614 304 220 160

test2 Annotator 2 792 361 281 199

test3 Annotator 2 574 355 200 176

Total 1980 1020 701 535

rules linking not with the entities it scopes over are simi-
lar to the other relation rules. The result, however, is not
an explicit relation but an attribute on the negated entities
(acute and infarction, in this case). This is the same format
as for noun group negation detected during chunking.

Table 3 Inter-annotator agreement on the test data

Precision Recall F1

Entities

test1 96.41 98.77 97.57

test2 95.84 98.40 97.10

test3 94.94 97.46 96.18

Total 95.73 98.22 96.96

Negation

test1 95.90 98.19 97.03

test2 95.07 97.70 96.36

test3 94.73 97.29 96.00

Total 95.22 97.72 96.46

Relations

test1 92.99 98.03 95.44

test2 97.47 97.47 97.47

test3 96.39 91.67 93.97

Total 95.77 95.91 95.84

Labels

test1 92.50 93.08 92.79

test2 90.95 94.27 92.58

test3 94.32 99.40 96.79

Total 92.52 95.56 94.02
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Table 4 IAA precision, recall and F1 for entities including
numbers of true positives (TP), false positives (FP) and false
negatives (FN)

Type TP FP FN Precision Recall F1

Entities

ischaemic stroke 453 9 2 98.05 99.56 98.80

haemorrhagic stroke 264 20 3 92.96 98.88 95.83

stroke (unknown type) 25 0 1 100.00 96.15 98.04

tumour:meningioma 8 0 0 100.00 100.00 100.00

tumour:metastasis 12 0 0 100.00 100.00 100.00

tumour 165 2 1 98.80 99.40 99.10

subdural haematoma 109 32 0 77.30 100.00 87.20

small vessel disease 269 15 7 94.72 97.46 96.07

atrophy 147 14 6 91.30 96.08 93.63

microhaemorrhage 10 0 0 100.00 100.00 100.00

subarachnoid haemorrhage 9 3 1 75.00 90.00 81.82

haemorrhagic transformation 2 2 0 50.00 100.00 66.67

time:old 314 9 7 97.21 97.82 97.52

time:recent 354 0 0 100.00 100.00 100.00

loc:cortical 410 5 2 98.80 99.51 99.15

loc:deep 321 17 22 94.97 93.59 94.27

TOTAL 2872 128 52 95.73 98.22 96.96

The final labelling step of the pipeline uses the infor-
mation from the previous steps to compute which labels
should be associated with a record. Because the mark-up
coming from the text mining is very detailed, the label-
ing rules can be fairly simple. For example, to choose
the Small vessel disease label the rules need only
to check that there is a non-negative small vessel
disease entity in either the report or conclusions
part of the report. To choose the label Ischaemic
stroke, cortical, recent there needs to be a
non-negative ischaemic stroke entity which is in
a location relation (mod:loc) with a cortical loca-
tion entity (loc:cortical) and in a time relation
(mod:time) with a time:recent entity. There are
a few added complexities to these rules, for exam-
ple, a deep ischaemic stroke which is not in an
explicit relationship with a time modifier is assumed to
be old.

Table 5 IAA precision, recall and F1 for relations including
numbers of TPs, FPs and FNs

Type TP FP FN Precision Recall F1

Relations

mod-loc 235 17 25 93.25 90.38 91.80

mod-time 421 12 3 97.23 99.29 98.25

TOTAL 656 29 28 95.77 95.91 95.84

Table 6 IAA precision, recall and F1 for labels including numbers
of TPs, FPs and FNs

Type TP FP FN Precision Recall F1

Labels

Ischaemic stroke,
deep, recent

4 0 0 100 100 100

Ischaemic stroke,
deep, old

81 4 4 95.29 95.29 95.29

Ischaemic stroke,
cortical, recent

13 3 1 81.25 92.86 86.67

Ischaemic stroke,
cortical, old

58 6 3 90.62 95.08 92.8

Ischaemic stroke,
underspecified

6 6 6 50 50 50

Haemorrhagic
stroke, deep, recent

2 1 0 66.67 100 80

Haemorrhagic
stroke, deep, old

4 0 0 100 100 100

Haemorrhagic
stroke, lobar, recent

4 0 0 100 100 100

Haemorrhagic
stroke, lobar, old

3 0 0 100 100 100

Haemorrhagic
stroke, underspecified

9 0 1 100 90 94.74

Stroke,
underspecified

14 1 1 93.33 93.33 93.33

Tumour,
meningioma

4 0 0 100 100 100

Tumour, metastasis 0 0 0 - - -

Tumour, glioma 0 0 0 - - -

Tumour, other 2 3 1 40 66.67 50

Small vessel disease 158 3 1 98.14 99.37 98.75

Atrophy 119 9 3 92.97 97.54 95.2

Subdural
haematoma

6 0 0 100 100 100

Subarachnoid
haemorrhage,
aneurysmal

0 0 0 - - -

Subarachnoid
haemorrhage, other

5 2 1 71.43 83.33 76.92

Microbleed, deep 1 1 0 50 100 66.67

Microbleed, lobar 1 0 0 100 100 100

Microbleed,
underspecified

0 0 1 NaN 0 NaN

Haemorrhagic
transformation

1 1 0 50 100 66.67

TOTAL 495 40 23 92.52 95.56 94.02

Evaluation
In order to evaluate system performance, we anno-
tated development and test data as discussed in the
“Annotation” section. For this we used 1168 reports from
the Edinburgh Stroke Study (ESS) [22]. We reserved the
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Table 7 Evaluation of the system on the two annotators’ test
sets. We reproduce IAA from Table 3 for comparison

Precision Recall F1 IAA F1

Entities

Annotator 1 test set 94.63 96.37 95.49 96.96

Annotator 2 test set 97.21 96.50 96.86

Negation

Annotator 1 test set 93.54 95.30 94.41 96.46

Annotator 2 test set 96.35 95.66 96.01

Relations

Annotator 1 test set 97.32 99.24 98.27 95.84

Annotator 2 test set 95.47 97.61 96.53

Labels

Annotator 1 test set 94.94 97.88 96.39 94.02

Annotator 2 test set 92.70 92.52 92.61

first 500 reports as the development set and the remain-
der as the test set. ESS contains MRI, CT and Doppler
Ultrasound reports but we used only the CT and MRI
reports. We also discarded a few reports which contained
non-brain results, e.g. combined brain and neck, chest, or
abdomen scans. In total the annotated development set
contains 322 CT and 42 MRI reports. We have annotated
a random subset of the test set containing 238 CT and 28
MRI reports.

Manual annotation of the development data was accom-
plished in six tranches, where annotation was correc-
tion of the system output. The system was modified and
improved between the tranches. Table 1 provides infor-
mation on the sizes of the data subsets. The first three
tranches were doubly annotated by the radiology experts
so that IAA could be monitored. For these three tranches
only, disagreements between the annotators were recon-
ciled to produce an agreed gold standard. The remaining
development data was singly annotated. The test data was
doubly annotated in three tranches but not reconciled.
Table 2 provides details of the annotators and annotations
in all the data sets.

Results
Following standard practice we measure both IAA and
system performance using precision, recall and F1. Note
that IAA represents an upper bound for system perfor-
mance as an automatic method would not be expected
to out-perform human capabilities. The overall results
for IAA on the test data are shown in Table 3. Note
that IAA measures for relations are only computed for
those relations where the two annotators agree on both
entities linked by the relation. Overall the IAA results
are very high which indicates that the annotation task is
well-defined.

Table 8 Detailed evaluation of system labelling compared to
Annotator 2 showing numbers of true positives (TP), false
positives (FP) and false negatives (FP), as well as precision, recall
and F1

Type TP FP FN Precision Recall F1

Ischaemic stroke,
deep, recent

4 1 0 80.00 100.00 88.89

Ischaemic stroke,
deep, old

81 5 4 94.19 95.29 94.74

Ischaemic stroke,
cortical, recent

14 1 2 93.33 87.50 90.32

Ischaemic stroke,
cortical, old

56 5 8 91.80 87.50 89.60

Ischaemic stroke,
underspecified

6 8 6 42.86 50.00 46.15

Haemorrhagic
stroke, deep,
recent

3 0 0 100.00 100.00 100.00

Haemorrhagic
stroke, deep, old

4 1 0 80.00 100.00 88.89

Haemorrhagic
stroke, lobar,
recent

4 1 0 80.00 100.00 88.89

Haemorrhagic
stroke, lobar, old

3 1 0 75.00 100.00 85.71

Haemorrhagic
stroke,
underspecified

9 3 0 75.00 100.00 85.71

Stroke,
underspecified

13 1 2 92.86 86.67 89.66

Tumour,
meningioma

4 1 0 80.00 100.00 88.89

Tumour,
metastasis

0 3 0 0.00 - -

Tumour, glioma 0 0 0 - - -

Tumour, other 4 2 1 66.67 80.00 72.73

Small vessel
disease

158 0 3 100.00 98.14 99.06

Atrophy 120 3 8 97.56 93.75 95.62

Subdural
haematoma

5 0 1 100.00 83.33 90.91

Subarachnoid
haemorrhage,
aneurysmal

0 0 0 - - -

Subarachnoid
haemorrhage,
other

4 1 3 80.00 57.14 66.67

Microbleed, deep 1 0 1 100.00 50.00 66.67

Microbleed, lobar 1 0 0 100.00 100.00 100.00

Microbleed,
underspecified

0 2 0 0.00 - -

Haemorrhagic
transformation

1 0 1 100.00 50.00 66.67

TOTAL 495 39 40 92.70 92.52 92.61
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Tables 4, 5 and 6 provide a more detailed breakdown
of the IAA results per type on the entities, relations and
labels across the three test sets. The majority of lower
IAA scores for entity types are for low frequency ones,
for example subarachnoid haemorrhage. This pat-
tern is mirrored in the IAA scores for labels, for
example for Haemorrhagic transformation and
Microbleed. However, since these types are very infre-
quent their low IAA scores do not have a serious effect on
the overall figures.

Table 7 shows evaluation results for the EdIE-R system
on the two annotators’ versions of the test set. For labels
and relations, the system agrees more with Annotator 1
than with Annotator 2, while the pattern is reversed for
entities and negation. We would expect system scores to
be lower than IAA (see final column), which is the case
for entities and negation for Annotator 1, and for all but
relations for Annotator 2. We speculate that these differ-
ences indicate that Annotator 1 focused more on entity
mark-up and spotted and corrected more system entity
errors while Annotator 2 focused more on the labels and
made more corrections there. To improve the accuracy of
the evaluation we would ideally arbitrate the annotators’
disagreements and produce a consensus test set. Nev-
ertheless, the overall evaluation results are reassuringly
high, indicating that this method of labelling radiology
reports is highly effective.

In Table 8 we provide a breakdown of system perfor-
mance for the labelling task as compared with Annotator
2. This shows the comparative frequency of the dif-
ferent labels. Small vessel disease and Atrophy
are the most frequent and the system performs well
on both. The presence of these labels boosts the
total precision, recall and F1 into the low 90s. With
the exception of Ischaemic stroke, deep, old
and Haemorrhagic stroke, deep, recent, per-
formance is generally slightly lower for both Ischaemic
and Haemorrhagic stroke labels than the total entity score.
The comparative frequency of these labels (Ischaemic
more frequent than Haemorrhagic) does not appear to
make a difference in Table 8, but it may be that the
number of Haemorrhagic stroke instances is too low for
the sample to be representative. Similarly, other labels
are so infrequent that their results may not be inter-
pretable and it would be useful to acquire and annotate
more data to improve the robustness of the evaluation
results.

Conclusion
We have described the development and evaluation of the
EdIE-R system on brain imaging radiology reports from
the Edinburgh Stroke Study. The evaluation results are
encouraging and the system is sufficiently accurate that
we believe it can be used for its intended purpose of data

provision for epidemiological studies. To that end, we are
currently testing and revising the system on a dataset of
over 150,000 routine brain scans from NHS Tayside col-
lected between 1994 and 2015. We are also in the process
of evaluating whether the system can reliably identify
cases of intracerebral haemorrhage in patients in Greater
Manchester.

The evaluation of EdIE-R against these larger datasets
will show how robust it is against new data. The disad-
vantage of a rule-based system such as EdIE-R is that it
takes time to write the rules. However, we found that with
the help of the domain expert input we were able to get a
first prototype running fairly quickly. For a small dataset
such as ESS, we found this to work very well as we did not
have any training data available at the start to test machine
learning methods. Now that we have the annotated data
ready we are evaluating machine learning approaches in
parallel to investigate if we can obtain better results using
them.
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