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Abstract

Background: Discovering novel genes that are involved human diseases is a challenging task in biomedical research.
In recent years, several computational approaches have been proposed to prioritize candidate disease genes. Most of
these methods are mainly based on protein-protein interaction (PPI) networks. However, since these PPI networks
contain false positives and only cover less half of known human genes, their reliability and coverage are very low.
Therefore, it is highly necessary to fuse multiple genomic data to construct a credible gene similarity network and
then infer disease genes on the whole genomic scale.

Results: We proposed a novel method, named RWRB, to infer causal genes of interested diseases. First, we construct
five individual gene (protein) similarity networks based on multiple genomic data of human genes. Then, an integrated
gene similarity network (IGSN) is reconstructed based on similarity network fusion (SNF) method. Finally, we employee
the random walk with restart algorithm on the phenotype-gene bilayer network, which combines phenotype similarity
network, IGSN as well as phenotype-gene association network, to prioritize candidate disease genes. We investigate the
effectiveness of RWRB through leave-one-out cross-validation methods in inferring phenotype-gene relationships. Results
show that RWRB is more accurate than state-of-the-art methods on most evaluation metrics. Further analysis shows that
the success of RWRB is benefited from IGSN which has a wider coverage and higher reliability comparing with current
PPI networks. Moreover, we conduct a comprehensive case study for Alzheimer’s disease and predict some novel
disease genes that supported by literature.

Conclusions: RWRB is an effective and reliable algorithm in prioritizing candidate disease genes on the genomic
scale. Software and supplementary information are available at http://nclab.hit.edu.cn/~tianzhen/RWRB/.
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Background
Prioritization of candidate disease genes is a fundamental
challenge in human health with applications to understand
disease mechanisms, diagnosis and therapy [1–5]. Many
human diseases are complex and polygenic, involving
linking genomic variation to clinical phenotype. Traditional
linkage analyses and association study have conducted sus-
ceptible genomic interval in the chromosomes [6–8].

However, since the susceptible locus may contain several
hundreds of genes, computational approaches are widely
accepted to further infer causal genes that are associated
with interested diseases [9–11].
Given a disease and its disease genes, the target of

prioritization is usually to measure the similarity bet-
ween candidate genes and the disease genes [1, 12, 13].
It is generally believed that it is the abnormal expression
of disease genes that lead to the diseases happen. The
disease genes are also called causal genes or disease
related genes for the diseases sometimes. Many methods
which take the “guilt by association” principle have been
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proposed to prioritize candidate genes based on a com-
prehensive range of biological information [10, 14–21].
They are devoted to fully characterize genes (or corre-
sponding gene products), to measure the similarity
between known disease genes and candidate genes more
precisely and reliably. These methods are usually called
feature-based methods [22]. The metric of similarity is
generally based on sequence-based features of genes
[23–25], functional annotation of genes [13, 26, 27] and
protein-protein interaction data [28, 29]. The ultimate
goal is to discriminate disease genes and non-disease
genes based on certain characteristics of genes [30, 31].
More recently, many methods [32–38] make use of

phenotype similarity between diseases to prioritize candi-
date disease genes [39, 40]. This is because phenotypic
similarity of diseases can help increase the total number of
known disease genes for less studied disease phenotypes
[41]. The underlying assumption for these methods is that
similar phenotypes are caused by functionally related
genes [12, 42]. These methods are usually called similarity-
based methods [22]. Lage [2] built a Bayesian model based
on PPI network and phenotype similarity network, and
then prioritized the candidate genes with the help of can-
didate protein complex. Kohler [32] first grouped diseases
into families and then employed a random walk from
known disease genes in its family to prioritize candidate
genes. Later, Wu [33] put forward a regression model,
named CIPHER, to exploit phenotype-gene associations.
More recently, Li [35] first constructed a heterogeneous
network by making the best use of the phenotype simila-
rity network and gene network as well as the phenotype-
gene relationship information. Then they employed the
random walk model, called RWRH, to infer disease genes.
Most methods for prioritizing candidate disease genes

above mainly rely on PPI networks. However, current
PPI networks mainly have two shortcomings. One is that
the coverage of the available PPI networks is typically
low [29, 43, 44]. Since the curated physical interactions
are generally preferred, they often lead to insufficient
coverage in human genome [45]. This may result in a
serious problem that some known disease genes cannot
be mapped into the PPI networks. To address this issue,
several researchers [6, 46–48] have attempted to con-
struct gene semantic similarity network. For instance, Li
[6] employ a random walk with restart algorithm on the
multigraphs, which merges various genomic networks to
enlarge the range of candidate genes and increase the
noise tolerance of networks. However, these different
genomic networks do not integrate indeed. The weights
assigned to different networks are also difficult to
confirm.
The other is the low reliability of PPI networks [49].

Since a single data source is prone of bias and incom-
pleteness, integration of various genomic data sources is

highly demanded for the study of disease gene prio-
ritization [6, 10, 50, 51]. Although multiple data sources
are available, most methods only access one or two of these
databases, which all have their limitations. Chen [52]
proposed a method, called BRIDGE, which utilize a mul-
tiple regression model with lasso penalty to prioritize the
candidate genes by integrating disease phenotype similarity.
Zhang [53] adopted a Bayesian regression approach to
integrate multiple PPI networks. The approach takes the
strength of association between a query disease and a
candidate gene as a score to prioritize candidate genes.
However, to the best of our knowledge, constructing and
integrating multiple gene similarity networks for prioriti-
zing disease genes has not been investigated well. As a
result, there is still a need for the improvement in these
disease gene prioritization methods.
Motivated by the observations above, we proposed the

random walk with restart on phenotype-gene bilayer
network (RWRB) algorithm to prioritize candidate genes
of diseases. We firstly construct five individual gene
similarity networks based on genomic data of genes.
Then we obtain an integrated gene similarity network
(IGSN) via the similarity network fusion (SNF)
method. After that, combining the phenotype similarity
network, phenotype-gene association network and
IGSN, a phenotype-gene bilayer network is constructed.
In the end, we employ the RWRB algorithm on the
phenotype-gene bilayer network and prioritize candidate
disease genes on the whole genomic scale. On the
benchmark datasets, RWRB performs better than other
leading approaches. The framework of our proposed
method is shown in Fig. 1. It is noteworthy that, to take
advantage of more abundant genome data related to
genes, we treat sequence and domain similarity between
proteins as the similarity between their corresponding
protein-coding genes. Therefore, the similarity between
genes or proteins is collectively called gene similarity to
simplify in this article.

Methods
Datasets
Phenotype similarity network
In OMIM database, a phenotype is defined as a MIM
record. The similarity between phenotypes has been
calculated by text mining of MIM records [54]. We
downloaded the phenotype similarity network [39],
which contains pairwise similarity scores for 5080
phenotypes, covering the majority of recorded human
phenotypes in this database.

Phenotype-gene association network
The phenotype-gene relationship data is downloaded from
the OMIM database (http://omim.org/). After filter out
phenotypes which do not belong to the phenotype
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similarity network above and have no known disease genes,
we collect 2133 phenotypes and 1893 disease genes involv-
ing 2386 phenotype-gene associations totally.

Gene data
Gene Ontology (GO) and Gene Ontology Annotation
(GOA) data of human is download from the GO website
(http://geneontology.org, dated November 2, 2015). The
numbers of annotated genes in cellular component
(CC), molecular function (MF) and biological process
(BP) ontologies are 16,938, 18,225, and 17,072, respec-
tively. Here, we consider all types of annotations which
contains Inferred from Electronic Annotations. Amino
acid sequences of proteins are obtained from the UniProt
database [55]. The number of protein sequence in human
database is 18,830. Domains of proteins are downloaded
from PFAM database (http://www.sanger.ac.uk/Software/
Pfam) [56]. Here, we only collected Pfam-A, a collection
of manually curated and functionally assigned domains,
instead of Pfam-B, which is computationally derived
collection of domains, to ensure accuracy in measuring
the similarity between proteins. The number of human

proteins annotated by Pfam-A is 18,523 involving 5333
kinds of domains in this database.

Construction of gene similarity networks based on genomic
data of genes
Constructing gene functional similarity networks based on
gene ontology
GO is a standardized and controlled vocabulary to de-
scribe genes and gene product attributes. It comprises
three orthogonal ontologies: CC, MF and BP, respec-
tively. In our research, CC, MF and BP ontology has
3817, 9943 and 27,864 terms, respectively.
Functional similarity between genes can be inferred

from the semantic relationships of their GO terms
[51, 57]. In this work, the functional similarity
between two genes is measured by Wang method
[58] taking BMA strategy because of its an outstand-
ing performance. For the sake of three ontologies are
independent, the functional similarity between genes
can be measured from three different ontologies.
Therefore, we obtain network on CC, MF and BP
ontology, respectively.

Fig. 1 The flow chart of the proposed method
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Constructing protein similarity network based on protein
sequence
We used bitscores calculated by the Basic Local Alignment
Search Tool (BLAST) to create our sequence homology
dataset. First of all, we performed an all-versus-all compari-
son between proteins with an expectation-value threshold
of 10−6. Then, the similarity between proteins was norma-
lized according to their corresponding bitscores of
proteins. Then, applying this operation to all protein pairs,
we got the similarity network of protein sequences.

Constructing protein similarity network based on
protein domains
We calculated the Jaccard scores [59] between protein
domain set as domain similarity of proteins. The Jaccard
score between proteins p1 and p2 is defined as Dp1∩Dp2=

Dp1∪Dp2 , which is the ratio of the number of common
domains between p1 and p2 over the total number of
domains in p1 and p2. Dp denotes the domain set of
proteinp. There are totally 18,526 proteins involving

5333 kinds of domain used in our analysis. Applying this
operation to all protein pairs, thus we constructed a
domain similarity network.
The overlap among the five aspects of annotation

information about genes (proteins) above is unexpec-
tedly large, as shown in Fig. 2. Numbers in the figure
denote the number of genes that annotated by the
corresponding information in each part, where CC,
MF and BP denote corresponding annotations of genes.
Seq and Domain denote amino acid sequences and
domain of proteins.

Integrating gene similarity networks based on SNF
method
We have constructed five gene similarity networks based
on BP, CC, MF, sequence and domain information of
genes. In this subsection, we will employ SNF method
[60] to integrate these five networks.
Suppose W(m) (here m = 1,2,3,4,5) denotes one of the

adjacent matrices of gene similarity networks, we use

Fig. 2 A brief statistic about the number of genes (proteins) annotated by the corresponding information
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Eq. (1) to compute the normalized weighted matrix of
W(m), which can be defined as:

P mð Þ
ij ¼

W mð Þ
ij
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The normalization used here is free of the scale of
self-similarity in the diagonal entries. It can avoid nu-
merical instabilities and ∑jP(i, j) = 1 still holds.
At the same time, we define the local kernel matrix

S mð Þ
i;j , which is calculated by Eq. (2)
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where V mð Þ
i denotes a set which contains K nearest neigh-

bors of gene i in the matrix W(m). Since local similarities
(high values) are more reliable than remote ones, we filter
out the low similarity neighbors and set these similarities
to zero. The K most similar genes for each gene in the
networks are preserved. The local neighborhoods are
further exploited to measure the local affinities among
genes [61]. Therefore, S(m) keeps the local structure ofW(m).
In summary, P(m) carries the full information about

the similarity of each gene to all others, whereas S(m)

only encodes the similarity to the K most similar genes.

Here, P(m) and S(m) are called status matrices and kernel
matrix [60], respectively.
To fuse the similarity networks, SNF takes the inter-

active process of the following update equation:

P mð Þ
tþ1 ¼ S mð Þ � 1

M−1

X
n≠m

P nð Þ
t

 !
� S mð Þ
� �T

ð3Þ

where m is the index of corresponding adjacent matrices
of similarity networks, and t is the iteration number. It
should be noted that we perform normalization on P mð Þ

tþ1
as in Eq. (1) after each iteration. Another way to think of
the updating rule (3) is

PðmÞ
tþ1ði; jÞ ¼

X
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X
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ðmÞ
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Because the similarity information is only propagated
through the common neighborhood between genes, SNF
is robust to noise existing in genome data. Besides, if
two genes gi and gj have common neighbors in all of
similarity matrices, it should be well believed that they
have the high similarity. What’s more, SNF benefits the
fact that even if gi and gj are not very similar in one data
type, their similarity can be measured in another data
type and this similarity information can be propagated
through the fusion process [60, 62]. The illustrative
example for fusing two networks based on SNF is
shown in Fig. 3.

Fig. 3 Illustrative example of SNF steps. (a) Gene-gene similarity matrices based on CC and MF ontology, respectively. (b) Gene functional similarity
networks. Genes are represented by nodes and pairwise similarities between genes are represented by edges. (c) Network fusion by SNF updates
iteratively, making them more similar with each step. (d) The iterative network fusion results in convergence to the final integrated network. Edge color
indicates which data type has contributed to the given similarity

The Author(s) Journal of Biomedical Semantics 2017, 8(Suppl 1):32 Page 31 of 79



Finally, after t steps of iteration, these five matrices
will converge to a single integrated matrix, which can be
computed as:

P ¼ 1
M

XM
m¼1

Pt
ðmÞ ð5Þ

We obtain the primary integrated gene similar network
in this step.

Clustering coefficient-based threshold selection
The five gene similarity networks are fused as a primary
integrated gene similar network, whose nodes represent
the genes and edges represent the similarity between
genes. However, there is still a serious problem needing to
be addressed that how similar between two genes can be
connected in the network. Because most molecular
networks follow a power law or lognormal distribution
[12], we should set an appropriate threshold to ensure that
the primary integrated gene similarity network meets this
demand. The similarity between genes which is greater
than the proper threshold will be connected by edges.
Otherwise, the similarity will be set to zero [46]. In this
research, we adopt the clustering-coefficient-based
threshold selection method to select a proper threshold
for the primary integrated gene similarity network.
The clustering coefficient of a gene i in the network is

defined as:

Ci ¼ 2Ei

ki ki−1ð Þ ð6Þ

where Ei represents the number of edges between the ki
(>1) first neighbors of gene i. The clustering coefficient
of a network is defined as the average clustering
coefficient of its all nodes.

C ¼ 1
K

X
ki>1

Ci ð7Þ

where K denotes the total number of nodes in the
network.
The threshold selection for a network can be regarded

as a process, where edges are removed from the initially
complete graph by gradually increasing the similarity
threshold between genes. For each threshold r, we can
construct a network by the means of filtering out the
similarity lower than the threshold r. It is generally
believe that the clustering coefficient of molecular net-
works, denoted byC(r), should be significantly higher
than the that of the corresponding random network,
which is denoted by C0(r).
Therefore, we formulate a discrete optimization prob-

lem, in which the cutoff threshold should meet the
demand

C� ¼ min
j

rj : C rj
� �

−C0 rj
� �

> C rjþ1
� �

−C0 rjþ1
� �� �

ð8Þ

over a set of thresholds 0 = r0 < r1 < ⋯ < rj − 1 < rJ = 1. In
Eq. (8), rj + 1 = rj + 0.001; C(r)and C0(r) denote the
clustering coefficients of the gene similarity network and
the corresponding random network at the threshold r,
respectively. The aim of this procedure is to find the first
local maximum, which means the first stop of monoton-
ically increasing of C(rj) −C0(rj).
On the other hand, the clustering coefficient of a

corresponding random network is determined by

C0 ¼
k
�2

−k
� �2

k
�3N

ð9Þ

where N is the total number of nodes in a network,
k
� ¼ 1=N

PN
i¼1ki k

2� ¼ 1=N
PN

i¼1k
2
i .

Finally, after threshold selection for the primary
integrated gene similarity network, the IGSN that we
need is constructed. It is represented as G(V, E, t), where
V = { g1, g2, ⋯ , gN} denotes the genes involving in IGSN,
and E = {eij = ≺ gi, gj ≻ |sim(gi, gj) > t} represents the edges
between genes with values greater than threshold t.

Construction of the phenotype-gene bilayer network
We have got three networks, which are phenotype
similarity network, IGSN and phenotype-gene association
network respectively. In this subsection, we make use of
the three networks above to construct a phenotype-gene
bilayer network. The construction process of phenotype-
gene bilayer network is illustrated in Fig. 4.
Suppose AP(m ×m), BGP(m × n) and WG(n × n) are

adjacency matrices for phenotype similarity network,
phenotype-gene association network and IGSN respect-
ively, where m and n represent the number of pheno-
types and genes in their respective networks. The
adjacency matrix of the phenotype-gene bilayer network
is denoted as

A ¼ AP BGP

BPG WG

� 	
(10)

where BGP is the transpose of BPG.

Prioritizing candidate disease genes based on RWRB
The RWRB is a ranking algorithm, which simulates a
random walker moving from the seed nodes to their
immediate neighbors randomly and staying at the
current node(s) based on the probability transition
matrix [32, 63]. As for a random walk on the bilayer
network, we first construct the transition matrix M
based on matrix A, which is defined as

The Author(s) Journal of Biomedical Semantics 2017, 8(Suppl 1):32 Page 32 of 79



M ¼ λMP 1−λð ÞMGP

1−λð ÞMPG λMG

� 	
ð11Þ

where MP, MGP and MG are the row-normalizing matri-
ces of AP, BPG and WG respectively; λ controls the
jumping probability between two similarity networks,
which are phenotype similarity network and IGSN. Then
the initial vector P(0) (at t = 0) can be defined as
follows:

P 0ð Þ ¼ 1−ηð Þu 0ð Þ
ηv 0ð Þ

� 	
ð12Þ

where u(0) and v(0) denote the initial probability vector
for phenotype similarity network and IGSN. The param-
eter η ∈ (0, 1) is used to weight the importance of pheno-
type similarity network and IGSN. The effect of the
parameters λ and η on RWRB will be shown in the result
section. P(t) represents a vector in which the i-th element
holds the probability of finding the random walker on
node i at step t.
Based on the vector P(0), P(t) and the transition

matrix M, the probability vector at step t + 1 can be
given by

P t þ 1ð Þ ¼ 1−γð ÞMTP tð Þ þ rP 0ð Þ ð13Þ
where γ ∈ (0, 1) indicates the restart probability. At each
step, the random walker has a probability γ to return the
seed nodes.

After some steps, the walking process is converged if
the change between P(t) and P(t + 1) is lower than 10−6.

The steady probability P(∞) is represented as P ∞ð Þ

¼ 1−ηð Þu ∞ð Þ
ηv ∞ð Þ

� 	
. As a result, genes which belong to the

control set are ranked according to their probability
scores in P(∞). Gene which has the maximum in P(∞)
among all the control gene set is considered as the most
probable gene that associates the phenotype.

Evaluation metrics of prediction performance
Phenotypes in OMIM database mainly have three types
[33, 35]: susceptible chromosomal locus and several
related disease genes are known; susceptible locus is
known, but no related genes are known; locus and re-
lated causal genes are unknown, but the phenotype is
known. Therefore, we use three leave-one-out cross-
validation experiments, i.e. linkage interval, genome-wide
scan and ab initio, which are detailedly introduced and
used in [35, 43], to validate our method.
Firstly, as for some phenotypes that susceptible

chromosomal locus and several related disease genes are
known, we take the cross validation against a linkage
interval experiment [43]. In each round of validation,
one phenotype-gene link is removed. We define the gene
associates with the removed link as the held out gene.
The phenotype and the rest disease genes related to this

Fig. 4 The construction process of phenotype-gene bilayer network

The Author(s) Journal of Biomedical Semantics 2017, 8(Suppl 1):32 Page 33 of 79



phenotype are used as the seed nodes. At the same time,
we define the control gene set that consists of the held
out disease gene and its 99 nearest genes according to
the NCBI refGene location. The performance of RWRB
is investigated by the capability to recover the held out
disease gene from the control gene set. We call this as
linkage interval experiment.
Secondly, since there are some phenotypes that

have no susceptible chromosomal locus but have
already experimental validated disease genes, we take
the validation against genes in the genome-wide scale.
In this experiment, we also remove a phenotype-gene
relationship and use the rest disease gene associated
with this phenotype as the seed nodes. Different to
linkage interval experiment, the control gene set
consists all the genes in the genome-wide scale except
the held out disease gene. The performance of RWRB
is investigated by the rank of held out gene in the
control gene set. We call this as the genome-wide
scan experiment.
Thirdly, as for some phenotypes without any known

disease genes and susceptible chromosomal locus, we
identify disease genes for these kinds of phenotypes from
the whole-genome scale. In this experiment, we first re-
move all the associations between this phenotype and its
disease genes, then run the RWRB algorithm which
treats this phenotype as seed node. In this situation, the
control gene set is defined as all the genes that in the
whole networks. Similar to genome-wide scan experi-
ment, the performance of RWRB is investigated by the
rank of held out gene in the control gene set. We call
this as ab initio experiment. The detail explanations for
the three approaches have been described by Li [35] and
Jiang [37].
At the same time, we also define three metrics to in-

vestigate the performance of RWRB. First is number of
successful predictions (NSP). For each experiment
above, in each round of validation, if the held out disease
gene is ranked as top 1 among the control gene set, we
consider it a successful prediction. Further, for a set of
validation runs in each experiment, we sum up the
number of successful predictions and treat it as a
metric that represents effectiveness of algorithms.
Second is the mean rank ratio (MRR), which is defined
as the average rank ratios of all held genes in control
gene sets in all validation runs. Third is the receiver op-
eration characteristic (ROC) curve. We plots the sensi-
tivity versus 1-specificity which subject to the threshold
separating the prediction classes [10]. Sensitivity refers
to the percentage of disease genes that are ranked above
a particular threshold, while specificity refers to the
fraction of control genes rank below the threshold. We
vary the threshold from 0.0 to 1.0 with the scale 0.01,
and draw the ROC curve. It is well accepted that smaller

MRR and larger AUC and NSP values indicate better
performance for a prioritization method [43].

Results
First of all, we will investigate the performance of RWRB
on three kinds of experiments. Then, we assess the effect
of parameters in RWRB algorithm. After that, the
proposed algorithm is compared with two similarity-
based methods, which are CIPHER [33] and RWRH [35]
and two feature-based methods which are PUDI [15]
and PriDiGe [14]. Finally, we predict novel causal genes
for Alzheimer’s disease and other common diseases
based on RWRB algorithm.

The performance of RWRB
In this subsection, we will investigate the performance of
RWRB on the three experiments using the three metrics.
The detail results are shown in Table 1. The ROC curves
on linkage interval and genome-wide scan experiments
are shown in Fig. 5.
As is shown in Table 1, the results of RWRB on NSP,

MRR and AUC metrics for linkage interval experiment
is 1384, 18.28, 0.8505, respectively. Then we further in-
vestigate the performance of RWRB on genome-wide
scan experiment and obtain a NSP of 311, a MRR of
22.17 and an AUC of 0.8417. In the end, we perform the
cross-validation approach against ab initio experiment.
The results on NSP, MRR and AUC are 223, 29.64 and
0.8144, respectively.
As is known to us, a random guess will yield a MRR of

50%, and an AUC of 50%, suggesting that the effective-
ness of RWRB in uncovering disease gene. Meanwhile,
the results also show the reliability of IGSN.
Then we further analyze the detail distribution of

disease genes ranked in the control gene set for linkage
interval and genome-wide scan experiment. The results
are presented in Fig. 6. As for linkage interval experi-
ment, we find that there are 1554 disease genes ranking
in top 10, where 1384 disease genes are rank one. 230
disease genes are ranked between 11 and 20, and 157
disease genes are ranked between 30 and 50.
As for genome-wide scan experiment, there are 498

disease genes ranking between 1 and 10. The number of
disease genes between 11 and 50 is 422. As we can see
from the results, most of held out genes can be rank in
top 100. The results on three experiments demonstrate

Table 1 The results of RWRB on the three experiments

Experiment NSP MRR AUC

Linkage interval 1384 18.28 0.8505

Genome-wide scan 311 22.17 0.8417

ab initio 223 29.64 0.8144
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that RWRB has a high accuracy in inferring disease
genes on the genomic scale.

Effect of parameters on RWRB
There are totally three parameters in RWRB, which are
γ λ and η. The parameter γ denotes the restart probabil-
ity in Eq. (1). It has been well accepted that the param-
eter γ has a slight effect on the results and here we fix it
at 0.7 [35]. Next, we will investigate the influence of
parameter λ and η for RWRB on the NSP metric.
The parameter λ represents the jumping probability

between phenotype similarity network and IGSN.
According to [35], larger λ will introduce more mutual

information between phenotype similarity network and
IGSN. To investigate the effect of this parameter on the
performance of RWRB, we tested our algorithm on
different values of λ ranging from 0.1 to 0.9 with an in-
crement of 0.1.
Results are shown in Table 2. The performance is im-

proved with the increase from 0.1 to 0.6 on the whole.
However, the performance is slightly decreased from 0.6
to 0.9. As for the linkage interval experiment, RWRB
gets the best performance at λ = 0.6, while RWRB gets
the largest NSP at λ = 0.7 on the genome-wide scan
experiment. The best results for ab initio experiment is
225 when λ = 0.6. Therefore, we suggest that the best λ

Fig. 5 ROC curves of RWRB on linkage interval and genome-wide scan experiments

Fig. 6 The distribution of disease genes ranked in top 100
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value is 0.6 or 0.7 for RWRB on the experiments above.
Results demonstrate that the RWRB algorithm success-
fully makes the best use of the relationships between
phenotype similarity network and IGSN.
As is known to us, η controls the impact of seed phe-

notypes and seed genes in the initial vector. To validate
the effect of parameter η on RWRB, we tested our
algorithm on different values of η ranging from 0.1 to
0.9 with the scale 0.1. We run RWRB on linkage interval
and genome-wide scan, ab initio experiments, and evalu-
ate its performance on the NSP metric. As is shown in
Table 3, the performance is improved with the increase
from 0.1 to 0.6 on both experiments. However, the per-
formance is slightly decreased from 0.6 to 0.9. As a re-
sult, the algorithm performs best when η at 0.6. This
suggests that IGSN is more importance than phenotype
similarity network for RWRB.

Comparison with similarity-based methods
We compare RWRB with similarity-based methods
which are RWRH [35] and CIPHER [33], respectively.
The author [33] defines two topological distance on the

basis of two different neighborhood systems: shortest
path (SP) and direct neighbor (DN). Therefore, two ver-
sions of CIPHER are represented as CIPHER-SP and
CIPHER-DN, respectively. The results of each method
on NSP metric are presented in Table 4.
Because the number of phenotype-gene associations in

RWRB, CIPHER and RWRH models are different, we
compute the successful prediction percentages for each
method, which is defined as the ratio between NSP and
the total phenotype-gene associations in their corre-
sponding datasets. The experimental results are listed
in Table 5.
As for the linkage interval experiment, RWRB gets 1384

successful predictions, while RWRH, CIPHER-SP and
CIPHER-DN obtain 814, 709, 765 successful predictions,
respectively. The percentage of successful prediction for
RWRB is 0.58 which is the highest in all three methods.
As for the genome-wide scan experiment, the control

gene set is defined as the whole genes in IGSN. RWRB
get 311 successful predictions, while RWRH, CIPHER-
SP and CIPHER-DN obtain 245, 153, 165 suc cessful
predictions, respectively. Then number of successful pre-
dictions of RWRB is largest in the three methods. How-
ever, the percentage of successful predictions for RWRB
is 0.13 which is lower than that of RWRH (0.17).
On the ab initio experiment, there are 223 successful

predictions by RWRB, while RWRH, CIPHER-SP and
CIPHER-DN successfully predicted 201,140 and 157
cases, respectively. However, the percentage of successful
predictions of RWRH is the highest in the three
methods which is 0.14, whereas the other three methods
are almost neck and neck.

Comparison with feature-based methods
At the same time, we compare RWRB with two feature
based methods which are PUDI [15] and PriDiGe [14].
Here we only compare the precision (p), recall (r) and F-
measure (F) of these three methods, since they are from
different type of methods.
The metrics about precision, recall and F-measure for

PUDI and ProDiGe have been introduced by Yang [15].
Here, we will also use these metrics to evaluate the per-
formance of RWRB on linkage interval experiment. In
the experiment, we take the leave-one-out cross-validation
method. For the precision of RWRB, we define it as

Table 2 Performances of RWRB at different values of λ on
NSP metric

λ Linkage interval Genome-wide scan ab initio

0.1 1306 295 165

0.2 1320 299 169

0.3 1337 304 181

0.4 1349 309 209

0.5 1384 311 223

0.6 1393 317 225

0.7 1386 319 211

0.8 1361 308 206

0.9 1357 304 174

To validate the effect of parameter λ on RWRB at different values, we fix η at
0.5. Best results are in bold

Table 3 Performances of RWRB at different values of η on NSP
metric

η Linkage interval Genome-wide scan ab initio

0.1 1286 299 175

0.2 1310 307 187

0.3 1344 310 193

0.4 1368 310 206

0.5 1384 311 223

0.6 1392 319 227

0.7 1391 317 217

0.8 1378 315 203

0.9 1354 306 172

To we validate the effect of parameter η at different values, we fix λ at 0.5.
Best results are in bold

Table 4 The performance of each method on the NSP metric

Algorithms Linkage interval Genome-wide scan ab initio

RWRH 814 245 201

CIPHER-SP 709 153 140

CIPHER-DN 765 165 157

RWRB 1384 311 223

Note: Best results are in bold
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the ratio between NSP and the number of all validation
runs. For the recall of RWRB, we define it as the ratio be-
tween the number of the held out genes whose rank pro-
portions are higher than 0.5 and the number of all the
held out genes. The F-measure is the harmonic mean of
precision and recall, which is defined as F = 2∗p∗r/(p + r).
The results for PUDI, ProDiGe and RWRB are shown

in Table 6. From the results, we can find that RWRB
achieves 82.3% recall and ranks first in the three
methods. Method PUDI wins 72.3% precision which is
13.7 and 0.9 better than RWRB and ProDiGe method,
respectively. At the same time, method PUDI achieves
76.5% F-measure which is 2.0% and 10.2% better than
RWRB and ProDiGe method, respectively. In this group
experiment, method PUDI performs best and RWRB
ranks second overall.

Prioritizing Alzheimer’s disease and other common
disease genes by RWRB: A case study
In this subsection, we will use RWRB to predict novel
causal genes of interested diseases. To validate the
effectiveness of our method, we will check whether our
predicted disease genes have been already found to
associate with the diseases in literature. Here, we select
16 multifactorial diseases which are used in [37] and list
the top 10 candidate genes for each disease. The results
are shown in Table 7. Here, we only select Alzheimer’s
disease (AD) as the case study to verify the performance
of RWRB.
AD is a progressive disease that usually starts slowly

and gets worse over time. In general, it causes 60% to
70% of cases of dementia. The cause of AD has not been
completely understood so far. The primary task is to
discover the disease genes to understand the nosogenesis
of genetic disease. There are many phenotypes for AD.
Here we select 104,300 as target phenotype to prioritize

disease gene. The corresponding susceptible region for
MIM:104,300 is 6p22.
As is shown in Table 7, the first prediction of RWRB

for MIM:104,300 is NOS2, which plays an important
role in neuroinflammation by generating nitric oxide
(NO), a critical signaling and redox factor in the brain
[64]. Further, the levels of NO fall in the brain to a
threshold may promote Aβ mediated damage. The
predicted gene NOS2 has a large impact on AD. The
second prediction gene for MIM:104,300 is NOS1. In
the brain and peripheral nervous system, nitric oxide
displays many properties for a neurotransmitter. The au-
thor [65] suggests that short alleles of the NOS1 exon
1f–VNTR interacting with the epsilon 4 allele tend to
markedly increase the AD risk [65]. The fourth predicted
gene for AD is APBB1. A trinucleotide deletion of the
APBB1 gene was a factor protecting against late-onset
AD. Cousin [66] reported the results of a case/control
study and confirmed this relationship. The eighth predic-
tion is gene PGBD1. It locates at 6p22 which is the sus-
pectable region of MIM:104,300. What’s more, it currently
shows significant association in AlzGene according to
Genome-wide association study. Its gene product is spe-
cifically expressed in the brain and has been identified as
the key factors of AD. The results above show that the
combination of the similarity network integration and the
identification algorithm can successfully predict candidate
genes for interested disease.

Conclusions and discussion
In this paper, we propose a novel method, named RWRB,
to infer causal genes of interested diseases. We firstly con-
struct five gene similarity networks based on five different
types of genome data. Then we employ SNF method to in-
tegrate these gene similarity networks and get IGSN. After
that, we perform RWRB to prioritize disease genes. RWRB
is compared with the state-of-the-art models and achieves
a better performance on most evaluation metrics. Next,
we will discuss the highlights of this article.

The advantages of IGSN
The main object of our research is to overcome two draw-
backs of current PPI networks, i.e., their low reliability and
coverage. As a result, we construct the IGSN in this re-
search. Firstly, since IGSN is fused based on the five gene
(protein) similarity networks, its reliability should be higher
than existing that of PPI networks. The prioritization of dis-
ease genes can be benefited from IGSN. Secondly, IGSN
can significantly improve the coverage of human genes
comparing current PPI networks. It covers 19,065 genes,
which is twice the number of genes in HPRD network.
Therefore, the number of phenotype-gene associations in
RWRB algorithm is 2386, which is almost twice that in
RWRH and CIPHER methods whose number is 1444. As a

Table 5 The successful prediction percentages for each method

Algorithms Linkage interval Genome-wide scan ab initio

RWRH 0.56 0.17 0.14

CIPHER-SP 0.49 0.11 0.10

CIPHER-DN 0.52 0.12 0.11

RWRB 0.58 0.13 0.09

Note: Best results are in bold

Table 6 Overall comparison among different methods

Methods Precision Recall F-measure

PUDI 72.3 81.0 76.5

ProDiGe 72.4 75.9 74.1

RWRB 58.6 82.3 69.4

Note: Best results are in bold
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result, the proposed method can make the best use of
phenotype-gene associations in OMIM database. Thirdly,
since IGSN is a single network which integrates multiple
gene similarity networks, there is no need for it to assign
weight values to different subnetworks.

Threshold selection for IGSN
The threshold selection is very important to the quality
of IGSN. This is because the threshold affects reliability
of IGSN, and may further determine the performance of
RWRB. As shown in Fig. 7, the first stop of

Table 7 Top-10 predicted causal genes of 16 multifactorial diseases

Phenotype name Phenotype ID Top ten predictions for each phenotype by RWRB

Alzheimer’s disease 104,300 NOS2 NOS1 APBB3 APBB1 EPX LPO APLP1 PGBD1 POR MTRR

Breast cancer 114,480 RB1 PTEN AR TP63 TP73 SDHD BUB1B GNAS PHB2 TSC1

Colon cancer 114,500 RB1 PTEN SDHD BRCA1 MLH1 MSH2 BRCA2 CREBBP TP63 TP73

Diabetes mellitus 125,853 INSR APOA5 VDR HMGA2 SLC2A2 LPL GHR INS USF1 LMNA

Gastric cancer 137,215 IL36A IL36G IL1A IL1F10 IL37 IL36B IL36RN APC IL18 MSH2

Atrial fibrillation 147,050 WAS SELL PAFAH2 SELE TIMD4 HAVCR2 IL13 IKBKG TNFRSF13B ICOS

Prostate cancer 176,807 HIP1R BRCA1 TP53 STK11 FGFR3 ZFHX4 SDHD RNASEL PRODH MSH2

Schizophrenia 181,500 SYN3 SYN1 MAPT DDO PRNP CHI3L2 APOL3 CHIA CHIT1 APOL1

Leukemia 190,685 FLNA FGFR2 RET GLI3 NF1 COL1A1 COL2A1 EVC TBX1 FLNB

Lung cancer 211,980 TP53 CDKN2A RB1 SDHD NRAS CYP2D6 BRCA1 CYLD DICER1 PTEN

Zellweger 214,100 FGFR2 FLNA COL2A1 MECP2 FGFR3 FLNB TP63 GLI3 GJA1 COL11A1

Leukemia 253,310 SMN1 GBA LMNA VAPB ATP7A ALS2 COL6A2 BSCL2 DCTN1 COL2A1

Asthma 600,807 IL2RG SCGB1D2 SCGB1D4 SCGB1D1 PAFAH2 SBDS WAS IGHM HPS1 ALOXE3

Leukemia 601,626 BCR PDGFRB PRF1 KMT2A BRCA2 MPL MLLT1 MCL1 MLLT6 RPS14

Obesity 601,665 FFAR4 GNAS SLC6A14 ASIP ENPP3 SDC1 ENPP2 SDC2 SDC4 MLN

Tuberculosis 607,948 CD2AP C5 SCNN1B CFTR TICAM2 FAM218A TLR1 TLR4 TLR6 SOCS2

Note: Predicted disease genes which are supported by literature are in bold for Alzheimer’s disease

Fig. 7 Cluster coefficient under each threshold for primary integrated gene similarity network. Black arrow points to the first peaks of the curve
and rectangular boxes show the corresponding threshold value. Red curve represents the cluster coefficient of the primary integrated gene similarity
network (CCP), and green curve denotes the cluster coefficient of the corresponding random network (CCR) at different thresholds. Blue curve depicts
the difference of cluster coefficient (DCC) between the two networks above. In this experiment, we select the best threshold at r = 0.005, and
construct IGSN based under this threshold
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monotonically increasing of DCC (See legend of Fig. 7)
occurs at r = 0.005, which indicates that this threshold is
the most appropriate value to construct IGSN. Under
this threshold, the IGSN has 19,065 genes in our
experiment.
We further investigate the degree distributions of

IGSN under the selected threshold. Many previous
studies [67] have found that distribution of node con-
nectivity of molecular networks follows a power law.
However, some other research [68] argued that there are
some distributions, such as the lognormal distribution,
which can also depict the degree distribution better than
power law. In this research, we employ two models,
which are Gaussian distribution and Lognormal distribu-
tion, to investigate the distributions of IGSN. In order to
increase contrast, we import two other leading PPI
networks, which are BioGRID and HPRD networks.

The fitting performance on the distributions for each
network is represented by R-squares (R2). R2 provides a
measure of how well the data fits a certain model. As is
shown in Fig. 8, we find that the degree of IGSN fits the
lognormal distribution best, while BioGRID and HPRD
prefer to fit the power law distribution. As is shown in
Fig. 8 (c) and (d), the R2 results of IGSN for Gaussian
and Lognormal distribution are 0.87 and 0.94, respect-
ively. The R2 results of BioGRID and HPRD for fitting
Power law are 0.91 and 0.92, respectively, which are
shown in Fig. 8 (a) and (b). The degree distribution re-
sult shows that IGSN has the characteristics of molecu-
lar networks, rather than those of random networks.
Therefore, IGSN is a meaningful biological network.
In the future, our research should further be improved

from the following aspects. First, other genomic data of
genes needs to be integrated. Although we have

Fig. 8 The graphic view of degree distribution fitting results for BioGRID (a), HPRD (b) and IGSN (c, d). According to their performance on R2, the
results for IGSN fitting the Gaussian and Lognormal distribution are 0.87 and 0.92, shown with (c) and (d) respectively, while the results for
BioGRID (c) and HPRD (d) are 0.91 and 0.92 respectively
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measured the similarity between genes based on five
types of genome data, other information of genes is
needed to be integrated to the similarity networks.
Second, how to fuse the different similarity networks
properly is important to the ultimate integrated network.
Many previous studies have attempted to integrate
different semantic similarity network and gene expression
networks. However, some methods only assign equal
weighted to these networks and simply add them together,
while some others apply these networks separately. The
SNF method used in this article may overcome the draw-
backs above. However, the identification of the integrated
network is not a trivial assessment because there is no dir-
ect way to ascertain its rationality and correctness. In our
research, we resort to degree distribution of integrated net-
work and find it fit the lognormal distribution best. This
only shows the rationality from one property of the inte-
grated network. Therefore, we need to study more fused
methods of network further and make the integrated net-
work be in line with the characteristics of biological
networks.
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