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Abstract 

Natural products represent a prominent source of pharmaceutically and industrially important agents. Calculating 
the chemical similarity of two molecules is a central task in cheminformatics, with applications at multiple stages of 
the drug discovery pipeline. Quantifying the similarity of natural products is a particularly important problem, as the 
biological activities of these molecules have been extensively optimized by natural selection. The large and structur-
ally complex scaffolds of natural products distinguish their physical and chemical properties from those of synthetic 
compounds. However, no analysis of the performance of existing methods for molecular similarity calculation specific 
to natural products has been reported to date. Here, we present LEMONS, an algorithm for the enumeration of hypo-
thetical modular natural product structures. We leverage this algorithm to conduct a comparative analysis of molecu-
lar similarity methods within the unique chemical space occupied by modular natural products using controlled 
synthetic data, and comprehensively investigate the impact of diverse biosynthetic parameters on similarity search. 
We additionally investigate a recently described algorithm for natural product retrobiosynthesis and alignment, and 
find that when rule-based retrobiosynthesis can be applied, this approach outperforms conventional two-dimen-
sional fingerprints, suggesting it may represent a valuable approach for the targeted exploration of natural product 
chemical space and microbial genome mining. Our open-source algorithm is an extensible method of enumerating 
hypothetical natural product structures with diverse potential applications in bioinformatics.
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Background
Quantifying the molecular similarity of chemical struc-
tures is a central task in cheminformatics [1, 2]. The 
assumption that similar molecules are more likely to have 
similar biological or physicochemical properties than 
dissimilar ones [3] underlies the diverse applications of 
molecular similarity calculations in drug discovery, par-
ticularly in ligand-based virtual screening and medici-
nal chemistry, but also in toxicology, chemogenomics, 

and pharmacology. Consequently, a large and diverse set 
of methods for the efficient abstract representation of 
chemical information is available. Although both one-
dimensional and three-dimensional descriptors have 
been developed, two-dimensional molecular fingerprint 
algorithms, which decompose a chemical graph into a 
sequence of bits, remain the most common method for 
representing structural information in the context of 
assessing molecular similarity [4]. Once generated, chem-
ical fingerprints can be rapidly compared to one another 
with the widely used Tanimoto coefficient, or one of sev-
eral other distance metrics [5], in order to quantify the 
similarity of any two chemical structures.

A number of publicly available datasets [6–8] have 
been developed for use in benchmarking studies, and 
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several groups have compared the performance of exist-
ing two-dimensional chemical fingerprint algorithms on 
these benchmark datasets [9–12]. A recent review con-
cluded that, while commonly used fingerprinting algo-
rithms have similar performances, circular fingerprints 
generally perform best [4]. Several studies have also con-
cluded that two-dimensional similarity search methods 
outperform three-dimensional methods [12]. A number 
of groups have additionally investigated the performance 
of several distance (or similarity) metrics [5, 13–15], or 
combinations thereof [16–18], used to compare chemical 
fingerprints. These results generally validate the popular-
ity of the Tanimoto coefficient.

Despite these extensive analyses of the performance 
of molecular descriptors and distance metrics, no com-
parative analysis of the performance of chemical finger-
printing algorithms on the unique and diverse scaffolds 
of natural products has to date been reported. Natu-
ral products and their derivatives represent a histori-
cally invaluable source of industrial and pharmaceutical 
agents, and the basis for the majority of approved small 
molecule clinical drugs [19]. These complex small mol-
ecules are biosynthesized from simple metabolic build-
ing blocks by large, multi-domain enzymes or enzyme 
complexes in combinatorial strategies [20]. Quantifying 
chemical similarity is therefore a particularly important 
task for natural products due to their potent biological 
activities. In particular, the ability to cheminformatically 
determine whether a molecule is a member of a known 
class of bioactive natural products—for instance, the 
glycopeptides or β-lactams—may facilitate the targeted 
exploration of chemical space. Moreover, the ability to 
reliably associate putative natural product structures 
generated by genomic structure prediction with known 
natural product classes could facilitate the targeted min-
ing of microbial genomes.

The large and structurally complex scaffolds of natu-
ral products distinguish them from synthetic agents. In 
particular, cheminformatic studies have reported that 
natural products have greater chemical diversity, greater 
molecular weight, greater three-dimensional complexity 
(including more rotatable bonds, more stereocenters, and 
a higher fraction of sp3 carbons), lower hydrophobicity 
and greater polarity, fewer aromatic rings, more heter-
oatoms, and more hydrogen bond donors and acceptors 
relative to synthetic agents [21, 22], and contain unique 
pharmacophores and ring systems [23, 24]. However, 
existing collections are biased towards synthetically 
tractable scaffolds [25] and by Lipinski’s ‘rule of 5’ phys-
icochemical parameters for orally bioavailable drugs [26], 
despite the fact that a significant proportion of approved 
natural product drugs violate these rules [27]. A recent 
analysis reported that only 17% of natural product ring 

scaffolds are present in commercially available screening 
collections [24]. Because of these disparities between nat-
urally occurring and commercially available chemistries, 
several new methods to chart natural product chemi-
cal space have been described [28–32]. However, in the 
context of new algorithm development to explore natural 
product chemical space, a rigorous assessment of existing 
methods for quantifying the molecular similarity of natu-
ral products is essential.

In order to investigate the performance of molecular 
similarity algorithms on natural product structures, we 
developed LEMONS (Library for the Enumeration of 
MOdular Natural Structures). LEMONS is a software 
package designed to enumerate hypothetical modular 
natural product structures, modify their monomer com-
position or tailoring reactions, and compare the original 
and modified structures using two-dimensional molecu-
lar fingerprints (Fig. 1, Methods). This method allows the 
definition of a true match between the original and modi-
fied scaffolds originating from the same in silico assem-
bly line. Consequently, the proportion of correct matches 
between original and modified structures can be derived 
for each fingerprint. In biosynthetic terms, this propor-
tion can be thought to represent the ability of a similarity 
search method to identify modular natural products aris-
ing from the same in silico enzymatic assembly line. We 
apply the LEMONS algorithm to investigate the perfor-
mance of 17 chemical fingerprints with respect to modu-
lar natural product structures, including linear and cyclic 
nonribosomal peptides, polyketides, and hybrids, with 
a diverse range of tailoring reactions and starter units. 
We additionally investigate the performance of GRAPE/
GARLIC [33], a recently described combination of algo-
rithms that execute in silico retrobiosynthesis of nonri-
bosomal peptide and polyketide natural products and 
comparative analysis of the resulting biosynthetic infor-
mation. Our results represent, to our knowledge, the first 
comparative analysis of the ability of molecular similarity 
algorithms to quantify the chemical similarity of natural 
products, and suggest important roles for both circular 
fingerprints and retrobiosynthetic approaches in the tar-
geted exploration of natural product chemical space and 
in genome mining for the identification of bioactive natu-
ral products.

Results
Modular natural products can be characterized by a 
number of structural or biosynthetic features, including 
the nature of the enzymatic assembly line responsible 
for their biosynthesis (nonribosomal peptide, polyketide, 
or hybrid), their size, the presence or absence of starter 
units, their pattern of macrocyclization, and the action of 
tailoring reactions such as glycosylation, thiazole/oxazole 
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formation, chlorination, or N-methylation. In order 
to evaluate the impact of each of these features in turn 
on chemical similarity search, we developed LEMONS 
(Library for the Enumeration of MOdular Natural Struc-
tures). LEMONS is a Java software package designed to 
enumerate hypothetical natural product structures given 
a user-determined set of biosynthetic parameters. Each 
hypothetical structure is subsequently modified by sub-
stituting one or more monomers, or by adding, removing, 

or changing the site of one or more tailoring reactions. 
The modified structure can then be compared to the 
entire library of original structures, using a two-dimen-
sional fingerprint or another chemical similarity method. 
A correct match is scored if the modified structure dis-
plays greater chemical similarity to the original structure 
than to any of the other structures within the library. This 
process is repeated for each modified structure in turn, 
and the proportion of correct matches is determined for 
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Fig. 1  Application of an algorithm for hypothetical modular natural product structure enumeration to comparative analysis of chemical similar-
ity methods. A short, linear biomimetic polymer is generated by LEMONS, and one or more monomers are substituted. Tailoring reactions may 
be executed on the original and/or modified polymers. The modified polymer is compared to the entire original library with one of 18 chemical 
similarity algorithms. A correct match is scored if the modified structure displays greater chemical similarity to the original structure than to any 
of the other structures within the library. The process is repeated for each original polymer and the fraction of correct matches is calculated. Each 
experiment is repeated 100 times
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each chemical similarity method. LEMONS can thus 
be used to calculate the percentage of correct matches 
between original and modified structures for any chemi-
cal similarity method, using a user-input list of possible 
monomers and tailoring reactions.

Our framework for the present study was as follows. 
First, we conduct a simple proof-of-concept validation of 
the LEMONS approach, by using LEMONS to generate 
libraries of short, linear proteinogenic peptides. Next, we 
use LEMONS to generate libraries of linear hypothetical 
nonribosomal peptides, polyketides, and hybrid natural 
products. We analyze the performance of each similar-
ity method for each family of natural products, and con-
sider the impact of monomer composition on similarity 
search. We also consider the impact of starter units, as 
are found in many modular natural product biosyn-
thetic pathways. As the performance of some methods is 
claimed to exhibit a ligand size dependency, we next eval-
uate the relationship between natural product size (num-
ber of monomers) and similarity search. To more closely 
approximate the enzymatic tailoring reactions that occur 
in biosynthetic pathways, we then quantify the impact of 
macrocyclization and glycosylation. Finally, we use LEM-
ONS to generate realistic libraries of extensively tailored 
natural products, such as those shown in Fig. 2, and pro-
vide general guidance for chemical similarity search in 
modular natural product chemical space.

As an initial proof-of-concept experiment, we used 
LEMONS to investigate the performance of chemical 

similarity methods given libraries of short polymers of 
proteinogenic amino acids. A library of 100 oligomers 
was generated, each with a length of 4–15 amino acids. 
A single amino acid was substituted within each struc-
ture, and the Tanimoto coefficient of the modified struc-
ture to each of the 100 original structures was calculated 
using 18 different chemical similarity methods (Table 1, 
Methods). This process was repeated by substituting an 
amino acid within each of the 100 original structures in 
turn, after which the number of correct matches between 
original and modified structures was determined. The 
entire experiment was repeated 100 times. Thus, a total 
of 104 original structures and 104 modified structures 
were generated, for a total of 106 comparisons per simi-
larity method (or 1.8 × 107 in total per experiment).

Our results indicated that most chemical similarity 
algorithms performed reasonably well in this simple test 
(Fig.  3a). In general, circular and retrobiosynthetic algo-
rithms performed best. It is unsurprising that the accuracy 
of GRAPE/GARLIC approached 100% (99.99% of structures 
correctly matched) because, in the absence of structural fea-
tures such as macrocyclizations, tailoring reactions, or non-
proteinogenic monomers, this method essentially performs 
a Needleman–Wunsch alignment of amino acid polymers 
given their chemical structures. Consequently, the perfor-
mance of GRAPE/GARLIC was better than any two-dimen-
sional fingerprint (one-sided Brunner–Munzel paired rank 
test, P ≤ 1.4 × 10−14 for all comparisons). A significant posi-
tive correlation between accuracy and radius was observed 
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for circular fingerprints (Kendall’s τ  =  0.85, P  <  10−300). 
The correlation between accuracy and radius remained 
significant even with the ECFP0 and FCFP0 fingerprints 
removed from the analysis (τ = 0.78, P = 5.7 × 10−300) [34]. 
Significant variability in performance was also observed 
for substructure-based fingerprints. The Klekota–Roth fin-
gerprint was particularly accurate (95.50%), outperform-
ing several circular fingerprints (ECFP0, ECFP2, FCFP0, 
and FCFP2; one-sided Brunner–Munzel paired rank test, 
all P < 2.2 × 10−16), while the performance of the electro-
topological state index fingerprint (E-state) was not statisti-
cally different from that of the ECFP0 fingerprint (36.67 and 
33.66%, respectively; two-sided Brunner–Munzel paired 
rank test, P > 0.9999). Finally, the lexicographic fingerprint 
LINGO, which calculates molecular similarity based on 
the textual representations of two chemical structures as 
SMILES [35], has comparable accuracy to topological fin-
gerprints given conventional benchmark data [36]. Its accu-
racy of 88.17% in this simple experiment suggests that it 
may be an acceptable method for similarity search in a large 
natural product-like chemical space when computational 
resources are very limited [37].

Table 1  Chemical similarity methods evaluated in  this 
study

Method Type

ECFP0 Circular fingerprint

ECFP2 Circular fingerprint

ECFP4 Circular fingerprint

ECFP6 Circular fingerprint

FCFP0 Circular fingerprint

FCFP2 Circular fingerprint

FCFP4 Circular fingerprint

FCFP6 Circular fingerprint

MACCS Substructure keys-based fingerprint

PubChem Substructure keys-based fingerprint

E-State Substructure keys-based fingerprint

Klekota–Roth Substructure keys-based fingerprint

CDK (default) Topological fingerprint

CDK (extended) Topological fingerprint

CDK (hybridization) Topological fingerprint

CDK (graph-only) Topological fingerprint

LINGO Lexicographic fingerprint

GRAPE/GARLIC Retrobiosynthesis and alignment
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Fig. 3  Chemical similarity method performance on hypothetical libraries of linear peptides. a Percentage of correct matches after substitution of a 
single proteinogenic amino acid in a library of hypothetical linear oligopeptides. b Trends in percentage of correct matches with substitution of one 
to five proteinogenic amino acids
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We repeated this proof-of-concept experiment four 
times, substituting two, three, four, and five proteino-
genic amino acids in turn (Fig.  3b). Plotting the trend 
of correct matches against number of substituted mon-
omers revealed that the performance of all methods 
decreased when a greater number of monomers were 
substituted. However, with a greater number of mono-
mer substitutions, a more clear separation in accuracy 
between methods was observed. No change in the rank-
ing of chemical similarity methods was observed as the 
number of monomer substitutions was increased.

We next sought to generate more realistic hypothetical 
natural product structures in order to better evaluate the 
performance of chemical similarity algorithms in natural 
product-like chemical space. In addition to proteinogenic 
amino acids, most peptidic natural products contain a 
diverse range of nonproteinogenic amino acids derived 
from primary metabolism by enzymatic tailoring reac-
tions [38]. These building blocks significantly increase 
the structural diversity of peptide natural products, alter-
ing their physicochemical properties and introducing 
unique substructures or topologies. We therefore incor-
porated both proteinogenic amino acids and a set of 32 
nonproteinogenic amino acids from bacterial and fun-
gal nonribosomal peptides [39] to survey nonribosomal 

peptide chemical space (Additional file 1: Table S1). Type 
I polyketides are another large and pharmaceutically 
important class of modular natural products. In order to 
profile polyketide chemical space, we incorporated seven 
common polyketide monomers at all possible oxidation 
states into LEMONS scaffold generation (Additional 
file  1: Table S1). Finally, hybrid nonribosomal peptide-
polyketide systems are responsible for the production of 
several valuable bioactive metabolites. We therefore gen-
erated linear hybrid polymers containing proteinogenic 
and nonproteinogenic amino acids and polyketide mono-
mers. A comparison of algorithm performance on short 
linear polymers corresponding to hypothetical nonribo-
somal peptides, polyketides, and hybrid natural prod-
ucts is shown in Fig. 4 (see also Additional file 2: Fig. S1). 
Averaged across all fingerprints, similarity search with 
hypothetical nonribosomal peptides was 10.78% more 
accurate than with proteinogenic peptides (one-sided 
Brunner–Munzel test, P < 2.2 × 10−16). Similarity search 
was also more accurate for hypothetical nonribosomal 
peptides than for polyketides, by a margin of 13.07% 
(P < 2.2 × 10−16), 2.32% more accurate for hybrid natural 
products than nonribosomal peptides (P = 4.5 × 10−8), 
and 15.39% more accurate for hybrid natural products 
relative to polyketides (P < 2.2 × 10−16), averaged across 
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all chemical similarity methods. These observations sug-
gest that the unique properties of the nonproteinogenic 
amino acids found in bacterial and fungal nonribosomal 
peptides generally facilitate chemical similarity search.

In addition to nonproteinogenic amino acids and pol-
yketide monomers, modular natural products commonly 
contain starter units that mediate biological activity, 
including short- and long-chain straight and branched 
fatty acids, aromatic and alicyclic acids, and amino acid 
derivatives [40]. These starter units might be expected 
to make a significant contribution to chemical similarity 
search due to their unique substructures or topologies. 
We investigated the impact of common starter units on 
similarity search in natural product-like chemical space by 
diversifying hypothetical hybrid natural products with 23 
common starter units, including 4 fatty acids, 13 aromatic 
acids, 3 alicyclic acids, and 3 small starter units (Addi-
tional file 1: Table S1). In general, the performance of each 
similarity search method was similar for linear hybrid 
natural products with and without starter units (Addi-
tional file  3: Fig. S2). However, significant differences 
were observed in performance when comparing starter 
unit and non-starter unit substitution: for instance, the 
percentage of natural products correctly matched by the 
graph-only CDK fingerprint was 16.22% higher for starter 
unit substitutions, but 30.47% lower for the Pubchem fin-
gerprint. Averaged across all fingerprints, a starter unit 
substitution was equivalent to 1.70 non-starter-unit sub-
stitutions (Additional file 3: Fig. S2). These results suggest 
that, in general, similarity search is strongly influenced by 
the unique structural properties of modular natural prod-
uct starter units. While this phenomenon may facilitate 
the clustering of natural products of the same family that 
share a common starter unit, it may represent an obstacle 
to the cheminformatic identification of natural product 
families with variable starter units.

The performance of some fingerprints is known to 
exhibit a significant ligand size dependency [41]. Differ-
ent chemical similarity search strategies may therefore 
exhibit optimal performance on compound families with 
lower or higher average molecular weights. We investi-
gated the effect of size on chemical similarity algorithm 
performance by generating libraries of hypothetical natu-
ral products of fixed sizes. Libraries of hypothetical non-
ribosomal peptides, polyketides, hybrids, and hybrids 
with starter units consisting of 4 to 15 monomers were 
generated, and the performance of each algorithm with 3 
monomer substitutions was evaluated (Fig. 5). In general, 
the rankings of chemical similarity methods by accuracy 
remained reasonably consistent regardless of natural 
product size, indicating that methods which perform well 
for smaller natural products tend to also perform well for 
larger natural products.

Many natural products undergo regioselective macro-
lactone or macrolactam cyclizations, which are essential 
to their biological activity [42]. In order to evaluate the 
impact of macrocyclization on natural product similarity 
search, we generated cyclic and branched hypothetical 
nonribosomal peptides, polyketides, and hybrids (Fig. 6). 
Averaged across all fingerprints, substitution of the cycli-
zation pattern was equivalent to substitution of 0.75 
monomers in a hybrid natural product. Notably, ECFP 
fingerprints with a radius between 2 and 6 were at least 
10% less accurate when the pattern of macrocyclization 
was changed relative to the substitution of a single mono-
mer. These results indicate that macrocyclization makes a 
relatively small contribution to natural product similarity 
search, except in methods that heavily weight local atom 
environments.

During natural product biosynthesis, enormous struc-
tural diversity is created from a limited number of mono-
mers by a diverse array of enzymatic tailoring reactions 
[20]. These reactions contribute significantly to the 
structural complexity of natural products. We modelled 
the effect of tailoring reactions on chemical similarity 
search by generating linear and cyclic nonribosomal pep-
tides, polyketides, and hybrid natural products with one 
to three hexose or deoxysugars (Additional file  4: Table 
S2), and additionally analyzed the effect of changing the 
site of glycosylation (Fig. 7). For hybrid natural products, 
the magnitude of the effect of adding a sugar to an untai-
lored scaffold was only slightly different from the effect 
of changing the site of glycosylation (mean accuracy for 
all fingerprints 83.86 vs. 83.36%, respectively), although 
the difference was highly significant (two-sided Brun-
ner–Munzel paired-rank test, P < 2.2 × 10−16). Although 
no fingerprint was more accurate with the addition of 
three sugar moieties than with the addition of only one, 
the accuracy of all four topological fingerprints improved 
when the sites of three sugars were changed relative to 
only one (Brunner–Munzel test, P  <  2.2  ×  10−16). For 
linear hybrid natural products, the addition of one hex-
ose or deoxysugar had an effect on accuracy equivalent 
to substituting 1.16 monomers, while changing the site of 
glycosylation was equivalent to substituting 1.17 mono-
mers. These results suggest that, for non-topological fin-
gerprints, the effect of diversification of modular natural 
products with hexose and deoxysugars is comparable to 
the substitution of an amino acid or ketide monomer.

Having considered the impact of a number of biosyn-
thetic features on chemical similarity search, we finally 
sought to quantify the performance of each chemi-
cal similarity method by generating realistic libraries of 
extensively tailored natural products, and thereby derive 
general recommendations for similarity search in modu-
lar natural product chemical space. We used LEMONS 
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to generate libraries consisting in equal parts of cyclic 
and linear hybrid natural products with 4–15 monomers. 
Two monomers were substituted, and four tailoring reac-
tions (glycosylation, N-methylation, halogenation, and 
oxazole/thiazole formation) were considered. Each type 
of reaction was executed on 50% of original structures, 
with a 25% chance of removing the tailoring from the 
modified structure and a 25% chance of changing the 
site of the reaction in the modified structure. As with 
proteinogenic amino acid oligomers, circular and retro-
biosynthetic methods generally demonstrated the best 
performance for complex hypothetical natural prod-
ucts (Fig.  8). GRAPE/GARLIC and FCFP6 were equally 
accurate, i.e., did not give statistically different results, 
with mean accuracies of 95.80 and 95.53% of structures 

matched, respectively (Brunner–Munzel paired rank 
test, P = 0.42). The superior performance of the FCFP6 
fingerprint to the ECFP6 fingerprint suggests that mod-
ular natural products may be enriched relative to small 
peptides in functional properties related to ligand bind-
ing (mean accuracy 95.53 and 94.67%, respectively; one-
sided Brunner–Munzel paired rank test, P = 4.5 × 10−5). 
The positive correlation between circular fingerprint 
radius and accuracy was reproduced (Kendall’s τ = 0.69, 
P < 10−300) and remained significant with the ECFP0 and 
FCFP0 fingerprints removed from the analysis (τ = 0.48, 
P < 10−300). Among substructure-based fingerprints, the 
Klekota–Roth fingerprint was the most accurate, with 
accuracy not significantly different from the ECFP2 fin-
gerprint (mean accuracy 91.77 and 91.99%, respectively; 
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two-sided Brunner–Munzel paired rank test, P =  0.73). 
The relatively poor performance of the E–state, MACCS, 
and PubChem fingerprints suggests that the substruc-
tures indexed by these fingerprints are of limited use in 
chemical similarity search for modular natural products.

Discussion
Modular natural products are attractive leads in drug 
discovery due to their evolved biological activities, but 
it is unclear which chemical similarity methods perform 
best in the chemical space occupied by their unique and 
complex scaffolds. Here, we present LEMONS, an algo-
rithm for the enumeration of hypothetical natural prod-
uct structures, and use it both to conduct a systematic 
comparison of chemical similarity methods for natu-
ral products, and to quantify of the impact of various 
structural parameters on similarity search. We find that, 
in general, size and macrocyclization have relatively lit-
tle impact on similarity search, whereas the inclusion of 
nonproteinogenic amino acids and starter units more 
strongly affect similarity search. Circular fingerprints 
and a recently described retrobiosynthesis and alignment 
method consistently performed best across experimental 

conditions. There was a strong correlation between cir-
cular fingerprint radius and accuracy. Hashed topologi-
cal fingerprints, which were outperformed by at least 
one fingerprint of every other type, appear to be an inap-
propriate strategy for natural product similarity search. 
Among substructure keys-based fingerprints, the Kle-
kota–Roth fingerprint was most accurate. This finger-
print considers substructures which were determined 
to be privileged with respect to biological activity; it is 
conceivable that these substructures are overrepresented 
among natural products due to their evolved bioactivi-
ties. In general, our results support the use of circular 
fingerprints and retrobiosynthetic approaches for chemi-
cal similarity search in modular natural product chemical 
space.

An important limitation of the GRAPE/GARLIC 
method is its reliance on the assumption that biosyn-
thetic logic can be codified in a rule-based manner, 
and applied to chemical structures to reconstruct their 
biosynthesis. However, natural product biosynthesis 
is diverse and incompletely understood, such that it is 
impossible to encode every possible tailoring reaction. 
In order to quantify the limitations of a retrobiosynthetic 
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approach to similarity search, we added random bonds 
between any two atoms in natural product structures, 
simulating the effect of a tailoring reaction which violates 
the retrobiosynthetic logic built into the GRAPE algo-
rithm (Fig. 9). We observed a monotonic decrease in the 
accuracy of GRAPE/GARLIC with the addition of ran-
dom bonds between or within residues to hypothetical 
modular natural product structures, with each random 
bond associated with a 5.42% decrease in accuracy. The 
performance of GRAPE/GARLIC was equivalent to that 
of the average circular fingerprint with the addition of 
2.99 random bonds, the average topological fingerprint 
with the addition of 4.91 random bonds, and the average 
substructure keys-based fingerprint with the addition of 
2.80 random bonds. Our results suggest that although 
GRAPE/GARLIC generally outperforms conventional 
algorithms for calculating molecular similarity of natural 
products when retrobiosynthetic logic applies, its perfor-
mance is likely to be poorer for classes of modular natu-
ral products whose biosynthesis is poorly understood, 
or which incorporates non-thiotemplated pathways. A 
further limitation of GRAPE/GARLIC is its relatively 
intensive use of computational resources in comparison 

to conventional fingerprints. Although the performance 
of retrobiosynthesis and alignment is heavily dependent 
on the types of compounds subjected to analysis, in most 
cases GRAPE/GARLIC is more computationally inten-
sive than two-dimensional fingerprints. Efforts are cur-
rently underway to improve the performance of GRAPE/
GARLIC in a future release.

As an extensible, open-source method to enumerate 
hypothetical natural product structures, LEMONS has 
diverse potential applications in bioinformatics beyond 
analysis of molecular similarity algorithms. Several 
reports, for instance, have highlighted the applicability of 
targeted hypothetical structure enumeration to the dis-
covery of natural products from tandem mass spectrom-
etry data of complex bacterial extracts [43, 44]. However, 
these methods require varying degrees of manual inter-
vention to produce libraries of hypothetical structures. 
In contrast, LEMONS can be leveraged as a platform 
for rapid, untargeted exploration of desired regions of 
chemical space or natural product families. For instance, 
‘macrolide-like’ chemical space could be explored by 
generating cyclic polyketides containing seven or eight 
monomers, with zero, one, or two glycosylations. The 
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integration of untargeted hypothetical structure enu-
meration via LEMONS with existing methods for locat-
ing hypothetical chemical structures within mass spectral 
data may facilitate genome mining for desired secondary 
metabolites. Alternatively, the algorithm can be expanded 
to profile chemical space more broadly, particularly as its 
extensibility facilitates the addition of any number of new 
monomers or tailoring reactions. The ability to randomly 
profile a particular region of natural product chemical 
space may provide insights into the chemical evolution of 
natural product families.

A limitation of LEMONS with respect to the broader 
applications of hypothetical natural product structure 
enumeration is that its design considers only linear or 
cyclic permutations of monomers. Consequently, in its 
present implementation, the algorithm is only extensi-
ble to biosynthetic classes that can be modelled as post-
translationally modified linear or cyclic polymers. Thus, 
while LEMONS could be extended to profile natural 
product classes such as ribosomally synthesized and post-
translationally modified peptides (RiPPs), a graph-based 
method of structure enumeration would be required to 
model classes such as terpenes or aminoglycosides, in 

which monomers (isoprene units or sugars, respectively) 
may more appropriately be considered subgraphs which 
can potentially connect to other subgraphs at multiple 
sites.

Conclusions
We describe LEMONS, an open-source and easily exten-
sible algorithm for untargeted enumeration of modular 
natural product chemical structures. We use this algo-
rithm to benchmark chemical similarity methods for 
modular natural products, finding that circular finger-
prints and a newly described retrobiosynthetic approach 
(GRAPE/GARLIC) perform best, whereas topological 
fingerprints and most substructure-based fingerprints 
perform less well (with the notable exception of the Kle-
kota–Roth fingerprint). Additionally, we investigate the 
impact of biosynthetic parameters on similarity search, 
finding that size and macrocyclization have relatively 
little impact on similarity search, whereas inclusion of 
nonproteinogenic amino acids and starter units have a 
stronger effect. Our results lead us to recommend the use 
of circular fingerprints and retrobiosynthetic approaches 
for modular natural product similarity search, and our 
method has diverse potential applications in chemical 
space exploration and microbial genome mining.
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Methods
Development of an algorithm to enumerate hypothetical 
natural product structures
We developed LEMONS (Library for the Enumeration 
of MOdular Natural Structures), a Java software pack-
age designed to investigate the performance of chemi-
cal similarity metrics by enumerating hypothetical 
natural product structures given a user-determined set 
of biosynthetic parameters. LEMONS first enumerates a 
library of hypothetical natural product structures given a 
list of possible monomers and tailoring reactions. Each 
hypothetical natural product structure may subsequently 
be modified by substituting one or more monomers, or 
by adding, removing, or changing the site of one or more 
tailoring reactions. The modified structure is compared 
to the entire library of original structures using a two-
dimensional molecular fingerprint, and the rank of the 
correct match (i.e., of the modified structure to the origi-
nal structure from which it was derived) is determined. 
This process is repeated for each hypothetical structure 
within the library, and the rank distribution of each 
molecular fingerprint is written to a file. LEMONS uses 
the Chemistry Development Kit (version 1.5.9) for chem-
ical structure generation and molecular fingerprint cal-
culation [45]. LEMONS source code is available at http://
github.com/magarveylab/lemons.

Linear structure generation
The first step in the LEMONS algorithm is the enumer-
ation of a library of linear hypothetical natural product 
structures. A permutation of monomers is selected at 
random from one or more monomer sets in order to 
generate a polymer of a given size range. By default, four 
possible sets of monomers are included within LEM-
ONS, including proteinogenic and nonproteinogenic 
amino acids, polyketide monomers, and starter units. 
LEMONS includes 45 nonproteinogenic amino acids 
derived from fungal and bacterial nonribosomal pep-
tides, including β-hydroxylated and β-methylated amino 
acids, α-keto acids, β-amino acids, and other commonly 
occurring modified amino acids (Additional file 1: Table 
S1). LEMONS also includes 26 polyketide monomers, 
corresponding to 7 common polyketide extender units 
(malonate, methylmalonate, ethylmalonate, methoxym-
alonate, propionate, isobutyrate, and 2-methylbutyrate) 
at all possible oxidation states (Additional file  1: Table 
S1). Finally, LEMONS includes 23 common starter 
units, including four fatty acids, thirteen aromatic 
starter units, three alicyclic starter units, and three 
small starter units (Additional file 1: Table S1). A tem-
plate is provided within the LEMONS source code to 
facilitate the addition of new monomer sets to the soft-
ware package.

Tailoring reaction detection and execution
The second step in the LEMONS algorithm is the detec-
tion of all possible tailoring reactions. Polymers are con-
verted to chemical structures, and potential sites of each 
reaction on the resulting chemical structure are identi-
fied. Tailoring reactions to be executed on the original 
library of hypothetical natural product structures are set 
via the ‘–initial_reactions’ option of the command line 
interface in a probabilistic manner, such that the argu-
ment ‘halogenation 0.5’ will cause LEMONS to attempt 
to execute a halogenation reaction on 50% of the scaf-
folds, while the arguments ‘halogenation 1’ and ‘halo-
genation 2’ will cause LEMONS to attempt to execute 
one and two halogenation reactions, respectively, on each 
scaffold. Five possible tailoring reactions are included 
in LEMONS by default (cyclization, halogenation, gly-
cosylation, thiazole/oxazole formation, and amino acid 
N-methylation). A template is provided within the LEM-
ONS source code to facilitate the addition of new reac-
tions to the software package.

The cyclization reaction within LEMONS creates cyclic 
or branched hypothetical natural product structures by 
cyclizing either an N-terminal amine or a free hydroxyl 
at the C-terminal carboxylic acid. Only sp3 carbon-bound 
hydroxyls are considered potential sites of cyclization, 
permitting cyclization on serine and threonine residues 
or β-hydroxylated amino acids. The halogen reaction exe-
cutes chlorination or bromination with equal probability. 
In order to capture the diverse patterns of natural prod-
uct halogenation [46], any non-backbone carbon is con-
sidered a possible site of halogenation. The glycosylation 
reaction leverages a library of 69 deoxy and hexose sug-
ars [39] to generate O-glycosylated hypothetical natural 
product structures (Additional file 4: Table S2). Both sp2 
and sp3 carbon-bound hydroxyls are considered poten-
tial sites of O-glycosylation with a randomly selected 
sugar moiety. The thiazole and oxazole-forming reac-
tion considers all cysteine and serine residues, respec-
tively, as potential sites of thiazole or oxazole formation, 
and allows for bis-thiazole or oxazole formation. The 
N-methylation reaction considers all backbone amide 
nitrogens derived from proteinogenic and nonproteino-
genic amino acids as potential sites of N-methylation.

Generation of modified structures
Once all potential tailoring reactions have been detected 
and a subset selected for each structure in the library 
of hypothetical natural product structures, the original 
structure is modified by substituting one or more mon-
omers, or by adding, removing, or changing the site of 
one or more tailoring reactions, in order to produce a 
derivative of the same in silico assembly line. The set of 
monomers substituted into the original polymer can be 

http://github.com/magarveylab/lemons
http://github.com/magarveylab/lemons
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specified independently from the set of monomers used 
to construct the original polymer. If the substitution set 
includes starter units, these monomers will only be sub-
stituted at the first residue. In order to maximize chemi-
cal diversity, each monomer in the original scaffold will 
be substituted before an individual monomer is swapped 
twice. Monomers which are the sites of chemical tailoring 
reactions are not substituted. The command line inter-
face additionally allows the independent specification of 
new tailoring reactions to add to the original scaffold, tai-
loring reactions to remove from the original scaffold, and 
tailoring reactions whose sites may be changed. Thus, 
for instance, an unmethylated peptide can be methyl-
ated, a methylated peptide can have its N-methyl group 
removed, and the site of N-methylation can be varied. 
The execution of the modified reaction set allows for the 
conversion of the resulting modified structure to a chem-
ical scaffold.

Comparison of modified and original structures
The final step in the LEMONS algorithm compares the 
ability of seventeen molecular fingerprints (Table  1) to 
correctly match the original and modified hypotheti-
cal natural product structures. The Tanimoto coefficient 
of a modified structure to each structure in the original 
library is calculated, and the rank of the Tanimoto coef-
ficient to the original structure is calculated. This process 
is repeated for every structure within the original library, 
and the rank distribution of the correct match is written 
to a file.

Generation of chemical fingerprints
Three predominant approaches exist for computing two-
dimensional molecular fingerprints [4]. The first, sub-
structure keys-based fingerprints, set the bits within a 
molecular fingerprint bit sequence based on the presence 
or absence of predefined structural features. The MACCS 
(Molecular ACCess System) fingerprint is among the 
best-known substructure keys-based fingerprints [47]. 
The PubChem database implements another substructure 
keys-based fingerprint for similarity search, based on 881 
structural keys [48]. Both the 79 electrotopological state 
(E-state) fragments defined by Hall and Kier [49] and the 
4860 unique chemical substructures which enrich for bio-
logical activity defined by Klekota and Roth [50] have also 
been used within substructure keys-based fingerprints 
implemented in the Chemistry Development Kit [45].

Topological or path-based fingerprints describe frag-
ments of a molecule, typically by enumerating all paths 
through a molecule up to a certain number of bonds, 
then hashing each path to create a fingerprint. Topologi-
cal fingerprints typically encode information about the 
atom types and number and type of bonds within each 

path. While individual bits correspond to unique struc-
tural features in substructure-based fingerprints, a sin-
gle bit may correspond to several features in topological 
fingerprints, a phenomenon known as bit collision. The 
Daylight fingerprint [51] is probably the best-known top-
ological fingerprint. Variants of the Daylight fingerprint 
are implemented in several open-source cheminformatic 
libraries, including RDKit [52] and the Chemistry Devel-
opment Kit (CDK) [45].

Circular fingerprints are also hashed fingerprints which 
encode circular atom environments up to a maximum 
bond radius from the central atom rather than looking 
for paths through a chemical graph. Extended-connectiv-
ity fingerprints (ECFPs) [53] encode properties including 
chemical element, number of heavy-atom neighbours, 
number of hydrogens, and isotope and ring information, 
whereas functional connectivity fingerprints (FCFPs) 
[53] encode pharmacophoric features related to ligand-
binding. The maximum bond length radius is appended 
to the end of the name: thus the ECFP6 fingerprint is an 
extended-connectivity fingerprint with a diameter of 6 
bonds.

Other fingerprints adopt lexicographic approaches to 
the generation of molecular fingerprints. LINGO [35], 
for instance, is a text-based fingerprint calculated based 
on canonical SMILES. Seventeen molecular fingerprints 
were evaluated in this study, including ECFP and FCFP 
circular fingerprints with radii of 0, 2, 4, and 6; four sub-
structure keys-based fingerprints (MACCS, PubChem, 
E-state, Klekota-Roth); one lexicographic fingerprint 
(LINGO); and four Daylight-like topological fingerprints 
(Table 1). All molecular fingerprints were generated with 
the Chemistry Development Kit (CDK) [45], version 
1.5.9.

Statistical analysis
For each comparison, we reported the P value for either 
the Brunner–Munzel paired rank test or the Brunner–
Munzel independence test. When utilizing a statisti-
cal hypothesis test, it is common practice to compare 
a P value to a pre-established significance level, e.g., 
α = 0.05. In some instances, we are performing 17 com-
parisons, and so would need to adjust the significance 
level for each individual comparison to account for the 
multiple comparisons. This could be done, for example, 
using a Bonferroni correction so that if we desired that 
the family wise error rate should not exceed 5%, then the 
significance level for each individual comparison would 
be 0.05/17 = 0.0029. We mention this only for complete-
ness because, in the multiple testing scenarios we con-
sider herein, the P values for the individual comparisons 
are so small that adjusting for multiple comparisons will 
not affect the conclusions presented.
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