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Abstract 

Background:  Support Vector Machine has become one of the most popular machine learning tools used in vir-
tual screening campaigns aimed at finding new drug candidates. Although it can be extremely effective in finding 
new potentially active compounds, its application requires the optimization of the hyperparameters with which the 
assessment is being run, particularly the C and γ values. The optimization requirement in turn, establishes the need 
to develop fast and effective approaches to the optimization procedure, providing the best predictive power of the 
constructed model.

Results:   In this study, we investigated the Bayesian and random search optimization of Support Vector Machine 
hyperparameters for classifying bioactive compounds. The effectiveness of these strategies was compared with the 
most popular optimization procedures—grid search and heuristic choice. We demonstrated that Bayesian optimiza-
tion not only provides better, more efficient classification but is also much faster—the number of iterations it required 
for reaching optimal predictive performance was the lowest out of the all tested optimization methods. Moreover, 
for the Bayesian approach, the choice of parameters in subsequent iterations is directed and justified; therefore, the 
results obtained by using it are constantly improved and the range of hyperparameters tested provides the best over-
all performance of Support Vector Machine. Additionally, we showed that a random search optimization of hyperpa-
rameters leads to significantly better performance than grid search and heuristic-based approaches.

Conclusions:  The Bayesian approach to the optimization of Support Vector Machine parameters was demonstrated 
to outperform other optimization methods for tasks concerned with the bioactivity assessment of chemical com-
pounds. This strategy not only provides a higher accuracy of classification, but is also much faster and more directed 
than other approaches for optimization. It appears that, despite its simplicity, random search optimization strategy 
should be used as a second choice if Bayesian approach application is not feasible.

Keywords:  Compounds classification, Virtual screening, Support Vector Machine, Parameters optimization, Bayesian 
optimization
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Background
The application of computational methods at various 
stages of drug design and development has become a vital 
part of the process. As the methods developed become 
constantly more effective, despite the aims at optimiz-
ing their performance, the focus of the attention shifts 

away from performance optimization to the minimiza-
tion of requirements for computational resources. The 
attainment of both effectiveness and the desired speed 
has been responsible for the recent extreme popularity of 
machine learning (ML) methods in computer-aided drug 
design (CADD) approaches. Machine learning meth-
ods are mostly used for virtual screening (VS) tasks, in 
which they are supposed to identify potentially active 
compounds in large databases of chemical structures. 
One of the most widely used ML methods in CADD is 
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the Support Vector Machine (SVM). Although it has 
a potential of providing very high VS performance, its 
application requires the optimization of the parameters 
used during the training process, which was proved to 
be crucial for obtaining accurate predictions. To date, 
various approaches have been developed to make SVM 
faster and more effective. In cheminformatics applica-
tions, the most popular optimization strategies are grid 
search  [1, 2] and heuristic choice  [3, 4]. Depending on 
the problem, they are able to provide high classifica-
tion accuracy—for example Wang et al. obtained 86% of 
accuracy in the classification of hERG potassium chan-
nel inhibitors for the heuristic choice of the SVM param-
eters  [4]. On the other hand, Hamman et al. [1] were able 
to evaluate the cytochrome P450 activities with 66–83% 
of accuracy using grid search method of SVM parameters 
optimization. The need for optimizing SVM parameters 
is undeniable, as classification efficiency can change dra-
matically for various parameters values. A high compu-
tational cost of a systematic search over a predefined set 
of parameters’ values is a trigger for development of new 
optimization algorithms. In recent years, Bayesian opti-
mization  [5, 6] (including gaussian processes  [7]) and 
random search-based selection  [8] have become more 
popular  [9, 10]. As those approaches were not explored 
so far in the field of cheminformatics, we analyze their 
impact on classification accuracy and, more importantly, 
the speed and ease of use, that these approaches have 
lent to the optimization of SVM hyperparameters in the 
search for bioactive compounds.

Hyperparameters optimization
In the classical ML approach to a classification problem, 
we are given a training set 

{

(xi, yi)
}N

i=1
 (with xi repre-

senting samples’ features, in our case—fingerprint, and 
yi being the class assignment) and we try to build a pre-
dictive model based on these data using a training algo-
rithm that sets the parameters w (for example the weight 
of each fingerprint element) for fixed hyperparameters 
� (for example a type of SVM kernel, the regularization 
strength C or the width of the RBF kernel γ). In other 
words, given an objective S that must be maximized, we 
are supposed to solve the following problem:

While this problem is often easily solvable (for exam-
ple, in SVM, S is a concave function, and thus, we can 
find the maximum by using a simple steepest ascent algo-
rithm), in general, it is very hard to find an optimal �.  
This difficulty stems from the very complex shape of the 
S function once we treat � as its arguments, which results 

maximize
w

S

(

w|
{

(xi, yi)
}N

i=1
, �
)

.

in the joint optimization of the model parameters (w) and 
the set of hyperparameters (�):

A basic method for solving this problem is a grid 
search-based approach, which simply samples the set of 
possible � values in a regular manner. For example, we 
choose the parameter C for a SVM in a geometrical pro-
gression, obtaining the values �1, . . . , �k and returning 
the best solution among each of the subproblems:

While such an approach guarantees finding the global 
optimum for k → ∞, it might be extremely computa-
tionally expensive, as we need to train k classifiers, each 
of which can take hours. Instead, we can actually try to 
solve the optimization problem directly by performing 
an adaptive process that on one hand tries to maximize 
the objective function and on the other hand samples 
the possible � space intelligently in order to minimize 
the number of classifier trainings. The main idea behind 
Bayesian optimization for such a problem is to use all of 
the information gathered in previous iterations for per-
forming the next step. It is apparent that grid search-
based methods violate this assumption as we do not use 
any knowledge coming out from the results of models 
trained with other � values.

We can consider this problem as the process of finding 
the maximum for f (�), defined as

Unfortunately, f is an unknown function and we cannot 
compute its gradient, Hessian, or any other characteris-
tics that could guide the optimization process. The only 
action we can perform is to obtain a value for f at a given 
point. However, doing so is very expensive (because it 
requires training a classifier); thus, we need a fast (with 
respect to evaluating the function), derivative-free opti-
mization technique to solve this problem.

For the task under consideration, S is the accuracy 
of the resulting SVM model with the RBF kernel, and 
� = {C , γ } is the set of two hyperparameters that we 
must fit to optimize the SVM performance to predict the 
bioactivity of compounds, which (loosely speaking) is 
measured by f.

Results and discussion
Six SVM optimization approaches were evaluated in 
the classification experiments of compounds possessing 
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activity towards 21 protein targets, represented by six dif-
ferent fingerprints (Table 1).

Classification effectiveness analysis
A global analysis of the classification efficiency revealed 
that Bayesian optimization definitely outperformed 
the other methods of SVM parameters’ optimization 
(Fig.  1). For a particular target and fingerprint, Bayes-
ian approach provided a higher classification accuracy in 
80 experiments, a significantly greater number than the 
other strategies (22 for the runner-up: grid search). On 
the other hand, the SVMlight and libSVM were definitely 
the least effective methods of SVM usage; they did not 
provide the highest accuracy values for any of the target/
fingerprint combinations. This result is an obvious con-
sequence of the fact that SVMlight and libSVM are just 
basic heuristics and their results cannot be comparable 
with any hyperparameters optimization technique. Inter-
estingly, libSVM achieved much better results than SVM-
light even though its heuristic is much simpler.

The relationships between various methods tested were 
preserved when the results were analyzed with respect to 
the various fingerprints (Fig. 2)—the Bayesian optimiza-
tion always provided the highest classification accuracy 
(for 13–14 targets for each of the fingerprints analyzed), 

whereas the ‘global’ second-place method—grid search—
was outperformed by ‘small grid’-cv for two fingerprints: 
MACCSFP and PubchemFP. The runners-up (grid search 
or ‘small grid’-cv, depending on fingerprint) provided 
the best predictive power of the model for 3 proteins on 
average. The ineffectiveness of the SVMlight and libSVM 
strategies has been already indicated in the ’global’ analy-
sis, and with respect to various fingerprints, there was no 
protein for which those SVM optimization methods pro-
vided the highest classification accuracy.

The situation becomes more complex when separate 
targets are taken into account (Fig.  3). The Bayesian 
optimization provided the best results for all considered 
representations for some proteins (CDK2, H1, ABL); 
however, in few cases, other optimization approaches 
for tuning SVM parameters outperformed the Bayesian 
method (5-HT6—random and grid search, beta1AR—
‘small grid’-cv and grid search, beta3AR—grid search, 
HIVi—grid search, ‘small grid’-cv, random, MAP kinases 
ERK2—‘small grid’-cv and random search). These results 
show that a more careful model accuracy approxima-
tion is required for some proteins. Because we are inter-
ested in maximizing the accuracy on a naive test set, we 
approximate this set by performing internal cross-valida-
tion for each method. This is a well-known technique in 
ML; however, it might be not reliable for small datasets. 
Beta1AR, beta3AR, and HIVi are very small datasets in 
our comparison; thus, it seems probable that the poor 
results of the Bayesian approach (a poor approximation 
of the S value) were caused by the high internal variance 
in the dataset rather than because the Bayesian approach 
was actually worse than the grid search method.

Because grid search was the second-place method 
in the majority of the analyses, both for global analy-
sis, and fingerprint- and target-based comparisons, a 

Table 1  Details of  the classification experiments per-
formed

Targets Fingerprints Optimization 
method

C and γ range 
No of iterations

5-HT2A EstateFP Bayes log10(C) ∈ [−2, 5]

5-HT2C ExtFP Random log10(γ ) ∈ [−10, 3]

5-HT6 KlekFP Grid search 20, 30, 50, 75, 100, 150

5-HT7 MACCSFP Small grid

CDK2 PubchemFP SVMlight

M1 SubFP libSVM

ERK2

AChE

A1

alpha2AR

beta1AR

beta3AR

CB1

DOR

D4

H1

H3

HIVi

IR

ABL

HLE

Fig. 1  Global analysis of classification accuracy obtained for different 
methods for SVM parameters optimization expressed as the number 
of experiments in which a particular strategy provided the highest 
accuracy values.
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direct comparison of the number of the highest accu-
racies obtained for Bayesian optimization and the grid 
search approach was performed (Table  2). The sum of 
the number of wins is not equal for the given fingerprint-
based or target-based comparison as the draws were also 
considered.

The comparison of the number of ’wins’ for Bayes-
ian optimization over the grid search indicates the 

superiority of the former approach. In the ‘global’ anal-
ysis, the Bayesian optimization strategy gave a higher 
accuracy for approximately a 3-fold higher number of 
experiments than the grid search. For the fingerprint-
based analysis, the ratio of Bayesian/grid search wins 
was similar to the best ratio (in favor of Bayesian opti-
mization) obtained for MACCSFP (18 : 4) and the worst 
(15  :  7 and 15  :  6) for EstateFP and SubFP, respectively. 

Fig. 2  Analysis of the effectiveness of different SVM optimization strategies with respect to various fingerprints expressed as the number of experi-
ments in which a particular strategy provided the highest accuracy values for a given compounds representation.
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Fig. 3  Analysis of effectiveness of different SVM optimization strategies with respect to various targets expressed as the number of experiments in 
which a particular strategy provided the highest accuracy values for a given protein target.
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When target-based comparisons were considered, Bayes-
ian optimization outperformed the grid search approach 
for some targets in all cases (i.e., CDK2, H1, ABL); for 
others, there was only 1 case when the grid search strat-
egy won (i.e., 5-HT2A, 5-HT2C, M1, ERK2, AChE, A1, 
alpha2AR, CB1, D4, H3, IR), still others were draws (i.e., 
5-HT7, beta1AR), and in two cases the grid search pro-
vided top accuracies (beta3AR, HIVi).

Examination of optimization steps in time
A time course study of the accuracy values was also con-
ducted. Figure 4 shows analyses for 5-HT2A as an example; 
the results for the remaining targets are in the Additional 
files section (Additional file 1). We demonstrated not only 
that Bayesian optimization required the smallest num-
ber of iterations to achieve optimal performance (for all 
representations the number of iterations was less than 
20), but also that in the majority of cases, SVM optimized 
using a Bayesian approach achieved better performance 

than all of the other optimization methods. SVMlight 
and libSVM were not iteratively optimized; therefore, the 
accuracy/number of iterations function is constant for 
these approaches. In general, the Bayesian and random 
search approach were optimized very quickly (in less than 
20 iterations), whereas the grid search method required 
many more iterations before the SVM reached optimal 
performance: 57 iterations (the lowest number) were 
required for EstateFP, and 138 (the highest number) for 
MACCSFP). Figure 4 also shows the rate of the improve-
ment of the accuracy after the application of particular 
optimization approach, which depended on the represen-
tation of the compounds—for EstateFP, it was improve-
ment from 0.8 (grid search) up to 0.82 (Bayesian), but for 
libSVM and SVMlight the improvement was significantly 
higher; for these two strategies, the classification accu-
racy was equal to 0.68. A similar result was obtained for 
ExtFP—the rate of improvement for the Bayesian opti-
mization strategy compared with the random search 
approach was approximately 0.02 (from 0.88 to 0.90), but 
it was higher for the other optimization methods: 0.03 for 
grid search, 0.05 for libSVM and 0.22 for SVMlight. The 
pattern was similar for KlekFP and MACCSFP, with dif-
ferences occurring only in the performance of libSVM. 
However, for PubchemFP and SubFP, grid search optimi-
zation provided the same predictive power for SVM as 
Bayesian optimization; for the SubFP, there was a selected 
range of iterations (117–142) when grid search provided 
slightly better SVM performance (by about 2%) in com-
parison to Bayesian approach.

In order to provide the comprehensive and global 
analysis of the changes in accuracy with an increasing 
number of iterations, the areas under curves (AUC) pre-
sented in Fig. 4 (and other curves that are placed in the 
Additional files section) were calculated. Example analy-
sis for selected target/fingerprint pair (5-HT2A, ExtFP) is 
presented in Table  3; the remaining analyses are in the 
Additional files section (Additional file  2). The global 
average AUC, the average AUC for particular fingerprints 
and targets are presented in Tables  4 and  5. The Tables 
also include final (for the selected target/fingerprint) and 
averaged (for the rest of the cases) final accuracy values 
obtained for a given strategy; the highest AUC/accuracy 
values for the particular case considered are marked with 
an asterisk sign. In general, the AUC of a curve indicates 
the strength of the trained model at any randomly chosen 
iteration. In other words, the AUC measures how quickly 
a given strategy converges to a strong model.

The analysis of the results obtained for the example 
target/fingerprint pair (5-HT2A, ExtFP; Table  3) shows 
that both the highest AUC and final optimal accuracy 
values were obtained with the Bayesian strategy for SVM 

Table 2  A comparison of the number of highest accuracies 
obtained with the Bayesian optimization and grid search

Comparison Bayes Grid search

Global 96 34

EstateFP 15 7

ExtFP 16 6

KlekFP 16 5

MACCSFP 18 4

PubchemFP 16 6

SubFP 15 6

5-HT2A 5 1

5-HT2C 5 1

5-HT6 4 3

5-HT7 3 3

CDK2 6 0

M1 6 1

ERK2 5 1

AChE 5 1

A1 5 1

alpha2AR 5 1

beta1AR 3 3

beta3AR 3 4

CB1 5 1

DOR 4 2

D4 5 1

H1 6 0

H3 5 1

HIVi 1 5

IR 5 1

ABL 6 0

HLE 4 3
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optimization. A similar observation was made for the 
global and fingerprint-based analysis; Bayesian optimi-
zation provided the best average AUC and average opti-
mal accuracy for all fingerprints, as well as the global 
average value of this parameter. Interestingly, although 
grid search was the second-place method for optimal 
accuracy, it was actually the random search that out-
performed this method in terms of AUC, which could 
be explained from an analysis of the respective curves. 

Although the grid search method provided higher final 
accuracy values, these occurred relatively ’late’ (after a 
series of iterations), high accuracies were obtained almost 
immediately for random search (Figs. 4, 5). Similarly, the 
average AUC and optimal accuracy values calculated for 
various targets were highest for Bayesian optimization 
in the great majority of cases. HIVi and ERK2 were the 
only targets for which the averaged AUC obtained with 
the Bayesian optimization strategy was outperformed 

Fig. 4  Analysis of the changes in accuracy during the SVM optimization procedure for the subsequent optimization steps.
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by other optimization methods. On the other hand, the 
group of targets for which the average optimal accuracy 
values were the highest for methods other than Bayesian 
optimization was a bit more extensive (i.e., M1, ERK2, A1,  

beta3AR, HIVi, IR). However, for most of these targets, 
the difference between the best average accuracy and that 
obtained with Bayesian optimization was approximately 
3% (however, for example for beta3AR this difference 
approached to 10%, from 0.879 to 0.972). On the other 
hand, an improvement of several percentage points was 
also observed when the average AUC and optimal accu-
racy obtained with the Bayesian strategy were compared 
with the strategy that provided the ‘second-best’ accuracy 
value in the ranking.

The number of iterations required to achieve optimal 
SVM performance was also analyzed in detail (Fig.  5; 
Additional file 3). The most striking observation was that 
all curves corresponding to the Bayesian optimization 
results were both shifted towards higher accuracy values 
and were much ‘shorter’, meaning that a significantly lower 

Table 3  The AUC values obtained in  5-HT2A, ExtFP 
for  curves illustrating changes in  the accuracy in  time 
and final optimal accuracy values obtained

The highest values obtained among all strategies tested are marked with an 
asterisk sign

optimization method AUC Final accuracy

Bayes 0.892* 0.896*

Random 0.885 0.887

Grid search 0.802 0.881

SVMlight 0.683 0.683

libSVM 0.847 0.847

Table 4  The average AUC values–global, obtained for  a 
particular fingerprint and particular target

The highest values obtained among all strategies tested are marked with an 
asterisk sign

Fingerprint/
target

Bayes Random Grid search SVMlight libSVM

global 0.883* 0.870 0.799 0.676 0.792

EstateFP 0.847* 0.829 0.774 0.690 0.763

ExtFP 0.902* 0.891 0.806 0.669 0.874

KlekFP 0.899* 0.889 0.812 0.669 0.730

MACCSFP 0.890* 0.876 0.798 0.683 0.828

PubchemFP 0.898* 0.885 0.816 0.669 0.808

SubFP 0.864* 0.854 0.787 0.677 0.749

5-HT2A 0.860* 0.850 0.780 0.683 0.743

5-HT2C 0.848* 0.821 0.702 0.568 0.717

5-HT6 0.913* 0.910 0.886 0.814 0.862

5-HT7 0.830* 0.816 0.748 0.675 0.714

CDK2 0.876* 0.875 0.796 0.664 0.768

M1 0.850* 0.843 0.778 0.557 0.748

ERK2 0.958 0.961* 0.949 0.931 0.942

AChE 0.884* 0.854 0.788 0.611 0.764

A1 0.843* 0.835 0.764 0.564 0.720

alpha2AR 0.875* 0.874 0.773 0.563 0.725

beta1AR 0.910* 0.864 0.798 0.710 0.828

beta3AR 0.874* 0.823 0.826 0.545 0.722

CB1 0.874* 0.854 0.782 0.622 0.793

DOR 0.888* 0.880 0.734 0.599 0.814

D4 0.841* 0.837 0.759 0.698 0.745

H1 0.898* 0.880 0.638 0.548 0.801

H3 0.937* 0.926 0.906 0.897 0.905

HIVi 0.939 0.945* 0.934 0.901 0.911

IR 0.936* 0.936* 0.925 0.886 0.897

ABL 0.850* 0.831 0.748 0.587 0.733

HLE 0.867* 0.865 0.763 0.578 0.779

Table 5  The average final accuracy values—global, 
obtained for a particular fingerprint and particular target

The highest values obtained among all strategies tested are marked with an 
asterisk sign

fingerprint/
target

Bayes Random Grid search SVMlight libSVM

Global 0.889* 0.873 0.876 0.676 0.792

EstateFP 0.852* 0.832 0.833 0.690 0.763

ExtFP 0.907* 0.896 0.892 0.669 0.874

KlekFP 0.907* 0.890 0.891 0.669 0.730

MACCSFP 0.898* 0.878 0.880 0.683 0.828

PubchemFP 0.901* 0.886 0.894 0.669 0.808

SubFP 0.869* 0.856 0.864 0.677 0.749

5-HT2A 0.871* 0.848 0.860 0.683 0.743

5-HT2C 0.855* 0.825 0.772 0.568 0.717

5-HT6 0.916* 0.915 0.933 0.814 0.862

5-HT7 0.833* 0.819 0.819 0.675 0.714

CDK2 0.885* 0.881 0.870 0.664 0.768

M1 0.858 0.846 0.897* 0.557 0.748

ERK2 0.959 0.961* 0.961* 0.931 0.942

AChE 0.889* 0.857 0.872 0.611 0.764

A1 0.856 0.838 0.882* 0.564 0.720

alpha2AR 0.880* 0.873 0.872 0.563 0.725

beta1AR 0.914* 0.870 0.864 0.710 0.828

beta3AR 0.879 0.825 0.972* 0.545 0.722

CB1 0.881* 0.857 0.868 0.622 0.793

DOR 0.897* 0.884 0.872 0.599 0.814

D4 0.849* 0.838 0.837 0.698 0.745

H1 0.904* 0.879 0.691 0.548 0.801

H3 0.938* 0.926 0.919 0.897 0.905

HIVi 0.938 0.946 0.967* 0.901 0.911

IR 0.939 0.937 0.956* 0.886 0.897

ABL 0.857* 0.836 0.840 0.587 0.733

HLE 0.867* 0.871 0.864 0.578 0.779
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number of iterations was necessary in total to reach opti-
mal SVM performance. Two relevant points arise from a 
comparison of Bayesian optimization with the grid search 
method (which sometimes outperformed Bayesian opti-
mization): obtaining optimal accuracy with the grid search 
method required many more calculations, and even when 
grid search yielded higher accuracy values than Bayes-
ian optimization, the difference between the two was 

approximately 1–2%. This result indicates that even when 
Bayesian optimization ‘lost’, the results provided by this 
strategy were still very good and taking into account the 
calculation speed, it can be successfully applied also in 
experiments for which it was not indicated to be the best 
approach. A very interesting observation arising from 
Fig. 5 is that random search reached the optimal classifi-
cation effectiveness (as measured by accuracy) in the least 

Fig. 5  Analysis of the number of iterations of the optimization procedure required to achieve the highest accuracy. The figure presents the number 
of iterations required for a particular optimization strategy to achieve optimal performance for the predictive model.
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number of iterations, below 10 in the majority of cases. 
EstateFP, ExtFP, MACCSFP and PubchemFP, showed simi-
lar tendency with respect to the comparison of Bayesian 
optimization and the grid search strategy; for an initial 
number of iterations (40), the accuracy values obtained 
with the grid search were approximately 20% lower than 
those obtained with the Bayesian approach. However, 
as the number of iterations for grid search increased, the 
accuracy values were also higher, and when the number 
of iterations reached approximately 100, the grid search 
results were similar to those obtained with Bayesian opti-
mization. On the other hand, for both KlekFP and SubFP, 
the initial observations were the same; for a lower number 
of iterations, Bayesian optimization led to significantly 
higher accuracy values than the grid search approach, 
and for a higher number of iterations (over 80 for KlekFP 
and over 115 for SubFP), grid search provided accuracy 
values at a similar level to the values obtained with the 
Bayesian strategy. However, increasing the number of 
iterations for Bayesian optimization from approximately 
10 to 90 for KlekFP and 150 for SubFP did not lead to a 
significant increase in the accuracy (an almost vertical line 
corresponding to these numbers of iterations), which was 
already very high (over 0.85 for KlekFP and over 0.8 for 
SubFP). Further optimization led to further improvement 
in accuracy of approximately 2–3%.

The results were also analyzed regarding the changes in 
the accuracy when additional steps were applied. A panel 
of example results is shown in Fig. 6 for the cannabinoid 
CB1/SubFP combination (the remaining targets are in 
Additional file 4). The black dots show the set of param-
eters tested in the particular approach, and the black 
squares represent the set of parameters selected as opti-
mal. This chart shows the advantage of Bayesian optimi-
zation in terms of the way of work, and the sequence of 
selected parameters. The set of tested parameters is fixed 
for grid search optimization, whereas in case of random 
search, it is based on the random selection. On the other 
hand, the selection of parameters for Bayesian optimiza-
tion is more directed, which also affects the effectiveness 
of the classification. For grid search, only a small fraction 
of the parameters tested provided satisfactory predictive 
power of the model (only approximately 35% of the predic-
tions resulted in an accuracy exceeding 0.7). Surprisingly, 
a relatively high classification efficiency was obtained with 
the use of the random search approach—60% of the sets of 
parameters tested provided predictions with an accuracy 
over 0.7. However, investigation of the Bayesian optimi-
zation approach to parameter selection revealed that the 
choice of parameters tested was justified, and hence, the 
results obtained with their use were significantly better 
than those obtained with the other approaches—75% pre-
dictions with accuracy over 0.7.

We conclude that there are three SVM hyperparame-
ters selection approaches worth using for activity predic-
tion for compounds:

• • libSVM heuristic (when only one set of hyperparam-
eters is needed),

• • random search (when we need a strong model 
quickly, using less than a few dozen iterations),

• • a Bayesian approach (when we want the strongest 
model and can wait a bit longer).

Fig. 6  Analysis of the changes in accuracy for different steps during 
the SVM optimization procedure.
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The SVMlight heuristic as well as the traditional grid 
search approach have definitely been shown to be signifi-
cantly worse in terms of the resulting model accuracy as 
well as time needed to construct such model.

Experimental
Several compounds datasets were prepared and their 
proper description using various fingerprints was provided 
for the planned experiments. The ChEMBL database con-
stituted a source of active and inactive compounds with 
experimentally verified activity towards selected targets. 
The following proteins were considered in the study: ser-
otonin receptors 5-HT2A  [11], 5-HT2C  [12], 5-HT6  [13], 
and 5-HT7  [14], cyclin dependent kinase 2 (CDK2)  [15], 
muscarinic receptor M1  [16], MAP kinase ERK2  [17], 
acetylcholinesterase (AChE)  [18], adenosine receptor 
A1  [19], alpha-2A adrenergic receptor [20], beta-1 adren-
ergic receptor (beta1AR) [21], beta-3 adrenergic receptor 
(beta3AR) [21], cannabinoid CB1 receptor [22], delta opi-
oid receptor (DOR) [23], dopamine receptor D4 [24], his-
tamine receptor H1 [25], histamine receptor H3 [26], HIV 
integrase (HIVi)  [27], insulin receptor (IR)  [28], tyrosine 
kinase ABL [29], and human leukocyte elastase (HLE) [30]. 
Only molecules whose activities were quantified in Ki or 
IC50 and that were tested in assays on human, rat-cloned 
or native receptors were taken into account. The com-
pounds were considered active when the median value of 
all Ki values provided for a particular instance was lower 
than 100 nM, and inactive when the median Ki value was 
greater than 1000 nM. The number of compounds from 
each group for the selected targets is shown in Table  6. 
The following fingerprints were used for compounds rep-
resentation: E-state Fingerprint (EstateFP)  [31], Extended 
Fingerprint (ExtFP)  [32], Klekota and Roth Fingerprint 
(KlekFP)  [33], MACCS Fingerprints (MACCSFP)  [34], 
Pubchem Fingerprint (PubchemFP), and Substructure 
Fingerprint (SubFP), generated with the use of the PaDEL-
Descriptor [35]. A brief characterization of the fingerprints 
is provided in Table 7).

The following SVM strategies were used:

• • default SVM parameters used in the WEKA package 
(C = 1, γ = 1

d
)—libSVM.

• • default SVM parameters from the SVMlight library 
(C = 1

mean
i

�xi�2
, γ = 1

d
).

• • grid search optimization of SVM parame-
ters—log10(C) ∈ [−2, 5], log10(γ ) ∈ [−10, 3].

• • SVM parameters optimization in the truncated 
cross-validation mode (‘small grid’-cv).

• • SVM parameters optimization in the random cross-
validation mode—number of iterations: up to 150.

• • Bayesian optimization using BayesOpt [36]—number 
of iterations: up to 150.

The range of C and γ values tested was as follows: 
log10(C) ∈ [−2, 5], log10(γ ) ∈ [−10, 3] (the result of 
preliminary grid search experiments). The number of 
iterations in which random search, ’small grid’-cv and 
Bayesian optimization experiments were performed fell 
within the following set: 20, 30, 50, 75, 100, 150.

The predictive power of SVM for different optimization 
strategies applied was measured by the accuracy:

with TP being the number of true positives (correctly 
classified actives), TN—the number of true negatives 
(correctly classified inactives), FP—the number of false 
positives (inactives wrongly classified as active), and 
FN—the number of false negatives (actives wrongly clas-
sified as inactive).

Conclusions
The paper presents strengths of Bayesian optimization 
applied for fitting SVM hyperparameters in cheminfor-
matics tasks. Because the importance and necessity of 
the SVM optimization procedure is undeniable, vari-
ous approaches to this task have neen developed so far. 
However, the most popular approaches to SVM optimi-
zation are not always very effective, in terms of both the 

Accuracy(TP, FP,TN , FN ) =
TP+ TN

TP+ TN + FP+ FN
,

Table 6  The number of  active and  inactive compounds 
in the dataset

Protein Actives Inactives

5-HT2A 1836 852

5-HT2C 1211 927

5-HT6 1491 342

5-HT7 705 340

CDK2 741 1462

M1 760 939

ERK2 72 958

AChE 1147 1804

A1 1789 2286

alpha2AR 364 283

beta1AR 195 477

beta3AR 111 133

CB1 1964 1714

DOR 2535 1992

D4 1034 449

H1 636 546

H3 2706 313

HIVi 102 915

IR 147 1139

ABL 409 582

HLE 820 610
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predictive power of the models obtained and the com-
putational requirements. This study demonstrated that 
Bayesian optimization not only provides better classifi-
cation accuracy than the other optimization approaches 
tested but is also much faster and directed—in the 
majority of cases, the number of iterations required to 
achieve optimal performance was the lowest out of the 
all methods tested, and the set of parameters tested 
provided the best predictions on average. Interestingly, 
if good classification results are desired to be obtained 
quickly (using a low number of iterations and without 
complex algorithms), the random search method in 
which hyperparameters are randomly selected from a 
predefined range) leads to very good performance of the 
SVM for predicting the activity of compounds and can 
thus be used when Bayesian optimization approach is 
not feasible.

Consequently, we can formulate the following rule of 
thumb for tuning SVM’s hyperparameters for the classi-
fication of bioactive compounds:

1.	 If you have no resources for performing hyperparam-
eters optimization, use C = 1, γ = 1

d
 (as defined in 

libSVM).
2.	 If you have limited resources (up to 20 learning pro-

cedures) or limited access to complex optimization 
software, use a random search for C and γ with dis-
tribution defined in the “Methods” section.

3.	 If you have resources for 20 or more training runs 
and access to Bayesian optimization softwarea, use a 
Bayesian optimization of C , γ.

In general, there is no scenario in which one should 
use a grid search approach (it is always preferable to use 
random search or a Bayesian method) or SVMlight heu-
ristics (it is always better to use libSVM) in the tasks con-
nected with the assessment of compounds bioactivity.

Methods
The objective of the iterative global optimization of a 
function f : L → R is to find the sequence of points

that converges to the optimal �̂, f (�̂) = sup�∈L f (�). A 
good algorithm should find a solution at least over some 
family of functions F , not necessarily containing f.

The above-mentioned issue can be viewed as a sequen-
tial decision making problem [37] in which at time step 
i a decision based on all previous points αi(�1:i−1, f̄1:i−1),  
where f̄i = f (xi)+ εi is made. In other words, we have 
access to approximations of f values from previous steps. 
For simplicity, assume that εi = 0 (f is deterministic); 
however, in general, all methods considered can be used 
in a stochastic scenario (for example, when randomized 
cross-validation is used as underlying method for f 
evaluation).

The goal is to find α which minimizes 
δn(α) = f (�̂)− f (�n), meaning that we are interested in

which could be efficiently solved if f is known.

Approximation of generalization capabilities
In general, we are interested in how well our predictive 
model behaves on a naive test set. In other words, we are 
assuming that our data are a finite iid (independent and 
identically distributed) sample from some underlying 
joint distribution over samples (compounds) and their 
binary labels (biological activity) µ:

where X  represents a feature space of compounds under 
investigation. We want to maximize the expected accu-
racy over all possible compounds from µ, in other words

�1, . . . , �n ∈ L,

(1)arg min
α

δn(α) = arg min
α

f (�̂)− f (�n),

T = {(xi, yi)
N
i=1} ∼ µ(X × {−1,+1}),

Table 7  Fingerprints used for compounds representation

Fingerprint Abbreviation Length Short description

E-State fingerprint EStateFP 79 Computes electrotopological state (E-state) index for each atom, describing its electronic state 
with consideration of the influence of other atoms in particular structure

Extended fingerprint ExtFP 1024 A hashed fingerprint with each atom in the given structure being a starting point of a string of 
a length not exceeding six atoms. A hash code is produced for every path of such type and in 
turn it constitutes the basis of a bit string representing the whole structure

Klekota and Roth finger-
print

KlekFP 4860 Fingerprint analyzing the occurrence of particular chemical substructures in the given com-
pound. Developed by Klekota and Roth

MACCS fingerprint MACCSFP 166 Fingerprint using the MACCS keys in its bits definition

Pubchem fingerprint PubchemFP 881 Substructure fingerprint with bits divided into several sections: hierarchic element counts, 
rings, simple atom pairs, simple atom nearest neighbours, detailed atom neighbourhoods, 
simple SMART patterns, complex SMART patterns

Substructure fingerprint SubFP 308 Substructure fingerprint based on the SMART patterns developed by Christian Laggner
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where [ p ] is a characteristic function returning 1 if and 
only if p is true, and svm(xi|T, �) is a prediction of xi’s 
label by SVM trained with hyperparameters � on training 
set T.

Clearly, we cannot integrate over an unknown prob-
ability distribution, but we can approximate this value 
using internal cross-validation. In other words, we are 
using a stochastic approximation

where CVT(p, y) is the mean accuracy of the model of 
predictions p as compared to the true labels y over splits 
of set T into Ttrain and Ttest (composed of Xtest data and 
corresponding labels Ytest). Thus we can assume [38] that

where ε is a random noise variable (resulting from the 
approximating error and stochastic nature of cross 
validation).

Random optimization
First, let us define a random optimization technique as 
a strategy αR

(�1:i−1, f̄1:i−1) = α
R

i = �i ∼ P(L), for some 
probability distribution over the hyperparameters P(L). 
In other words, in each iteration, we sample from P(L),  
ignoring all previous samples and their results. Finally, 
we return the maximum of the values obtained.

It is easily seen that a random search, under the 
assumption that ∀�∈LP(αR

i = �) > 0, has a property 
described in (1). A random search will converge to the 
optimum  [39], if only each set of parameters is possi-
ble to generate when taking new sample from our deci-
sion making process. In practise, it is only necessary that 
P(f (αR

i ) = f (�̂)) > 0. Similarly, if one uses a grid search 
approach that discretizes L, then given enough iterations 
and the assumption that f is continuous, one will con-
verge to the optimal solution. It is important to note that 
the speed of such a convergence can be extremely low.

The only thing missing is the selection of P(L). Accord-
ing to many empirical studies showing that meaningful 
changes in the SVM results as the function of its hyper-
parameters can be expressed in log-scale of these param-
eters we use

where we are interested in L = [Cmin,Cmax] × [γmin, γmax].  
In other words, we are using a log-uniform distributions 
independently over C and γ.

f (�) = E(xi ,yi)∼µ[svm(xi|T, �) = yi]

=

∫

[svm(xi|T, �) = yi]dµ,

f̄ (�) = CVT(svm(Xtest|Ttrain, �),Ytest),

f̄ (�) = f (�)+ ε,

P(� = (C , γ )) =
log10 C−log10 Cmin

log10 Cmax−log10 Cmin
·

log10 γ−log10 γmin

log10 γmax−log10 γmin

Grid search
For grid search optimization we select � in a similar 
manner to the random search approach, uniformly in 
the log-scale of the parameters, and given Mp choices of 
parameter p

We put the linear order of �ij by raveling the resulting 
matrix by column, which is the most common practice 
in most ML libraries. It is worth noting that one could 
achieve better scores by alternating this ordering to any 
random permutation; however, in practice, such alterna-
tion is rarely performed.

Bayesian optimization
If the exact form of f is known (for example, if f is convex 
and its derivative is known), then the optimization proce-
dure would be much simpler. Unfortunately, f is a black-
box function wih a very complex structure, expensive 
even to evaluate. However, some simplifying assumptions 
for f might make a problem solvable. Assume that f can 
be represented as a sample from a probability distribu-
tion over a family of functions f ∼ P(f ), f ∈ F .

We can now express the expectation over the loss func-
tion δn:

Given that in step n the values of �i, f̄i for i = 1, . . . , n− 1 
are already known and using the Bayes rule, we can write:

thus

This is a very basic equation for general Bayesian optimi-
zation techniques. Given additional assumptions about 
the prior distribution of P(f ), very efficient solutions for 
the entire process can be provided. In the case consid-
ered here, a very common approach exploiting features 
of the Gaussian processes is employed; thus, we assume 

�ij = (Ci, γj)

=

(

10
log10 Cmin+(i−1)

log10 Cmax−log10 Cmin

MC−1 ,

10
log10 γmin+(j−1)

log10 γmax−log10 γmin

Mγ−1

)

.

arg min
α

EP(f )[δn(α)] = arg min
α

∫

F

δn(α)dP(f ).

P(f |x1:i, f̄1:i) =
P(xi, f̄i|f )P(f |x1:i−1, f̄1:i−1)

P(xi, f̄i)
,

∀i = 1, . . . , n− 1,

arg min
α

E
P(f |x1:n−1,f̄1:n−1)

[δn(α)]

= arg min
α

∫

F

δn(α)dP(f |x1:n−1, f̄1:n−1).
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that our target function (the generalization capabilities of 
the SVM with RBF kernel applied to the prediction of the 
activity of chemical compounds) f is a sample of the sto-
chastic process. A crucial advantage of such a simplifica-
tion is that we can easily manipulate the distribution over 
such functions: in particular, the posterior distribution is 
also a Gaussian process. Consequently, in each iteration a 
calculated posterior can be used as an informative prior 
for the next iteration, creating a relatively simple iterative 
procedure.

The only thing missing is the selection of the loss func-
tion, because δn(α) defined above requires knowledge of 
the optimal solution. There are many surrogate functions 
(also called proxies) that might be of use. In our investiga-
tions we used one of the most well-known [7] and studied 
expected improvement  [40, 41], which has the following 
closed form solution under the above assumptions:

where µ, σ 2 are Gaussian process mean and vari-
ance predictions, �best is a current best solution 
f (�best) = maxi=1,...,n−1 f (�i), φ is a cumulative density 
function of the standard normal distribution and N  is a 
probability density function of the standard normal dis-
tribution. Thus, in each iteration we simply select the 
point that maximizes the above equation

Endnotes
aFor example BayesOpt http://rmcantin.bitbucket.org/

html/

αEI(�|�1:n−1, f̄1:n−1) = σ(�|�1:n−1, f̄1:n−1)(γ (�)φ(γ (�))

+N (γ (�))),

γ (�) =
µ(�|�1:n−1, f̄1:n−1)− f (�best)

σ (�|�1:n−1, f̄1:n−1)

αn(�1:n−1, f̄1:n−1) = arg max
�
αEI(�|�1:n−1, f̄1:n−1).
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