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Abstract

Background: Osteoporosis is a common metabolic bone disease without effective treatment. Bone marrow-derived
mesenchymal stem cells (BMSCs) have the potential to differentiate into multiple cell types. Increased adipogenic
differentiation or reduced osteogenic differentiation of BMSCs might lead to osteoporosis. Whether static magnetic
fields (SMFs) might influence the adipo-osteogenic differentiation balance of BMSCs remains unknown.

Methods: The effects of SMFs on lineage differentiation of BMSCs and development of osteoporosis were
determined by various biochemical (RT-PCR and Western blot), morphological (staining and optical microscopy),
and micro-CT assays. Bioinformatics analysis was also used to explore the signaling pathways.

Results: In this study, we found that SMFs (0.2-0.6 T) inhibited the adipogenic differentiation of BMSCs but
promoted their osteoblastic differentiation in an intensity-dependent manner. Whole genomic RNA-seq and
bioinformatics analysis revealed that SMF (0.6 T) decreased the PPARy-mediated gene expression but increased the
RUNX2-mediated gene transcription in BMSCs. Moreover, SMFs markedly alleviated bone mass loss induced by
either dexamethasone or all-trans retinoic acid in mice.

Conclusions: Taken together, our results suggested that SMF-based magnetotherapy might serve as an adjunctive
therapeutic option for patients with osteoporosis.
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Background

Osteoporosis is a common bone and metabolic disease,
characterized by reduced bone formation and increased
fat accumulation in the bone marrow space, leading to
decreased bone mineral density (BMD) and increased
bone fractures [1]. As such, it is reported to be respon-
sible for more than 1.5 million fractures worldwide an-
nually [2]. Both adipose-derived stem cells (ASCs) and
bone marrow-derived mesenchymal stem cells (BMSCs)
are multipotent progenitor cells with the potential to
differentiate into various mature cell types, including os-
teoblasts, chondrocytes, and adipocytes [3, 4], which
have been utilized extensively in the research field of
bone tissue regeneration. Despite higher proliferative
capacity for ASCs, BMSCs display more potential for
osteogenic and chondrogenic differentiation [5, 6]. Dis-
rupting the dynamic balance between adipogenic and
osteogenic differentiation of BMSCs, such as increased
differentiation toward adipocytes or reduced differenti-
ation toward osteoblasts, has been shown to cause osteo-
porosis and other bone and metabolic diseases [7, 8]. As
pleiotropic drugs, metformin and rapamycin have been
reported to promote bone generation and improve bone
density by increasing osteogenic differentiation potential
of BMSCs [9, 10]. Moreover, physical activities have also
been found to induce mobilization of stem cells and pro-
mote bone regeneration [11, 12]. However, the mecha-
nisms behind the fine-tuned regulation of the
commitment of the BMSC lineage to differentiate to os-
teoblasts versus adipocytes remain elusive.

Humans are exposed to the naturally occurring mag-
netic fields of the earth. Lack of exposure to natural
magnetic fields, such as staying in space, has been re-
ported to cause insomnia, fatigue, depression, and in-
creased predisposition for osteoporosis in humans [13],
suggesting that the magnetic field might be beneficial for
physiological function and human health. Accumulated
evidence has shown that static magnetic fields (SMFs)
might act on a variety of potential targeting organs and
tissues, exerting favorable physiological effects on many
biological systems, including suppression of inflamma-
tory reactions [14], reduction of edema formation [15],
improvement of microcirculation and blood flow [16,
17], relief of osteoarthritis-induced pain [18], and facili-
tation of wound healing [19]. Therefore, magnetotherapy
has been officially approved by the US Food and Drug
Administration (FDA) for the treatment of pain and
edema in superficial soft tissues for orthopedic applica-
tions [20]. Moreover, moderate-intensity SMF has been
shown to enhance repair after cartilage damage and ac-
celerate the formation of new bone tissue in rat models,
by promoting extracellular matrix deposition [21, 22].
SMF treatment has been reported to increase BMD of
osteoporotic lumbar vertebrae in ovariectomized rats
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[23] and prevent the architectural deterioration and
strength reduction of bones in streptozotocin-treated
diabetic rats by enhancing osteogenic differentiation
[24]. These observations strongly suggest that SMF
might help prevent and treat osteoporosis. However,
whether SMFs might participate in the reciprocal regula-
tion between adipocyte and osteoblast differentiation of
BMSCs and the subsequent control of the adipo-
osteogenic balance remains to be determined.

In the present study, we stimulated BMSCs during
adipogenic and osteogenic differentiation with different
intensities of SMFs (0T, 0.2T, 04T, and 0.6T), and
found SMFs promoted osteoblastic differentiation, but
inhibited adipogenic differentiation of BMSCs in an
intensity-dependent manner. Whole genomic RNA-seq
analysis demonstrated SMFs decreased PPARy-driven
gene expression while increased RUNX2-driven gene
transcription in BMSCs. Moreover, SMFs markedly alle-
viated bone mass loss induced by either dexamethasone
(Dex) or all-trans retinoic acid (ATRA) in mice. Thus,
our study reveals moderate intensity SMFs may serve as
an adjunctive therapeutic option for osteoporosis.

Methods

Animals

Wild-type C57BL/6] mice were purchased from Gem-
Pharmatech Co. Ltd. and were housed in specific
pathogen-free animal facilities of the Tianjin Medical
University. Accordingly, 8—10-week-old male mice were
used in this study. All animal experiments were per-
formed in accordance with the Guidelines of the Institu-
tional Animal Care and Use Committee of Tianjin
Medical University.

Reagents

CD29-APC, CD105-PE-Cy7, Scal-FITC, and c-kit-APC
antibodies were purchased from Thermo Fisher Scien-
tific (eBioscience), while CD44-Percp5.5, CD90-BV421,
CD34-PE, CD45-APC, and CD11b-FITC antibodies were
obtained from Biolegend. Oil red O (ORO), alizarin red
S (ALS), all-trans retinoic acid (ATRA), dexamethasone
(Dex), and mineral oil were purchased from Sigma-
Aldrich.

Moderate SMF exposure system

For the creation of the SMF exposure system, gradient
permanent neodymium magnets (130 x 110 x 60 mm)
were assembled beneath the cell plates to expose the
cultures to north fields (N; Fig. 1a). The distribution of
the representative SMF (0.6 T), measured using a digital
Tesla meter (HT20), was shown in Fig. 1b, c. For mouse
exposure, the magnetic or nonmagnetic sandwich plates
(230 x 130 x 15 mm), in which 24 magnets (10 mm diam-
eter and 15 mm thickness) were inserted with alternating
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Fig. 1 Schematic diagram of the static magnetic field (SMF) systems. a A permanent magnet assembled beneath the cell plates to generate an
SMEF environment. b, ¢ Intensity distribution of SMF of the 130 X 110 x 60 mm magnet (0.6 T shown here) for the cell exposure experiments. d
The magnetic or nonmagnetic sandwich plates (230 x 130 x 15 mm), in which 24 magnets (10 mm diameter and 15 mm thickness) were inserted
with alternating magnetic poles (north or south; N or S) facing up, were placed beneath the cages in which mice were housed. e-f The
distribution of SMF intensity of the 230 x 130 x 15 mm control magnetic equipment (0T; e) and 0.6 T magnetic sandwich plate (f) used for the
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magnetic poles (north or south; N or S) facing up, were
placed beneath the mouse cages and separated by spaced
holes (Fig. 1d) as previously reported [19, 25]. The SMF
intensity distribution of control and 0.6 T magnetic
sandwich plates were shown in Fig. le and Fig. 1f,
respectively, as measured by a space magnetic field
measuring instrument (FE-2100RD).

Cell culture
BMSCs were isolated from femoral bones of male mice
(4-6 week-old), as previously reported [26, 27]. At

passage 3, BMSCs were subjected to purification by flow
cytometry through the identification of CD29, CD44,
CD90, CD105, and Sca-1 positive surface markers and
CD11b, CD34, CD45, and c-kit negative surface markers,
as shown in sFig. 1. Then, BMSCs were subjected to adi-
pogenic and osteogenic differentiation using the respect-
ive induction media.

Adipogenic differentiation assay
Isolated BMSCs were maintained in a-MEM containing
10% fetal bovine serum (16000-044, Gibco, USA), 100 U/
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mL penicillin, and 0.1 mg/mL streptomycin (C125CS,
NCM Biotech). For adipogenic differentiation, BMSCs
were grown in basal medium supplemented with 1 uM
Dex (Sigma-Aldrich), 0.5mM 3-isobutyl-1-methylxan-
thine (Sigma-Aldrich), 10pg/mL insulin (Sigma-Al-
drich), and 1pM rosiglitazone (Sigma-Aldrich) for
14 days. The culture medium was replaced every other
day. Fat droplet formation was visualized by ORO stain-
ing and quantified using the Image ] software.

Osteogenic differentiation assay

BMSCs were grown in basal medium until appropriate
cell confluence (approximately 70%). For osteogenic
differentiation, BMSCs were cultured in osteogenic
induction medium containing 50 mM ascorbate-2-
phosphate, 0.1 mM dexamethasone, and 10mM f-
glycerol phosphate for 21 days. The culture medium was
changed every third day. After osteogenic differentiation
for 3 days, cultured BMSCs were fixed with 70% (v/v)
ethanol and incubated in 0.25% (w/v) naphthol AS-BI
phosphate solution and 0.75% (w/v) Fast Blue BB in 0.1
M Tris buffer before alkaline phosphatase (ALP) stain-
ing. A commercial ALP activity kit (Sigma-Aldrich) was
used to assess the ALP activity of differentiated cells ac-
cording to the manufacturer’s instructions, following
normalization by total cell protein. At the end of differ-
entiation, alizarin red S (ALS) staining was performed to
evaluate the mineralization of the cell matrix.

Histological analysis

Paraffin-embedded femurs were sectioned (5 pm), depar-
affinized, and then stained with hematoxylin and eosin
(H&E) for morphological analysis. For immunohisto-
chemistry staining, deparaffinized and dehydrated tissue
sections were re-hydrated before being subjected to anti-
gen retrieval, and then blocked with diluted normal
serum for at least 1-1.5h at 25°C to eliminate nonspe-
cific binding. The slides were incubated with primary
antibodies against osteocalcin (OCN) (1:300; Abcam)
overnight at 4°C. After careful washing, the sections
were incubated with horseradish peroxidase conjugates
to detect positive signals, followed by counterstaining
with hematoxylin (Sigma-Aldrich). Slides incubated with
polyclonal rabbit IgG (Abcam) served as negative con-
trols. Pictures were captured and monitored using a
Leica Microsystems microscope (Leica Microsystems
Ltd.), while the Image] software (National Institutes of
Health) was used to analyze the number or area of adi-
pocytes and osteoblasts.

Real-time quantitative PCR

Total mRNA was extracted from BMSCs grown in adi-
pogenic or osteogenic medium using TRIzol reagent
(Invitrogen) and reverse-transcribed to ¢cDNA using a
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Reverse Transcription Reagent kit (Takara Bio Inc.) ac-
cording to the manufacturer’s protocol. The resulting
c¢DNA was amplified using the Real-Time PCR system
(LightCycler 480 II, Roche) with 40 cycles. Sequences of
primers for target genes are presented in Supplementary
Table 1. The mRNA levels of the specific genes were
normalized to that of a reference gene (B-actin) within
the samples.

Western blotting

After being cultured in adipogenic or osteogenic
medium, BMSCs were harvested and lysed with RIPA
(Solarbio). Protein concentrations were quantified using
a BCA Protein Assay Kit (Thermo Fisher Scientific).
Equal amounts of protein were denatured and resolved
by 10% sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis, transferred to polyvinylidene fluoride mem-
branes (Millipore), incubated with 5% skimmed milk
(Biofath) for 1-1.5h at 25°C, and then incubated over-
night at 4 °C with primary antibodies. Primary antibodies
were diluted as follows: PPARy (1:500; Santa Cruz Bio-
technology), Fabp4 (1:1000; Abcam), Runx2 (1:1000; Cell
Signaling Technology), and ALP (1:1000; Santa Cruz
Biotechnology). B-Actin (1:5000; Cell Signaling Technol-
ogy) or a-Tubulin (1:10,000; Sungene Biotech) was used
as loading control. Consecutively, the membranes were
incubated with horseradish peroxidase-conjugated sec-
ondary antibodies (1:2000; Cell Signaling Technology)
dissolved in blocking buffer for 2 h at 25°C. Blots were
detected using an enhanced chemiluminescent reagent
kit (Thermo Fisher Scientific).

RNA-seq

BMSCs plated in 10 cm dishes were exposed on a con-
trol iron plate (0 T) or a magnetic plate (0.6 T) for 48 h
respectively. Then, BMSCs were washed by cold PBS for
3 times and then lysed by using Trizol at room
temperature. Samples were sent to Novogene on dry ice
for library preparation and sequencing. A total amount
of 3 mg RNA per sample was used as input material for
the RNA sample preparations. Sequencing libraries were
generated using NEBNext UltraTM RNA Library Prep it
for Ilumina (NEB, USA) following manufacturer’s rec-
ommendations and index codes were added to attribute
sequences to each sample. The clustering of the index-
coded samples was performed on a cBot Cluster Gener-
ation System using TruSeq PE Cluster Kit v3-cBot-HS
(llumia) according to the manufacturer’s instructions.
After cluster generation, the library preparations were
sequenced on an Illumina platform and 150 bp paired-
end reads were generated. R software version GSEA and
package fgsea were used for cellular pathway analysis in-
cluding Hallmark gene sets and GO gene sets.
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Microcomputed tomography (micro-CT) scan

Femurs of the same side were dissected from mice
treated with ATRA for 21 days [28] or treated with Dex
for 3 months [29] and fixed with 4% paraformaldehyde
for more than 24 h. Then, the samples were scanned and
analyzed using a micro-CT System (Skyscan 1172,
Bruker) with a high resolution (voltage 50 kV; current
201 pA; resolution 12 mm/pixel), as reported [30]. The
NRecon image reconstruction software (Bruker), CTVol
3D model visualization software (Bruker), and CTAn
data analysis software (Bruker) were used to analyze the
parameters of the trabecular bones. For distal femurs, re-
gions of interest were selected for the analysis of BMD,
trabecular bone volume per tissue volume (Tb.BV/TV),
trabecular separation (Tb.Sp), trabecular number (Tb.N),
and trabecular thickness (Tb.Th).

Statistical analysis

Data were analyzed using GraphPad Prism version 6.0
and are presented as the mean + standard error of the
mean. Two-tailed unpaired Student’s ¢ test or one-way
ANOVA with Bonferroni post hoc analyses were applied
when appropriate for multiple comparisons. A value of
P <0.05 was considered statistically significant.

Results

Moderate SMFs inhibited adipogenic differentiation of
murine BMSCs

To investigate the effect of SMFs on the adipogenic dif-
ferentiation of BMSCs, BMSCs grown in adipogenic
medium were exposed to different intensities of moder-
ate SMFs (0, 0.2, 0.4, and 0.6 T). ORO staining showed
that SMFs significantly inhibited lipid-droplet formation
in BMSCs in adipogenic medium in an intensity-
dependent manner (Fig. 2a, b). The expression of
adipogenic transcription factors, such as CCAAT/enhan-
cer-binding protein o, B, and & (Cebpa, Cebpfs, and
Cebpd), was shown to be lower in SMEF-stimulated
BMSCs than those in control cells (Fig. 2c—e). Moreover,
the mRNA levels of Ppary adipogenic marker and those
of its downstream targets, adiponectin, cluster of differ-
entiation 36 (Cd36), and fatty acid binding protein 4
(Fabp4) (Fig. 2f-i), were demonstrated to be markedly
decreased in SMFs-treated BMSCs compared with iron
control (0T). In contrast, high intensity SMF (0.6 T)
displayed a more apparent inhibitory effect on BMSC
differentiation toward adipocytes than lower intensities
(0.2 and 0.4 T; Fig. 2a—f).

Moderate SMFs suppressed PPARy-mediated signaling in
BMSCs upon adipogenic differentiation

RNA profile analysis also revealed that some adipogenic
transcription factors (Cebpa, Cebpf, Cebpd, and Ppary)
and adipocyte marker genes (CD36, Fabp4, Igfbp2, Scdl,
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Fasn, Lpi, Mgst3, and Lep) were downregulated in 0.6 T
SME-stimulated BMSCs compared with those in unchal-
lenged BMSCs (Fig. 3a). The downregulation of the
Ppary and Fabp4 genes was further validated in SMF-
stimulated BMSCs by western blot analysis (Fig. 3b). To
correlate the differentially expressed genes with bio-
logical functions, we analyzed the functional bias of the
differentially expressed genes according to Gene Ontol-
ogy (GO) enrichment. Our results revealed that SMF
altered many metabolic processes in BMSCs, including
peptide biosynthetic process, translation, ATP metabolic
process, purine ribonucleoside metabolic process, and
nucleoside metabolic process (Fig. 3c). Gene-set enrich-
ment analysis (GSEA) showed that PPARy-positively
correlated genes were remarkably enriched in iron
control-treated BMSCs, compared with those in SMF-
exposed cells (false discovery rate (FDR) g value = 0.009)
(Fig. 3d).

Moderate SMFs promoted osteogenic differentiation of
murine BMSCs

To investigate whether exposure to SMF might affect
the osteogenic differentiation of BMSCs, we examined
the phenotypical changes of SMFs-challenged BMSCs
cultured in osteogenesis induction medium. After osteo-
genic induction, we found that moderate SMFs en-
hanced the production of ALP, an early marker of
osteogenesis in BMSCs in a dose-dependent manner
(Fig. 4a, b). Consistently, ALS staining and quantification
of ALS absorption revealed a significant enhancement of
osteogenesis in SMF-stimulated BMSCs compared with
controls (Fig. 4c, d). Moreover, the mRNA levels of the
key osteogenic transcription factors Runx2 and osterix
(Osx) (Fig. 4e, f) and those of collal, colla2, Alp, and
Sppl osteogenic marker genes (Fig. 4g—j) were demon-
strated to be increased in SMF-exposed BMSCs in a
dose-dependent fashion. These results suggested that
SMFs promoted osteoblast differentiation of BMSCs.

Moderate SMFs facilitated BMSC differentiation to
osteoblasts via activating the Runx2 signaling pathway
RNA-seq analysis uncovered that the osteogenic tran-
scription factor Rumx2 and the osteoblast markers
(Collal, Colia2, Alp, Ogn, Omd, Dcn, Mgp, Ank, Sparc,
Smpd3, Bgn, and Matn4) were also notably upregulated
in SMF-exposed BMSCs cultured in osteogenesis induc-
tion medium, as compared with those in control BMSCs
(Fig. 5a). Consistent with the mRNA expression results
obtained by qPCR and RNA-seq, western blot analysis
also showed an increase in the protein expression of the
two key osteogenic markers, RUNX2 and ALP, in SMF-
exposed BMSCs (Fig. 5b). Moreover, GO analysis
showed that, upon osteogenic stimulation, SMF altered
the gene expression associated with the development of
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Fig. 2 SMF suppresses adipogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). a Representative images of oil red O
(ORO) staining of lipids in BMSCs cultured in adipogenic medium and treated with gradient SMFs (0, 0.2, 04, and 0.6 T) for 14 days. Scale bar,

100 um. b Quantification of the ORO-positive staining area. *P < 0.05, **P < 0.01, as indicated. n =4 per group. c-i Expression of adipogenic

—f) and marker genes (g-i) in BMSCs grown in adipogenesis induction medium and treated with gradient SMFs. *P < 0.05,

the skeletal system, metabolic process of collagen, cata-
bolic process of lipids, and others (Fig. 5c). Finally,
GSEA analysis revealed that RUNX2 positively corre-
lated genes were notably enriched in SMF-exposed
BMSCs (0.6 T), compared with control cells (0 T) (FDR
q value = 0.034) (Fig. 5d).

Moderate SMFs reduced ATRA- or Dex-induced bone loss
in mice

Chronic administration of the active metabolite of vita-
min A, ATRA, has been reported to lead to significant
bone loss in mice [28]. To explore whether SMFs might

exert a preventive role in osteoporosis, ATRA-
challenged mice were exposed to SMFs of varying inten-
sities (0, 0.2, 0.4, and 0.6 T). ATRA significantly induced
bone loss in mice by decreasing bone density (Fig. 6a—c)
and Tb.BV/TV and Tb.N (Fig. 6d, e), thus increasing
Tb.Sp (Fig. 6f) without markedly influencing trabecular
thickness (Fig. 6g). Consistent with the micro-CT images
(Fig. 6a, b), histological analysis showed that ATRA pro-
moted the accumulation of adipocytes in the bone mar-
row (Fig. 6h—j) and reduced OCN-positive osteoblasts
on both the trabecular and endosteal bone surfaces
(Fig. 6k, 1) in mice. However, SMFs were shown to
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notably attenuate the ATRA-induced bone loss in mice
by increasing bone density and the total trabecular ratio,
reducing the deposition of adipocytes in the bone mar-
row, and inducing osteoblast regeneration in mice
(Fig. 6a—1). Moreover, this effect was noted to be occur-
ring in an SMF intensity-dependent fashion.

We also tested the effects of SMF intervention on
Dex-induced bone loss in mice. As shown in Fig. 7a-1,
SMFs significantly prevented Dex-induced bone loss in
mice by increasing bone density and the total trabecular

ratio, reducing the deposition of adipocytes in the bone
marrow and inducing osteoblast regeneration in mice in
an intensity-dependent manner.

Discussion

In this study, we stimulated BMSCs during adipogenic
and osteogenic differentiation with different intensities
of SMFs (0, 0.2, 0.4, and 0.6 T) and found that SMFs
promoted osteoblastic differentiation but inhibited adi-
pogenic differentiation of BMSCs in an intensity-
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osteogenic medium and treated with gradient SMF for 3 days. Scale bar, 100 um. b Detection of ALP activity. *P < 0.05, **P < 0.01 vs control or 0T
group. n=4 per group. ¢, d Representative images of alizarin red S (ALS) staining (c) and quantification of matrix mineralization by ALS
absorption (d) in BMSCs grown in osteogenesis induction medium and stimulated with gradient SMF for 21 days. Scale bar, 100 um. *P < 0.05,
**P <0.01, as indicated. n =4 per group. e-j Expression of key osteogenic transcription factors (Runx2 and Ost) (e and f) and osteoblast marker
genes (Collal, Colla2, Alp, and Spp1) (g—j) in BMSCs grown in osteogenesis induction medium and treated with gradient SMF. *P < 0.05, **P <
0.01, as indicated. n=8-10 per group. ns=not significant

dependent manner. Whole genomic RNA-seq analysis
demonstrated that SMFs decreased PPARy-driven gene
expression but increased RUNX2-driven gene transcrip-
tion in BMSCs. Moreover, SMFs markedly alleviated
bone mass loss induced by either Dex or ATRA in mice.
Thus, our study reveals the therapeutic potential of
moderate-intensity SMFs in osteoporosis.

Magnetic fields are known to modulate the behavior of
stem cells through multiple routes [31]. They are known
to reduce inflammation, facilitate wound healing, and in-
crease blood circulation [32]. In addition, magnetic field

therapy has been approved for the management of pain
and edema in superficial tissue inflammation by FDA
[20]. Extremely low-frequency magnetic fields have been
shown to influence cell proliferation by activation of
Na*/K* [33] and Ca®* [34] channels. SMF has been
commonly used in clinical practice as a tool, such as in
magnetic resonance imaging (MRI). Moderate-intensity
SMFs (1 mT to 1 T) were reported to enhance prolifera-
tion, migration, and dentinogenesis of dental pulp stem
cells by activating the p38 mitogen-activated protein kin-
ase pathway [35-37] and to induce osteo/odontogenesis
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and mineralization in dental pulp stem cells [37, 38]. promoted osteogenic differentiation of BMSCs in an
Similarly, moderate-intensity SMF also promoted neur- intensity-dependent manner by suppressing the PPARy
onal differentiation in fetal rat brain neural progenitor  signaling pathway and activating the RUNX2 signaling
cells [39] and induced the proliferation and osteoblastic ~ pathway. Their capacity to differentiate into osteoblastic
differentiation of BMSCs [40, 41]. and adipogenic lineages is dependent on various signaling

BMSCs are known to differentiate into adipocytes in-  pathways and key transcription factors [44]. Activation of
stead of osteoblasts with aging, leading to the occurrence  Runx2 and Osx has been found to promote osteogenic dif-
of osteoporosis, which is characterized by bone loss and  ferentiation and inhibit adipogenic differentiation of
progressive accumulation of fat [42, 43]. Here, we demon-  BMSCs [45]. Conversely, Cebpa, Cebpf3, and Ppary have
strated that SMFs repressed adipogenic differentiation but  been reported to drive adipogenesis and disrupt
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osteogenic differentiation of BMSCs [46, 47]. We demon-
strated that moderate-intensity SMFs notably inhibited
the expression of the Cebpf3 and Ppary adipogenic tran-
scription factors in BMSCs cultured in adipogenesis in-
duction medium but upregulated the Runx2 osteogenic
transcription factor and its downstream targeted genes in
BMSCs upon osteogenic stimulation. Bioinformatics ana-
lysis showed that SMFs altered the gene expression

associated with the metabolism of fat in adipogenic
medium-cultured BMSCs and promoted the expression of
genes associated with skeletal development and osteoblast
differentiation in osteogenic medium-cultured BMSCs.
Because SMFs are time-independent fields whose in-
tensity can be spatially dependent, they are able to freely
penetrate the biological tissues [48]. The biological ef-
fects of SMFs are known to be related to the dosing
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regimen, target tissue, magnet characteristics, and the
magnet support device [49]. Mechanistically, SMF has
been shown to be able to directly regulate the cell shape
and plasma membrane structure [50], interact with mag-
netic materials found in tissues [51], and modulate intra-
cellular levels of reactive oxygen/nitrogen species [52].
Additionally, SMFs have also been reported to exert
their effects by enhancing synthesis and secretion of
membrane-derived microvesicles (MVs), mediating drug

delivery and perhaps by inducing mitophagy [31, 53, 54].
Recently, an iron-sulfur cluster protein, called iron-
sulfur cluster assembly protein 1, was identified and vali-
dated in mammalian cells as a magnetic sensor [55, 56].
However, further studies are required to investigate how
SMFs regulate the RUNX2/PPARy-mediated signaling
pathways during BMSC differentiation.

Glucocorticoids are widely prescribed for the treat-
ment of autoimmune and inflammatory diseases;
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however, long-term treatment in the clinical setting has
been shown to frequently cause osteoporosis. We also
showed here that moderate SMFs promoted BMSC dif-
ferentiation to osteoblasts and prevented ATRA- and
Dex-induced bone loss in mice. Moreover, others have
also reported that SMFs markedly accelerate the healing
of osteotomized femur and promote bone regeneration
in rats [23, 57]. Therefore, SMF might be helpful for the
prevention and treatment of osteoporosis.

Both SMF and electromagnetic fields (EMF) includ-
ing pulsed electromagnetic fields (PEMF) can substan-
tially facilitate bone healing. For instance, EMFs
positively regulates osteogenic lineage commitment of
BMSCs [58]. Similarly, low-frequency PEMFs facilitate
bone repair by promoting osteoblast proliferation and
osteogenic differentiation of BMSCs [59]. Thus, as a
noninvasive, effective, and clinical safety treatment,
EMF therapies have been commercially used to pro-
mote bone un-united fracture healing [59-62] and
other skeletal disorders [63]. Compared to EMFs,
SMFs appear more convenient without additional
electrical devices, which avoids electric or heat hazard
to surrounding tissue [64]. Importantly, SMF stimula-
tion is suitable for long-term topical treatment [40,
65]. In this study, we demonstrate the moderate-
intensity SMFs ranging from 02T to 0.6T induce
bone repair in mice in a dose-dependent manner.

Conclusions

In summary, SMFs protected against ATRA- or Dex-
induced osteoporosis in mice by promoting the RUNX2-
mediated osteogenic differentiation and suppressing the
PPARy-mediated lipogenic differentiation of BMSCs.
These results suggested that SMF-based magnetotherapy
might be beneficial for patients with osteoporosis.

Highlights

e Moderate-intensity SMF promotes osteogenic
differentiation of BMSCs.

e Moderate-intensity SMF suppresses lipogenic
differentiation of BMSCs.

e Moderate-intensity SMF reduces bone mass loss
induced by either dexamethasone or all-trans retin-
oic acid in mice.
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