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Abstract

The injured spinal cord is difficult to repair and
regenerate. Traditional treatments are not effective.
Stem cells are a type of cells that have the potential
to differentiate into various cells, including neurons.
They exert a therapeutic effect by safely and
effectively differentiating into neurons or replacing
damaged cells, secreting neurotrophic factors, and
inhibiting the inflammatory response. Many types of
stem cells have been used for transplantation, and
each has its own advantages and disadvantages. This
review discusses the possible mechanisms of stem cell
therapy for spinal cord injury, and the types of stem
cells commonly used in experiments, to provide a
reference for basic and clinical research on stem cell
therapy for spinal cord injury.
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Introduction
Spinal cord injury (SCI) is currently the most difficult
traumatic neurological condition to treat in the clinic.
Following the primary injury, which causes immediate
structural damage, a series of secondary injuries, includ-
ing hemorrhage, edema, demyelination, and axonal and
neuronal necrosis, are involved in the pathological
process after SCI [1, 2]. Afterwards, a fibrous glial scar
formed by infiltrated inflammatory cells, including
microglia, fibroblasts, and reactive astrocytes, limits
axon regeneration across the lesion [3, 4]. Strategies
targeting these unique mechanisms, as well as

neuroprotective and regenerative therapies, are expected
to be used as treatments for SCI. Neuroprotective ther-
apy works by limiting secondary damage, while neurore-
generative strategies aim to replace the damaged cells,
axons, and circuits in the spinal cord [5]. Although few
neuroprotective and regenerative therapies that directly
exert beneficial effects are currently available [6], cell
therapies with neuroprotective effects and neuroregen-
eration potential may represent a new horizon in the
treatment of SCI. Since Orlic et al. [7] first performed
stem cell transplantation for coronary heart disease in
2001, stem cell transplantation has been widely
employed for the treatment of different diseased tissues
and organs. Although the biological characteristics of
various types of stem cells differ, the therapeutic effects
of stem cells that are recognized by the current research
are mainly manifested in three aspects. First, stem cells
have their own multidifferentiation potential and play a
role in replacing degenerative necrotic cells. In addition,
stem cells secrete anti-inflammatory factors that inhibit
the inflammatory reaction in the damaged microenvir-
onment. Finally, stem cells produce many cytokines,
growth factors, and cell adhesion factors that play
important roles in improving the microenvironment and
promoting tissue regeneration [8–10]. Based on these
characteristics, stem cell therapy is considered the most
promising treatment in regenerative medicine. In recent
years, with the advent of in-depth research of stem cell
biology and translational medicine, the use of stem cell
transplantation and stimulation of potential stem cell
differentiation in vivo to treat irreversible dysfunction
caused by SCI has achieved remarkable results [11, 12].
Although stem cell transplantation for SCI is currently
the most promising treatment used in neuroregenerative
medicine, the biological characteristics and physiological
functions of different types of stem cells vary (Table 1).
We reviewed the research progress that has recently
been achieved in applying these stem cells to treat SCI.
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Pathological period of SCI and stem cell therapy strategy
The pathological period of SCI is divided into three
phases: acute phase (< 48 h), sub-acute phase (48 h to 14
days), and chronic phase (> 6 months) [47]. Since each
characteristic pathophysiological period is different, the
appropriate cell therapy must be selected according to
these unique conditions. After the primary injury, the
first period is the acute phase. During this period, due to
hemorrhaging, the infiltration of inflammatory cells, cell
necrosis and the release of cytotoxic products, a strong
inflammatory reaction will occur in the injured area
[48]. Therefore, an anti-inflammatory treatment is par-
ticularly important in the acute phase [49]. In addition
to inflammatory, oxidative responses also play a
contributory role in the pathogenesis of the secondary
damage after SCI [11, 50]. During oxidative stress, mo-
lecular oxygen is inadequately reduced in the mitochon-
dria, resulting in excessive levels of ROS (reactive
oxygen species) [51]. ROS can then lead to various types
of destructive effects such as lipid peroxidation, DNA
damage as well as cell death [52]. Antioxidant therapy
attenuates oxidative stress injury in the acute phase,
which in turn contributes to the recovery of neurological
function after SCI [53–55]. The sub-acute phase follows
the acute phase, during which the cystic cavity begins to
coalesce, and damaged and denuded axons degenerate
or is retracted. During this period, treatments regulating
axon growth will promote neuritis elongation [6, 56]. In
the chronic phase, axonal regeneration is limited.
Therefore, remyelination will play a protective role in
this period [47]. In addition, strategies designed to
strengthen the correct neural circuits and synapse for-
mation also help to promote recovery in the later stages
of SCI [57]. Embryonic stem cells (ESCs), neural stem
cells (NSCs), mesenchymal stem cells (MSCs), and oligo-
dendrocyte precursor cells (OPCs) promote neuropro-
tection in a manner specific to each treatment
mechanism. MSCs, NSPCs, and Schwann cells are fre-
quently reported to function by secreting bioactive mol-
ecules such as trophic factors and cytokines. ESCs,
NSCs and MSCs are usually used to accelerate axonal
regeneration and growth; myelin regeneration is closely
related to oligodendrocytes derived from NSCs or OPCs
[58]. In addition, many other stem cells with different
functions have been used for therapeutic purposes.

Neural stem cells
Neural stem cells (NSCs) are stem cells located in the
lateral ventricle of the brain, the dentate gyrus of the
hippocampus, and the central canal of the spinal cord.
As a barrier to the brain and spinal cord parenchyma,
they are closely related to cerebrospinal fluid circulation
[27]. The main mechanism of the therapeutic effects of
NSCs on neurological diseases includes the modulation

of the astrocytes contribution to the glial scar, enhancing
oligodendrocyte differentiation and neuronal differenti-
ation [28], replacing the missing nerve cells in SCI and
secreting pro-regenerative factors to protect damaged
tissue cells and neuritis [59, 60]. Currently, the applica-
tion of NSCs in the treatment of SCI animal models is
mainly focused on the spinal crush injury model [61].
The transplantation of NSCs into the damaged spinal
cord tissue effectively promotes the recovery of body
function. On the one hand, NSCs entering the injured
area differentiate into neurons, which directly replace
the lost neurons or provide a neuronal substrate for
electrical signals to bridge or circumvent the lesion area
[28, 62]. Injured axons after SCI can form connections
with the transplanted NSCs, creating a relay circuit that
may potentially bridge the disrupted tracts [1, 63].
Axonal growth at the injury site is significantly acceler-
ated, and axonal conduction is modestly improved after
transplantation of NSCs [29]. On the other hand, NSCs
secrete a large number of growth-promoting factors
[BDNF, CNTF, GDNF, NGF, insulin growth factor-1
(IGF-1), etc.] to promote the survival and growth of
damaged neurons [30]. An important feature observed
following SCI is demyelination; thus, by promoting
oligodendrocyte differentiation, NSCs enhance myelin-
ation and improve motor and sensory function when
transplanted into the injured spinal cord [31]. The for-
mation of a glial scar is closely related to the differenti-
ation of NSCs. Without the scar component from NSCs,
the depth of the SCI progressively increases over time,
implying that NSCs function as a scaffold within the scar
to restrict the secondary enlargement of the lesion and
prevent the lesion from expanding after the initial insult
[64]. According to a previous study [65], the therapeutic
effects of NSC transplantation include immunomodula-
tory effects, such as the regulation of T cells and macro-
phages to inhibit inflammatory demyelination. Under
these conditions, the main role of NSCs is to reduce the
number of CD4+ T cells and shift microglia cells change
from a harmful to beneficial phenotype, and thus the
treatment of SCI by NSCs may be mediated by a com-
bination of multiple factors. Several clinical trials of
NSCs are ongoing, with early results showing segmental
and several sensory improvements below the injury level.
Studies published to date have shown that NSC
transplantation for SCI is relatively safe, but whether it
effectively improves the patient’s function after trans-
plantation remains controversial [32]. The phase II trials
by Stem Cells Inc. (Newark, California) of human CNS
stem cell transplants for cervical (n = 31; NCT02163876)
and thoracic (n = 12; NCT01321333) injury showed that
the sensory function of some patients with a mild injury
was restored [5], and no increase in treatment-related
complications was observed [33]. Although this study
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was terminated in 2016 due to an unknown reason, it
certainly provided a good foundation for the future ap-
plication of NSCs. Although the research on NSCs has
achieved substantial progress, the combination of NSCs
and other stem cell therapies might produce better
therapeutic effects.

Mesenchymal stem cells
Mesenchymal stem cells (MSCs) have become the favorite
seed cells in the preclinical and clinical practice of regen-
erative medicine due to their readily obtainable source,
wide biological effects, lack of ethical problems, and low
immunogenicity [13]. A large number of MSCs have been
obtained from tissues such as bone marrow, umbilical
cord, amnion, placenta, and adipose tissue [12]. Although
the characteristics of MSCs from different tissue sources
differ, MSCs have shown good therapeutic efficacy in the
treatment of various central nervous system (CNS) dis-
eases [66–68]. According to previous studies [14, 69, 70],
the transplantation of MSCs into animal models of Alz-
heimer’s disease, stroke, Parkinson’s disease, multiple
sclerosis, and lateral sclerosis effectively ameliorated the
symptoms of the animals. Furthermore, this effective
therapeutic effect is related to the anti-inflammatory, im-
munomodulatory, neurotrophic, and anti-apoptotic effects
of MSCs [13, 14]. The mechanism underlying the biother-
apeutic action of MSCs is mainly that after MSCs enter
the lesion, a large number of anti-inflammatory factors,
cytokines, growth factors, and cell adhesion factors are
released by paracrine signaling, which improves the
microenvironment of the lesion and further promotes
self-repair by these cells, whereas its differentiation and
substitution effects are not obvious [14]. Although the
mechanism of this treatment requires further research,
MSCs have shown good application prospects in the treat-
ment of various diseases.

Bone marrow mesenchymal stem cells
Bone marrow mesenchymal stem cells (BM-MSCs) are
derived from bone marrow but are different from bone
marrow hematopoietic cells, which grow in an adherent
manner and differentiate into mesoderm cells. Currently
recognized markers that are specific for BM-MSCs in-
clude CD29, CD90, and CD44 [69]. Initial studies have re-
vealed the strong differentiation potential of BM-MSCs
into osteoblasts, chondrocytes, chondroblasts, adipocytes,
fibroblasts, and different subtypes of neurons and glial
cells under different induction conditions [70, 71]. There-
fore, BM-MSCs are expected to be an ideal candidate for
the treatment of SCI. In addition to the use of rodent and
human BM-MSCs, current preclinical studies have exam-
ined the therapeutic effects of primate and porcine BM-
MSCs on SCI. The motor function of the injured animals
was significantly improved when BM-MSCs were

transplanted into the contused, crushed, or transverse
wounded spinal cords [24]. The main BM-MSC trans-
plantation methods that are currently used include in situ
injection, intravenous injection, intrathecal injection, or
intraventricular injection [24, 72, 73], but the preclinical
experimental methods are mainly orthotropic transplant-
ation into the injured spinal cord [49]. To date, BM-MSCs
have been shown to promote spinal cord regeneration
through three main mechanisms. First, BM-MSCs exert
an immunosuppressive effect, protect against inflamma-
tory reactions, and inhibit lymphocyte proliferation and
differentiation in the SCI region. Second, BM-MSCs in
the injured area promote the transition of M1 macro-
phages to the M2 type. In addition, BM-MSCs release a
large number of growth factors that protect the damaged
spinal cord tissue from further damage [74, 75]. Among
the trophic factors secreted by BM-MSCs, vascular endo-
thelial growth factor (VEGF), nerve growth factor (NGF)
and glial-derived neurotrophic factor (GDNF), and brain-
derived neurotrophic factor (BDNF) have been identified.
In addition, some growth factors, such as neurotrophin-3
(NT-3), fibroblast growth factor (FGF), and epidermal
growth factor (EGF), have also been identified [52]. These
factors support growth and promote neuritis regeneration
[53, 54]. Based on these characteristics, BM-MSCs pro-
mote the regeneration of damaged spinal cord and im-
prove the motor function of the animal to some extent
[53]. Although these factors are important, the amount
secreted by BM-MSCs is usually limited. The expression
of these factors must be increased to significantly increase
the regeneration of the damaged spinal cord. Currently,
researchers generally use BM-MSCs as a release vector to
introduce neurotrophic factor genes such as NT-3, GDNF,
and BDNF, and then transplant them into the injured area
of the spinal cord, further enhancing neuritis regeneration
and the recovery of neurological function [55]. A large
number of preclinical studies have confirmed that this
treatment strategy is safe and effective [56]. Nevertheless,
some clinical e studies have not observed a significant
therapeutic effect after BM-MSC transplantation, mainly
due to the lack of optimal cell transplantation conditions
and transplantation times [57]. In situ transplantation and
intravenous injections may cause different numbers of
cells to reach the injured area. In clinical practice, in situ
transplantation is usually not used to avoid secondary in-
jury, resulting in a difference in the therapeutic effect. For
these reasons, the clinical practice of cell transplantation
using intravenous injection requires further exploration.

Adipose-derived mesenchymal stem cells
Adipose-derived mesenchymal stem cells (A-MSCs) are
derived from adipose tissue and can be obtained from
liposuction and liposuction. The advantages of A-MSCs
are that large numbers of cells are easy to obtain, result
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in fewer traumatic injuries, are not associated with eth-
ical problems, and can be autologously transplanted.
The mechanism by which A-MSCs treat SCI and
promote regeneration is by secreting a large number of
neurotrophic factors, such as BDNF and GDNF, regulat-
ing activated immune cells and promoting nerve regen-
eration and anti-apoptotic effects [76–78]. In addition to
these biological effects, A-MSCs also possess a multili-
neage cell differentiation potential and differentiate into
adipose-derived, osteogenic, cartilage-derived, myogenic,
smooth muscle-derived, neurogenic, and endothelial-de-
rived cells, as well as Schwann cells [79]. This multidif-
ferentiation potential also confers A-MSCs with the
potential to exert regenerative effects on SCI by re-
placing/supplementing nerve cells that are degenerated
or undergoing necrosis in SCI through directed differen-
tiation. Molecules secreted by A-MSCs also include
growth factors, extracellular matrix molecules, proteases,
cytokines, and immunomodulatory molecules [79].
These molecules play a key role in promoting angiogen-
esis and wound healing, assisting in the growth of new
tissues, reducing inflammatory responses, and activating
lymphocyte proliferation [79]. Based on these findings, a
growing number of clinical studies and practices favor
the treatment of SCI through A-MSC transplantation.
Kolar et al. [78] transplanted A-MSCs into rats with a
cervical spinal cord injury and observed the inhibition of
glial scar formation and axonal regrowth, but unfortu-
nately, rat forelimb function was not restored. In another
study [79], A-MSCs were directly transplanted into the
parenchyma of the spinal cord, and after 7 weeks, the
animal’s body function was restored. A morphological
examination showed the accumulation of a large amount
of laminin and protrusions at regenerating axons located
at the transplant site, and the tissue damage observed
after SCI did not expand further. Similar results were re-
ported in the study by Kim [80], who injected A-MSCs
into the fourth ventricle of dogs with acute SCI and
observed a significant improvement in hind limb move-
ment with no side effects. Many scholars have begun to
adopt a comprehensive treatment plan to further
enhance the survival and treatment effect of A-MSCs at
the transplant site that combines some molecules with
A-MSCs to treat chronic SCI, such as adding 17β-estra-
diol to improve A-MSC-mediated secretion of expressed
growth factors, overexpression of the BCL-2 gene to in-
hibit apoptosis, and simultaneously administer chondro-
itin sulfate proteoglycan-degrading enzymes to destroy
keratinous scars [81–83]. The efficacy of these compre-
hensive treatment regimens in promoting functional re-
covery in animal models is significantly better than the
A-MSC treatment alone. According to current preclin-
ical studies and some clinical practices, A-MSC trans-
plantation is safe and has no side effects [84].

Amniotic epithelial mesenchymal stem cells
Amniotic epithelial mesenchymal stem cells (AE-MSCs)
are obtained from the amniotic membranes and amni-
otic fluid derived from embryos. The traditional hypoth-
esis is that the amniotic membrane protects embryos
and maintains the normal development of organs. It is
often discarded as biological waste after maternal deliv-
ery. A large number of studies conducted in recent years
have shown that AE-MSCs are also very effective MSCs
for the treatment of SCI in regenerative medicine. They
have many characteristics of MSCs and have therefore
been used as seed cells for SCI regeneration [85]. The
use of AE-MSCs for spinal cord regeneration is based
primarily on their cytological properties, namely, multi-
differentiation potential, strong proliferative capacity,
growth factor production, lack of tumorigenicity and low
immunogenicity. In some preclinical studies, the trans-
plantation of parental AE-MSCs to treat offspring with
SCI exerted almost no side effects and improved the
symptoms of animal models of SCI [77, 86]. Bottai et al.
[87] transplanted AE-MSCs into contused SCI model
rats and found that hind limb motor function defects
were significantly improved in animals. Results of the
morphological analysis also showed a significant inhib-
ition of myelin loss in the spinal cord of transplanted an-
imals, the presence of a large number of new blood
vessels in the injured area, and a significant decrease in
the number of inflammatory cells moving into the in-
jured area. The formation of blood vessels in the injured
area is closely related to the cytokines and hepatocyte
growth factor produced by AE-MSCs, revealing the
unique character of AE-MSCs. The anti-inflammatory
and anti-apoptotic effects of AE-MSCs are more effect-
ive in the treatment of SCI to promote motor function
recovery, but AE-MSC transplantation combined with
methylprednisolone is more effective than AE-MSCs or
methylprednisolone alone [88], suggesting that methyl-
prednisolone may exert a synergistic effect with the bio-
logical function of AE-MSCs. In addition, AE-MSCs
have been transplanted into the cavity created by the
spinal cord transection of monkeys, and AE-MSCs
supported the entry of the regenerating processes into
the cavity [89]. In summary, AE-MSCs effectively pro-
mote SCI repair mainly through trophic factor secretion
to support growth and reverse the damage in the micro-
environment and subsequently achieve nerve regener-
ation and the recovery of body function.

Umbilical cord mesenchymal stem cells
Umbilical cord mesenchymal stem cells (UC-MSCs) are
MSCs derived from the umbilical cord or cord blood,
which are easy to obtain and expand in vitro. The abso-
lute advantage compared with other types of stem cells
is their low immunogenicity. Many preclinical studies
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have found that transplantation of UC-MSCs into ro-
dents with SCI significantly improve functional defects
[58]. The therapeutic mechanism is mainly attributed to
a combination of multiple factors, namely, the neuro-
trophic, anti-inflammatory, anti-apoptotic and pro-an-
giogenic effects of UC-MSCs [7, 27, 28]. Cytokines and
trophic factors produced by UC-MSCs include interleu-
kin-1 (IL-1), IL-10, neutrophil activator, NT-3, BDNF,
VEGF, basic fibroblast growth factor (bFGF), and neural
cell adhesion molecule (NCAM) [13, 86, 90]. Whether
in animal experiments or clinical practice, orthotopic
cell transplantation is more effective than an intravenous
injection [13, 91], for similar reasons as described for
the BM-MSC treatment mentioned above [13]. To date,
few reports on the safety and efficacy of UC-MSC trans-
plantation as a treatment for SCI have been published.
In 2005, Kang et al. [92] transplanted human UC-MSCs
into the lesion area of the injured spinal cord of a 37-
year-old patient with SCI, and cell transplantation treat-
ment continued for 41 days. Afterwards, the patient’s
motor and sensory function improved significantly. After
1 year of follow-up, UC-MSC transplantation was safe
for SCI. In 2013, Yao et al. [93] transplanted UC-MSCs
into 25 patients with SCI using an intrathecal or intra-
ventricular injection. Patients’ autonomic and somatic
sensations recovered to varying degrees at 12 months
after surgery. Different hypotheses for the therapeutic ef-
fect of UC-MSCs on SCI have been proposed. Zhu et al.
[94] directly injected UC-MSCs into 28 lesions of the in-
jured spinal cord and, combined with motor function
training, found that the UC-MSC treatment did not
cause serious adverse reactions. Fifteen patients achieved
an effective motor function improvement, 12 patients
displayed a partial improvement, and 1 patient did not
display an effect of the treatment. Based on the results
from these clinical studies, the efficacy of UC-MSCs as a
treatment for SCI may be related to individual factors,
such as the patients with SCI, transplantation methods
and viability of UC-MSCs.

Embryonic stem cells
Embryonic stem cells (ESCs) are highly undifferentiated,
pluripotent cells that are able to differentiate into the
cells of various tissues in adult animals. Because of their
high degree of undifferentiation, these cells have been
used as an in vitro cell differentiation and regulation
model. Since Evans and Kaufman [17] first isolated and
cultured mouse ESCs in 1981, research in this area has
achieved rapid development in the past 20 years, particu-
larly in the area of which ESCs are a good substitute for
cell and gene therapy vectors. Currently, ESCs have been
used to treat many diseases, including the repair of
nerve damage and neurodegenerative diseases. Since
ESCs are pluripotent cells that differentiate into all tissue

cells, including neurons, they are also considered a
highly potent neuronal cell replacement in the treatment
of neuronal diseases [18]. The application of ESCs to
treat SCI is mainly to use these differentiated neurons
and glial cells to reverse the cell defects caused by SCI,
and combined with the secretion of active factors to in-
hibit further damage, support nerve tissue regeneration,
and ultimately achieve therapeutic and repair purposes
[18]. The transplantation of predifferentiated ESCs into
rat and mouse SCI models significantly improves motor
dysfunction in the animals. Notably, Harper et al. [19]
applied retinoic acid and sonic hedgehog (SHH) to in-
duce ESCs to differentiate into motor neurons, and then
transplanted the cells into the spinal cord of hemiplegic
rats. The authors observed a significant improvement in
the symptoms of hemiplegia in animals. Iwai et al. [20]
also induced ESCs to differentiate into neural stem cells
and then transplanted them into the injured spinal cord
of monkeys. As a result, monkey motor function was
significantly improved, and morphological evidence
showed that myelin and axons in the spinal cord of ani-
mals transplanted with ESCs remained relatively intact.
Yang et al. [21] also transplanted pig-derived ESCs into
rats with spinal cord contusions and found that trans-
planted cells differentiated into neurons; behavioral tests
showed significant improvements in motor function. In
addition, ESCs expressing NT-3 and PDGF gene therapy
vectors were transplanted into damaged spinal cord
tissue. The ability of ESCs to differentiate into neurons
and the numbers of surviving neurons were significantly
increased [22]. ESCs have also been differentiated into
oligodendrocytes to reconstitute the white matter as a
treatment for SCI in another study [30]. By differentiat-
ing ESCs into functional OPCs, the cells were used to
enhance remyelination after SCI [23]. Currently, among
the many SCI cases in the world, many patients present
with white matter destruction due to contusion. There-
fore, the application of ESCs to differentiate into oligo-
dendrocytes that reconstitute the white matter to
achieve spinal cord repair and restore function is also
the focus of current research. In addition to differentiat-
ing into corresponding cells, ESCs also secrete factors
that enhance the phagocytosis of myelin debris and re-
duce lipid accumulation, as well as promote the conver-
sion of microglia into an M2-like state to regulate the
inflammatory response in the injured spinal cord, thus
ultimately improving locomotor recovery [95]. In the
study by Salewski RP et al., in addition to the conven-
tional function induced by the differentiation of ESCs
into the cells that maintain tissue integrity, the NSCs in-
duced by ESCs maintain the regular shape of the gray
matter and contour of the cord, indicating that a more
complex mechanism may underlie the protective effect
[96]. Although the clinical application of ESCs is
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promising, the future clinical application still faces enor-
mous challenges due to ethical issues. The first problem
that must be solved before ESCs are applied in the clinic
is ethical issues. Additionally, because ESCs have the risk
of tumorigenicity, rather than being transplanted in an un-
differentiated form, they are usually initially induced to
differentiate into neural precursor cells (NPCs) or OPCs,
which are then transplanted into the body [5, 97, 98].
Currently, some clinical trials on NSCs have been con-
ducted. Geron Corporation has conducted the first clinical
phase I trial in 2009, which was terminated due to funding
problems. Asterias Biotherapeutics has also recently
initiated a phase I/IIa clinical trial in which OPCs derived
from human ESCs are being used. These trials will make a
significant contribution to the future use of ESCs in
clinical practice.

Adult endogenous stem cells
Adult endogenous stem cells (AESCs) are stem cells
located in the adult nervous system. In the spinal cord
tissue, ependymal cells, radial glial cells, and strip cells
near the central canal of the spinal cord have stem cell
characteristics [27]. Normally, these cells are dormant.
Once the spinal cord is damaged, these cells are rapidly
activated and proliferate to produce a large number of
glial cells [27, 44, 45]. Sabelstrom et al. [27] found that
the main function of these cells is to differentiate into
astrocytes and oligodendrocytes, further forming a glial
scar that inhibits lesion expansion and remyelination;
some of these cells are also strip cells that participate in
the formation of glial scars. Some researchers have
transplanted these cells into the lesions of the injured
spinal cord of an animal model of hemiplegia and ob-
served a significant improvement in the motor function
of the animal [44]. These reports offer hope for noninva-
sive cell therapy, as these endogenous cells are able to
be directly activated to function without the need for
traumatic cell transplantation. According to Nomura et
al. [44], radial glial cells support and guide axonal
regeneration. In contrast, Chang [99] concluded that the
key to improving the symptoms of SCI after radial glial
cell transplantation is the radial colloid. Cells are able to
inhibit inflammatory cells and activate endogenous stem
cells [100]. Studies have also generated neurons using in
situ glial cell reprogramming to achieve spinal cord
function recovery [101]. Su et al. [102] used gene trans-
fer to introduce SOX2 into damaged spinal glial cells
and administered histidine deacetylase and valproic acid
to reprogram them into neurons. After 14 weeks, the
motor function of the rats was significantly improved.
Therefore, an in-depth understanding of SCI patho-
logical processes and the molecular mechanisms regulat-
ing these processes is very important for the
identification of potential targeted therapies and to

effectively promote spinal cord regeneration and func-
tional recovery. In theory, although the application of
AESCs to treat SCI has obvious advantages, some uncer-
tainties and limitations exist, and thus many controver-
sies regarding their clinical applications persist. Based on
the uniqueness of AESCs, their potential as a clinical
treatment for SCI is more advantageous than other types
of stem cells. Therefore, the future clinical application of
AESCs will be a hot topic.

Spermatogonial stem cells
Spermatogonial stem cells (SSCs) are a subtype of
spermatogonia [37] that maintain the spermatozoa
throughout the life of the organism. These cells possess
self-replication and self-renewal abilities and are the only
type of stem cell that is able to pass the genetic material
to the offspring. In recent years, with the rapid develop-
ment of regenerative medicine and translational medi-
cine, SSCs are no longer only producing sperm and
assisting in reproduction in the traditional sense but are
further expanded based on the original study. SSCs have
been cultured in vitro to obtain pluripotent embryonic
stem cells with the potential to differentiate into
multiple lineages of cells [37, 40]. Compared with the
aforementioned stem cells, SSCs have the advantages of
being produced throughout the lifetime and a lack of
ethical problems, tumorigenicity, and immune rejection.
According to Glaser et al. [38], adult mouse testicular
tissue germ-line stem cells can be transdifferentiated
into NSCs under special induction conditions, and these
cells can be further induced to produce functional
GABAergic neurons, glutamatergic neurons, serotoner-
gic neurons, and glial cells. Thus, SSCs have the poten-
tial to differentiate into various cells of the nervous
system. Subsequently, Streckfuss et al. [39] transdifferen-
tiated mouse SSCs into neurons and glial cells of differ-
ent subtypes with appropriate physiological functions.
These studies laid the foundation for the use of SSCs for
transdifferentiation into neurons as a treatment for
neurological and neurodegenerative diseases. As shown
in the study by Simon et al. [103], SSCs are able to be
transplanted into prostate, skin and uterine tissues, and
subsequently differentiate into epithelial cells similar to
these host tissue. The multidifferentiation potential of
SSCs is susceptible to the peripheral system environ-
ment. Liu et al. [104] induced rat SSCs to differentiate
into dopaminergic neurons in vitro and transplanted
them into Parkinson model animals, significantly im-
proving functional deficits in the transplanted animals.
Wang et al. [105] confirmed the differentiation of pig
SSCs into neuron-like cells and fat cells. Based on these
studies, SSCs are expected to be an alternative source of
ESCs and NSCs. Although studies have confirmed that
SSCs can differentiate into neurons, these studies have
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undergone intermediate transdifferentiation of NSCs
during the process of differentiation to produce neurons
[103]. Hao et al. have recently used unique induction
conditions to directly transduce rat and mouse SSCs to
differentiate into functional dopaminergic neurons and
spinal motor neurons; this differentiation process does
not require intermediate ESCs or NSCs transition pro-
cesses [41, 42]. Thus, the associated risks for future clin-
ical applications are reduced. Currently, few studies have
investigated SSC transplantation for SCI, and most have
focused on neurodegenerative diseases. One recent study
by Nazm Bojnordi et al. [43] transdifferentiated SSCs
into oligodendrocytes and then transplanted the cells
into a demyelinated rat model to observe the formation
of myelin, suggesting that SSCs are expected to become
the ideal therapeutic cell for the treatment of spinal cord
demyelinating lesions. At present, SSC treatment of
nervous system diseases is almost exclusively designed
to substitute for differentiation, and no reports of secre-
tion of various factors by these cells have been found.

Induced pluripotent stem cells
As mentioned above, although ESCs might substantially
improve the treatment of SCI, their application has
many limitations. Therefore, a suitable alternative source
is an urgent unmet medical need. Induced pluripotent
stem cells (iPSCs) are considered effective alternative
cell sources for ESCs that can be obtained from cell
reprogramming by introducing transcription factors into
somatic cells, as described by Yamanaka. Currently used
methods include virus-mediated gene transfection,
targeted insertion, gene transposon insertion and protein
transfection [106]. Moreover, since somatic cells are typ-
ically isolated from the patient’s own cells, this autolo-
gous method can prevent the occurrence of immune
rejection. Although iPSCs and ESCs have their own
cytological advantages, a common drawback is the possi-
bility of producing solid tumors [107], mainly due to
their possible pluripotency that is no longer controlled
after transplantation. Fortunately, several studies have
begun to reduce the tumorigenicity. The generation of
nonviral iPSCs, including piggyBac transposons, micro-
RNAs, mRNAs, episomal vectors, small molecule
compounds, and recombinant proteins, represents an
effective and reproducible alternative [108–114].
NSCs derived from transplanted iPSC promote remye-

lination, axonal regeneration, and the secretion of
neurotrophic factors, while reducing inflammation [35].
According to existing studies, orthotopic transplantation
of iPSCs is safe and effective as a treatment for SCI
when iPSCs are induced to differentiate into oligoden-
drocytes or neurons and then retransplanted into a rat,
mouse or primate long-tailed monkey spinal contusion
model. After 3 to 5 weeks, the motor function defects

were significantly improved, and no tumors occurred
[115, 116]. Lu and colleagues implanted neural stem
cells that had been differentiated from human iPSCs into
immunodeficient rats 2 weeks after a C5 half-cut injury.
Three months later, the authors discovered that the
axons extended nearly completely throughout the entire
rostral-to-caudal extent and formed synapses with ro-
dent neurons. Synapses also formed between host axons
and iPSCs [117]. Interestingly, this experiment used the
iPSCs from an 86-year-old human, indicating that age
does not appear to be an obstacle to the expression of
highly plastic neural stem cells. As shown in the study
by Salewski et al. [118], the transplantation of iPSC-de-
rived neurons into rodent spinal crush injury or
contusion models effectively restores motor function in
the animal. Jendelova and colleagues observed beneficial
effects of iPSC-NPCs on preserving the host tissue, re-
ducing the glial scar, increasing axonal sprouting, and
promoting motor functional recovery [119]. Although
these studies currently provide large amounts of exciting
evidence for the therapeutic effects of iPSCs, some ex-
periments also found that iPSC-NPCs did not improve
or even reduced the neurological function score after
SCI. This discrepancy may be related to the use of differ-
ent delivery times and administration routes. In addition,
the effectiveness and feasibility of iPSCs in clinical treat-
ments remains to be explored. First, the optimal time for
cell transplantation is the subacute phase after SCI,
while the assessment of the quality of iPSC-NPCs gener-
ated from the patient’s somatic cells may take more than
1 year [6]. Therefore, the idea of establishing a cell bank
to store hiPSC-NPCs was proposed [120]. Narihito
Nagoshi has collaborated with the Center for iPS Cell
Research and Application at Kyoto University, which
provides clinical-grade integration-free hiPSC lines. An-
other problem is that most patients who currently suffer
from an SCI are usually in the chronic phase; however,
few studies have investigated the use of iPSCs in this
stage. Thus, additional studies focusing on the chronic
phase should be performed.

Conclusions
Stem cell therapy has shown great potential in recon-
structing the injured spinal cord and promoting func-
tional recovery (Fig. 1), but many problems remain to be
resolved before the clinical application of this therapy.
ESCs have limited clinical application due to ethical
issues regarding their origin and tumorigenicity after
transplantation. In contrast, iPSCs are derived from the
reprogramming of autologous cells; although these cells
are not associated with ethical issues, the efficiency and
safety of their clinical applications has been questioned
due to the requirement for exogenous gene transfer
[121]. MSCs present no ethical issues and have a wide
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range of sources. They have unique advantages in inhi-
biting inflammatory cell activation, reconstituting local
blood supply systems, and secreting nerve-promoting
factors, but their differentiation potential is weaker than
their secretory potential; thus, these cells are not the
best candidate for the treatment of severe chronic injury
in patients with SCI. The biological characteristics of
MSCs from different sources are not the same, and these
cells are not ideal for the treatment of advanced SCI.
Due to the complexity and dynamic variability of the
pathological process of SCI, no two SCI injuries are
identical. Therefore, clinicians must comprehensively
consider the specific conditions of SCI injury and choose
an appropriate treatment strategy to achieve the best
therapeutic effect. Clinicians must determine which
strategy will be the most effective for patients with
different types or stages of SCI. Is the first goal to con-
trol inflammation, eliminate glial scars, administer a
growth factor treatment, reconstitute the blood supply
system, supplement the missing neurons, or supplement
the oligodendrocytes to reconstruct myelin? Different
types of stem cells exert different therapeutic effects. A
reasonable treatment plan must be developed based on
the pathological condition of the SCI and the character-
istics of alternative cells to achieve a better curative
effect. Currently, the efficacy of stem cell therapy for
SCI is highly controversial because it does not com-
pletely achieve the docking of different SCIs with the
most suitable transplanted stem cells. In addition to the
points mentioned above, the problem that must be care-
fully considered is that the preclinical study of the thera-
peutic effectiveness of stem cells at improving various
parameters should be adjusted according to the species
of the experimental animals. Although the pathology
and outcomes of SCI in different species are similar to

those in humans, effective cell therapy regimens in ro-
dents and primates may not be effective in humans. In
addition, the choice of the optimal time window for SCI
is important for selecting which stem cells to use for
treatment to achieve therapeutic effects. Therefore, a
large number of similar case models and treatment strat-
egies are needed as a basis for repeated practice and
demonstration to achieve clinical transformation and ap-
plications. In addition, stem cells are not omnipotent.
To maximize the effect of stem cell therapy, it is impos-
sible to rely solely on stem cells. A comprehensive treat-
ment plan that also includes the combined application
of biological materials and drugs must be used for differ-
ent SCI cases and pathological processes. Effective treat-
ment and recovery of bodily function are possible with a
suitable comprehensive treatment plan.
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