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Abstract

Background: Increased apoptosis in adipose tissue-derived stem cells (ADSCs) limits their application in treating
diabetes complications. Autophagy is a molecular process that allows cells to degrade and recover damaged
macromolecules, and closely interacts with apoptosis. The aim of the present study was to investigate the potential
role of autophagy in ADSC apoptosis induced by high glucose.

Methods: Human ADSCs were cultured in normal or high-glucose medium for 6 h, 12 h, or 24 h. The effects of
high glucose on ADSC autophagy, reactive oxygen species (ROS) production, and apoptosis were evaluated. The
impact of autophagy on ROS production and apoptosis was explored by treatment with rapamycin or 3-methyladenine
(3-MA). The c-jun kinase (JNK) signaling pathway was investigated by pharmacological disruption of SP600125.

Results: ADSCs subjected to high glucose stress showed an obvious induction of autophagy and apoptosis and a
significant increase in intracellular ROS levels. The JNK signaling pathway was confirmed to be involved in high glucose-
induced autophagy. Pre-treatment with SP600125 or N-acetylcysteine reversed the effects of high glucose on the JNK
signaling pathway and autophagy-related proteins. Pretreatment of ADSCs with 3-MA under high glucose stress induced
a further increase in ROS levels compared to those of high glucose-treated cells. Furthermore, ADSCs pretreated with 3-
MA under high glucose stress showed a marked increase in apoptosis compared with that of the cells treated with high

glucose. Conversely, pre-treatment with rapamycin inhibited the apoptosis of ADSCs.

Conclusions: Taken together, our data suggest that autophagy may play a protective role in high glucose-induced
apoptosis in ADSCs. ROS/INK signaling is essential in upregulating high glucose-induced autophagy. This study provides
new insights into the molecular mechanism of autophagy involved in high glucose-induced apoptosis in ADSCs.
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Background

Diabetes is a chronic disease that affects over 347 million
people globally. Due to diets with high fat and high sugar
content accompanied by sedentary lifestyles, the global
epidemic of diabetes is expected to rise [1, 2]. Diabetic
patients are very susceptible to a myriad of complications,
such as chronic wounds, cardiovascular damage, kidney
failure, and diabetic foot disease, which lead to both
patient morbidity and mortality [3—6]. Therefore, more
efforts have been made to treat diabetes complications.

* Correspondence: chenfeifei@xzhmu.edu.cn; 100000401006@xzhmu.edu.cn
fQiang Li and Yating Yin contributed equally to this work.

2Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou
Medical University, Huai-hai West Road, Xuzhou 221002, Jiangsu, China
'Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical
University, Huai-hai West Road, Xuzhou 221002, Jiangsu, China

Full list of author information is available at the end of the article

B BMC

Adipose tissue-derived stem cells (ADSCs) are derived
from adipose tissue stroma and have the ability to
self-renew and differentiate into a number of functional
cell types [7]. Emerging evidence has shown the benefi-
cial effects of ADSC administration in treating various
diseases because of the simple isolation techniques and
easy scalability as well as the low immunogenicity and
multipotency of ADSCs [8, 9]. Importantly, the use of
ADSCs has been considered a novel tissue regenerative
technique that has utility in diabetes complications [8,
9]. Unfortunately, increased apoptosis in stem cells
limits their application in treating diabetes complica-
tions. A previous study demonstrated that high glucose
results in the apoptosis of stem cells [10]. However, the
intracellular mechanism of high glucose-induced ADSC
apoptosis remains unclear.
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Autophagy is the primary metabolic process by which
eukaryotic cells degrade and recover damaged macromol-
ecules and organelles [11]. During this process, substances
in the cytoplasm are phagocytosed by autophagosomes,
which are spherical structures with bilayer membranes,
and transported to the lysosomes for degradation. The
degradation products can be reused in the syntheses of
macromolecules and in energetic metabolism. Autophagy
is an important cell survival process [12, 13]. It has also
been implicated in the cell death process [14]. Early stud-
ies suggested that autophagy serves as a cell survival
mechanism in some pathological processes via its suppres-
sive role in necroptosis and poly(ADP-ribose) polymerase
(PARP)-mediated cell death during unfavorable growth
conditions or cellular stress [15, 16]. In retinal ganglion
cells, autophagy plays an important role in suppressing
apoptosis, and it has been observed that activation of au-
tophagy can promote retinal ganglion cell survival and
that inhibition of autophagy can reduce cell survival dur-
ing optic nerve degeneration [17]. In this study, we inves-
tigated the molecular mechanism of ADSC apoptosis and
the changes in autophagic flux in high glucose-treated
ADSCs to elucidate the role of autophagy in determining
the fate of high glucose-treated ADSCs.

Methods

Isolation and culture of human ADSCs

All the methods were carried out as described in previ-
ous studies [18-20]. Adipose tissue samples were ob-
tained from three liposuction aspirates of patients (age
range 30—45 years) with informed consent at the Affili-
ated Hospital of Xuzhou Medical University. The tissues
were washed with PBS and completely diced, and then
all tissues were pooled and digested with 0.1% collage-
nase A (Sigma-Aldrich, St. Louis, MO, USA) solution at
37 °C for 60 min. The digested tissue was filtered using
a 75-pm filter mesh (BD Biosciences, Franklin Lakes, NJ,
USA) and centrifuged at 1200 rpm for 5 min, and the
supernatant was removed along with the mature adipo-
cytes. Subsequently, cell pellets were resuspended in
L-Dulbecco’s modified Eagle’s medium (DMEM; Invitro-
gen, CA, USA) with 10% fetal bovine serum (FBS; Invi-
trogen, CA, USA) and cultured in flasks in an incubator
with 5% CO,, at 37 °C. The medium was changed on the
following day and every 3 days thereafter. When the
cells reached 90% confluence, the cultures were trypsi-
nized and passaged two more times. Passage 3—5 cells of
all three donors were mixed equally and used as a pool
for the following experiments.

Cell treatment

ADSCs were cultured with normal glucose (5.5 mM) or
high glucose (25 mM; Invitrogen, CA, USA) medium for
6, 12, or 24 h. 3-Methyladenine (3-MA, 5 mM, Sigma,
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St. Louis, MO, USA) or rapamycin (100 nM, Aladdin,
Shanghai, China) was employed to pretreat cells for 24 h
to inhibit or induce autophagy in ADSCs, respectively.
An inhibitor of the c-jun kinase (JNK) signaling path-
way, SP600125 (20 pg/ml, Beyotime, Shanghai, China)
was used to pretreat the cells for 1 h. N-Acetylcysteine
(NAC, 5 mM, Beyotime, Shanghai, China) was used to
pretreat the cells for 1 h to inhibit ROS production in
this study.

Autophagy flux assay using mRFP-GFP-LC3

ADSCs were transfected with the tandem fluorescent-
mRFP-GFP-LC3-adenovirus (HanBio, Wuhan, China),
which expresses a specific marker of autophagosome for-
mation to detect autophagy, according to the manufac-
turer’s instructions. The GFP signal is quenched in a
lysosomal environment; in contrast, the RFP signal is
more stable in an acidic environment [21]. Therefore,
autophagosomes are labeled with yellow (green and red)
or red. Five fields were chosen from three different cell
preparations. GFP- and mRFP-expressing spots, which
were indicated by fluorescent puncta and DAPI-stained
nuclei, were counted manually.

Measurement of intracellular ROS

Cells were seeded in a 6-well plate at a density of 5 x 10*
cells/well. The cells were added with 10 pM fluorescent
probe CM-H2DCFDA (Molecular Probes) (Invitrogen, CA,
USA) and incubated for 15 min at 37 °C in the dark. After
washing with PBS, cells were harvested and analyzed using
a FACS Calibur flow cytometer (BD Biosciences, Franklin
Lakes, NJ, USA). To observe the degree of ROS production,
cells were stained with 10 uM CM-H2DCFDA at 37 °C for
15 min, washed twice with PBS, and then analyzed by fluor-
escence microscopy (Olympus, Tokyo, Japan).

Apoptosis assay

Following treatment, ADSCs were stained with fluorescein
(FITC)-conjugated annexin V and propidium iodide
(FITC/PI) (KeyGen Biotech, Nanjing, China) and analyzed
on a flow cytometer to determine the rate of apoptosis.

A terminal deoxynucleotidyl transferase-mediated
dUTP nick end-labeling (TUNEL) assay (In Situ Cell
Death Detection Kit; Roche Diagnostics) was also
employed to determine the apoptosis of ADSCs. Briefly,
ADSCs were incubated with TdT and fluorescein-labeled
dUTP for 45 min at 37 °C. The percentage of apoptotic
cells was then evaluated.

Western blot analysis

Cell extracts were separated on SDS-polyacrylamide
gels, and then the proteins were transferred to a nitro-
cellulose membrane and incubated with the rabbit
polyclonal antibodies: anti-LC3B (1:500; Cell Signaling
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Technology, Danvers, MA, USA), anti-Beclinl (1:500;
Cell Signaling Technology), anti-ATG5 (1:500; Cell Sig-
naling Technology), anti-caspase3 (1:500; Cell Signaling
Technology), anti-cleaved-caspase3 (1:500; Cell Signal-
ing Technology), anti-PARP (1:500; Cell Signaling
Technology), anti-cleaved-PARP (1:500; Cell Signaling
Technology), anti-JNK (1:500; Cell Signaling Technology),
anti-p-JNK (1:500; Cell Signaling Technology), anti-AKT
(1:500; Cell Signaling Technology), anti-p-AKT (1:500;
Cell Signaling Technology), anti-ERK (1:500; Cell Signal-
ing Technology), anti-p-ERK (1:500; Cell Signaling Tech-
nology), anti-p38 (1:500; Cell Signaling Technology), and
anti-p-p38 (1:500; Cell Signaling Technology), as well as a
mouse monoclonal antibody against B-actin (1:1000; Cell
Signaling Technology). Immunoreactive protein bands
were detected with Tanon scanning system (Tanon Sci-
ence & Technology Co., Ltd., Beijing, China).

Statistical analysis

The results are presented as the means + S.D., and the data
were statistically analyzed utilizing Students ¢ test with
SPSS software (SPSS 16.0, Inc., Chicago, IL, USA). P < 0.05
was considered as a statistically significant difference.

Results

High glucose induced autophagy in ADSCs

We first determined the stemness of the applied ADSCs
by analysis of distinct surface markers in flow cytome-
try and analysis of osteogenic differentiation. The
ADSCs presented a typical fibroblast-like morphology
(Additional file 1: Figure S1A), which displayed positive
staining for CD44 (98.1%), CD90 (98.2%), and CD105
(99.9%) and negative for CD31 (0.2%), CD34 (0.8%),
and CD106 (1.7%) (Additional file 1: Figure S1B). The
image of staining with Alizarin Red S indicated the
presence of calcium deposition (Additional file 1: Figure
S1C). The results demonstrated that the isolated ADSCs
revealed typical ADSC characteristics.

Then, we investigated the impact of high glucose on
autophagy in ADSCs. The autophagic flux was monitored
by detecting and analyzing yellow and red fluorescent
signals. As shown in the representative immunofluores-
cence images in Fig. 1a, b, the numbers of yellow and red
puncta in the cells were significantly increased under
high-glucose conditions in a time-dependent manner.
LC3B distribution and the expression of the autophagy-as-
sociated genes ATG5 and Beclinl were detected to
characterize the autophagic flux. Western blot analysis re-
vealed that high glucose significantly induced the expres-
sion of ATG5 and Beclinl and the conversion of LC3-I to
LC3-1I, within 24 h (Fig. 1c—e). Collectively, these results
suggested that high glucose stress significantly induced
autophagy in ADSCs.
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High glucose promoted ROS generation in ADSCs
Intracellular ROS play a vital role in different types of
cell survival. We evaluated ROS levels via flow cytome-
try and fluorescence probe detection to explore the ef-
fect of high glucose on ROS generation. Data from the
flow cytometer assay showed that high glucose pro-
moted ROS generation in ADSCs in the time course
(Fig. 2a, b). In addition, ADSCs cultured in high glucose
stained with fluorescence probe were observed under a
fluorescence microscope. The representative fluores-
cence results and the quantitative analysis revealed that
high glucose promoted ROS generation in ADSCs
(Fig. 2¢, d).

High glucose increased apoptosis in ADSCs

To investigate the apoptosis of ADSCs induced by high
glucose stress, we treated cells with high glucose for
different periods of time and then evaluated cell apop-
tosis by flow cytometry. The results showed that high
glucose induced cell apoptosis in a time-dependent
manner (Fig. 3a, b). TUNEL staining assay was also
employed to examine ADSC apoptosis under high-glu-
cose conditions. The representative TUNEL results
show and the quantitative analysis demonstrated that
high glucose increased the apoptosis of ADSCs in a
time-dependent manner (Fig. 3¢, d). Caspase3 and poly(-
ADP-ribose) polymerase (PARP) are principal apoptosis
markers through which the mitochondrial and cytosolic
pathways induce apoptosis (Additional file 2). Conse-
quently, we examined the expression of cleaved-caspase3
and PARP. Western blot analysis indicated that high-glu-
cose treatment promoted cleaved-caspase3 and PARP ex-
pression (Fig. 3e, f). Taken together, these results
indicated that high glucose stress significantly induced the
apoptosis of ADSCs.

The ROS-mediated JNK signaling pathway was involved in
high glucose-induced autophagy in ADSCs

Autophagy activity is tightly controlled by the serine/
threoninekinase (AKT) and mitogen-activated protein
kinase (MAPK) pathways [22, 23]. To investigate whether
high glucose triggers the MAPK and AKT pathways in
ADSCs, we first detected the phosphorylation of MAPK
family members (ERK1/2, JNK, and p38) and AKT sig-
naling activity after high glucose stress. As shown in
Fig. 4a, b, high glucose significantly increased JNK acti-
vation in a time-dependent manner, but there was no
change in ERK1/2 and p38 phosphorylation and AKT
activity. There is evidence that the ROS-mediated JNK
pathway is responsible for the induction of autophagy
[24]. Therefore, we explored the effect of the ROS/JNK
signaling pathway on autophagy levels in high glucose-
treated cells. We investigated the activity of the JNK
signaling pathway and the autophagy process in the
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Fig. 1 High glucose induced autophagy in ADSCs. ADSCs were cultured in high-glucose medium or normal-glucose medium for 6, 12, or 24 h. a, b Images
showing the effects of high glucose on autophagy in fluorescent-mRFP-GFP-LC3-adenovirus-infected ADSCs. Green dots, autophagosomes; red dots,
autolysosomes; yellow dots, autophagosomes. c-e Representative Western blot images showing the protein levels of LC3-, LC3-ll, ATG5, and Beclin1. B-actin
was used as an internal control. Every experiment was repeated at least three times. Error bars indicate mean + SD (*P < 005; **P < 0.01; ***P < 0.001)

absence or presence of the JNK inhibitor SP600125 or the
ROS inhibitor NAC using Western blot analysis. The re-
sults showed that high glucose increased the expression of

p-JNK, ATGS5, and Beclinl. In addition, the conversion of
LC3I to LC3II was concomitantly increased. However,
pretreatment with SP600125 or NAC before high-glucose
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Fig. 2 High glucose induced ROS generation in ADSCs. a Time course of ROS generation in ADSCs treated with high glucose. 5 x 10* cells were
incubated at 37 °C in the dark for 15 min with culture medium containing 10 uM CM-H2DCFDA to monitor ROS production. The degree of ROS
production was measured by flow cytometer at an excitation/emission wavelength of 488 nm and 525 nm, respectively. b Quantification of ROS
generation measured by flow cytometer in all groups. ¢ Quantification analysis of the fluorescent intensity in all groups. d Intracellular ROS generation
was visualized under the fluorescence microscope after cells were incubated with the fluorescent probe CM-H2DCFDA. Every experiment was repeated at
least three times. Error bars indicate mean + SD (**P < 0.01; ***P < 0.001)

treatment reversed the effect of high glucose on the JNK
signaling pathway and autophagy-related proteins (Fig. 4c,
d). Moreover, we monitored the autophagic flux via
adenovirus infection. The representative immunofluores-
cence images show that the increased numbers of yellow
and red puncta induced by high glucose were significantly
decreased by SP600125 or NAC (Fig. 4e, f). These results
revealed that the ROS-mediated JNK signaling pathway
was involved in high glucose-induced autophagy in ADSCs.

Autophagy had a potential role in reducing ROS
generation in high glucose-treated ADSCs

Autophagy can remove damaged mitochondria and re-
duce ROS production. We explored the effect of inhibit-
ing autophagy on the potential high glucose-mediated
ROS production to determine the biological significance
of autophagy in ADSCs in response to high glucose. We
first used 3-MA to inhibit autophagy for 24 h. Then,

cells were infected with fluorescent-mRFP-GFP-LC3-a-
denovirus. The immunofluorescence images show that
the numbers of yellow and red puncta in the cells were
significantly increased by high glucose. This effect was
reversed when 3-MA was given (Fig. 5a, b). Next, we
employed flow cytometry and fluorescence probe detec-
tion to determine the role of autophagy in regulating
ROS generation in high glucose-treated ADSCs. We
found that autophagy inhibition induced a further increase
in ROS levels when compared to the levels in high
glucose-treated cells (Fig. 5¢c—f). Taken together, these data
suggest that autophagy might play an essential role in re-
ducing ROS generation in high glucose-treated ADSCs.

Autophagy regulated the apoptosis of ADSCs induced by
high glucose

Autophagy represents a double-edged sword in cell fate.
To gain insight into the role of autophagy in the apoptosis
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induced by high glucose, we used rapamycin and 3-MA to
regulate autophagy in ADSCs. Figure 6a, b shows that rapa-
mycin promoted high glucose-induced autophagy while
3-MA reversed this effect. Then, we employed a flow cy-
tometry assay to detect apoptotic cell death and determined
the role of autophagy in high glucose-mediated apoptotic
cell death. The results showed that rapamycin inhibited the
apoptosis of ADSCs induced by high glucose, while 3-MA
induced cell apoptosis (Fig. 6¢, d). Furthermore, we deter-
mined the levels of the apoptosis-related molecules
cleaved-caspase3 and PARP by Western blot analysis. Com-
pared with that in high glucose-treated ADSCs, rapamycin
inhibited the cleavage of caspase3 and PARP while 3-MA
increased cleaved-caspase3 and PARP expression (Fig. 6e,
f). Collectively, these data suggest that autophagy has a pro-
tective effect on high glucose-induced apoptosis in ADSCs.

Discussion
Although recent studies have shown beneficial effects of
ADSC administration in various diseases, impairment of
resident and recruited cell functions due to disease com-
plications strongly delays such effects in the treatment
of diabetes. Extensive research has shown that ADSC
apoptosis is an important pathophysiological event in
various complications of diabetes [25, 26]. However, the
underlying mechanism has not been fully elucidated.
Autophagy, the basic catabolic process, occurs at basal
levels in most tissues and contributes to routine cell recyc-
ling by lysosomes. In addition to the turnover of unneces-
sary or dysfunctional cellular components, autophagy is
also involved in the development and differentiation of
certain human diseases [11, 21]. There is abundant evi-
dence indicating that high glucose increases autophagy in
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different cell types. However, the effect of high glucose on
autophagy in ADSCs is unknown. We used a tandem
fluorescent-mRFP-GFP-LC3-adenovirus to examine au-
tophagy. The data showed that autophagic flux was signifi-
cantly increased under high-glucose conditions. Beclin-1
interacts with several cofactors to promote the formation of

Beclin-1-Vps34-Vps15 core complexes, which initiate au-
tophagy [27]. When autophagy is initiated, LC3-I could be
converted to LC3-II which incorporated into autophagic
vacuoles [28]. In addition, ATG5 is an important protein
associated with phagophore formation, and deletion of
ATGS results in the complete absence of LC3-II [29]. Thus,
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we employed these markers to explore the effect of high
glucose stress on the level of autophagy in ADSCs. Our
data showed that high glucose increased Beclinl, and
ATGS5 levels and LC3-I/LC3-II conversion. High glucose
has been reported to induce autophagy in cardiac cells and
human nucleus pulposus cells. In the present study, our
results confirmed the ability of high glucose to induce the
autophagic response in ADSCs (Fig. 7).

ROS are highly reactive oxygen free radicals or nonra-
dical molecules that have essential roles in deciding cell
fate [30, 31]. A hypothesis has been proposed that high
blood glucose induces oxidative stress through the gener-
ation of excessive ROS, which play a dominant role in the
development of chronic complications caused by diabetes
[32, 33]. Several studies have suggested that high glucose
can lead to the accumulation of ROS in endothelial cells
and initiate apoptosis [34]. Peroxisome proliferator-acti-
vated receptor-y coactivator la (PGC-1a) is an important
mediator of the metabolic effects of ROS, as PGC-la

activation results in increases in mitochondrial energy me-
tabolism and the cellular capacity to detoxify ROS,
thereby reprogramming cell metabolism to maintain
survival [35, 36]. In this study, we explored the effect of
high glucose on ROS production and found that high
glucose induced ROS generation. Moreover, the num-
ber of apoptotic cells increased after culture under
high-glucose conditions.

Under normal physiological conditions, the ROS level
is maintained within a certain range due to the balance
between ROS production and scavenging. However,
under some pathological conditions, this balance can be
broken and can lead to ROS generation. It is well known
that enhanced ROS production induces autophagy [37].
To confirm our preceding findings showing the relationship
between ROS and autophagy, we used NAC, an ROS scav-
enger, to treat the cells before high glucose exposure. We
found that NAC could successfully reverse high glucose-in-
duced autophagy and the expression of autophagy-related
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markers, suggesting that high glucose-induced autophagy
was related to ROS accumulation in ADSCs. As previously
reported, autophagy can eliminate increased mitochondria
after damage in several tissues, including liver, muscle, and
neuronal tissue [22, 38, 39]. The next question is whether
autophagy can eliminate damaged and ROS-producing

mitochondria to protect ADSCs under conditions of high
glucose. We used 3-MA to inhibit autophagy and we found
that inhibition of autophagy induced a further increase in
ROS levels compared to the levels in high glucose-treated
cells. These findings further demonstrated the relationship
between oxidative stress and autophagy and suggested that
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autophagy mediates its protective effects by suppressing
ROS accumulation.

MAPK signals are frequently overactivated in a variety
of disease states. It has been reported that ROS regulate
the MAPK signaling pathway to modulate autophagy
[23]. Additionally, many lines of evidence suggest that
activation of the AKT signaling pathway is responsible
for ROS-triggered autophagy in cells [40]. To investigate
whether MAPK or AKT signals are involved in regulat-
ing the effect of high glucose on autophagy, we first de-
tected the levels of the phosphorylated forms of MAPK
family members or AKT after treatment with high glu-
cose. We found that the JNK signaling pathway was acti-
vated by high glucose. The JNK inhibitor SP600125
reversed the effect of high glucose on ADSC autophagy.
Interestingly, NAC inhibited JNK phosphorylation.
These results revealed that the JNK signaling pathway,
which triggers autophagy, functions as a downstream
signal of ROS in high glucose-treated ADSCs.

There is evidence that autophagy is an essential and
homeostatic process by which cells break down their
own components, thus escaping apoptosis induced by
diverse stress conditions [11, 21]. A previous study dem-
onstrated that suppression of autophagy was protective
in high glucose-induced cardiomyocyte injury [41], sug-
gesting that autophagy precedes apoptosis as a defense
mechanism to reestablish homeostasis. Conversely, other
studies have revealed that enhanced cardiac autophagy
protects against cardiomyocyte apoptosis in diabetes,
indicating that autophagy is a protective process against
high glucose injury [42]. The detailed physiological
effects of autophagy are still debatable. In the current
study, we used 3-MA and rapamycin to regulate the
autophagy level in ADSCs. We found that high glucose-
induced apoptosis in ADSCs was abolished by autophagy
upregulation, whereas the apoptosis was aggravated by
autophagy inhibition. Therefore, it is apparent that high
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glucose-triggered autophagy may regulate cytoprotective
effects in ADSCs.

Conclusions

In summary, our studies provide evidence that ROS play
an important role in regulating high glucose-induced
apoptosis and autophagy in ADSCs. Moreover, we iden-
tified a protective role of autophagy and ROS generation
and cell apoptosis was markedly enhanced when autoph-
agy was inhibited. These results suggest that targeting
autophagy in ADSCs might be a potential therapeutic
strategy for diabetes complications.
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