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Abstract

Background: Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of
stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem
cells (ADSCs). Taking into account the different morphogenesis, anatomy, and physiology of adipose tissue, we
hypothesized that ADSCs from different adipose tissue depots may exert a diverse multipotency and cardiogenic
potential.

Methods: The omental, pericardial, and epicardial adipose tissue samples were obtained from organ donors and
patients undergoing heart transplantation at our institution. Human foreskin fibroblasts were used as the control group.
Isolated ADSCs were analyzed for adipogenic and osteogenic differentiation capacity and proliferation potential. The
immunophenotype and constitutive gene expression of alkaline phosphatase (ALP), GATA4, Nanog, and OCT4 were
analyzed. DNA methylation inhibitor 5-azacytidine was exposed to the cells to stimulate the cardiogenesis. Finally,
reprogramming towards cardiomyocytes was initiated with exogenous overexpression of seven transcription factors
(ESRRG, GATA4, MEF2C, MESP1, MYOCD, TBX5, ZFPM2) previously applied successfully for fibroblast transdifferentiation
toward cardiomyocytes. Expression of cardiac troponin T (cTNT) and alpha-actinin (Actn2) was analyzed 3 weeks after
initiation of the cardiac differentiation.

Results: The multipotent properties of isolated plastic adherent cells were confirmed with expression of CD29, CD44,
CD90, and CD105, as well as successful differentiation toward adipocytes and osteocytes; with the highest osteogenic
and adipogenic potential for the epicardial and omental ADSCs, respectively. Epicardial ADSCs demonstrated a lower
doubling time as compared with the pericardium and omentum-derived cells. Furthermore, epicardial ADSCs revealed
higher constitutive expression of ALP and GATA4. Increased Actn2 and cTNT expression was observed after the
transduction of seven reprogramming factors, with the highest expression in the epicardial ADSCs, as compared with
the other ADSC subtypes and fibroblasts.

Conclusions: Human epicardial ADSCs revealed a higher cardiomyogenic potential as compared with the pericardial
and omental ADSC subtypes as well as the fibroblast counterparts. Epicardial ADSCs may thus serve as the valuable
subject for further studies on more effective methods of adult stem cell differentiation toward cardiomyocytes.
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Background
Coronary heart disease affects over 15 million Americans
with about 120,000 dying from myocardial infarction
(MI), making it the leading cause of morbidity and mortal-
ity in the United States and worldwide [1]. The survival
rate for US patients hospitalized with MI is approximately
95 % and an essential decline in mortality has been re-
ported during the last decades [2]. Significant improve-
ment in survival is related to progress in emergency
medical response and treatment strategies, as well as pre-
ventative healthcare. Ischemic cardiac tissue is replaced
with a fibrotic scar, which leads to a chronic process of
cardiac remodeling resulting in compromised ventricular
performance and chronic heart failure. Positive correlation
between the size of infarction and mortality has been
noted [3, 4]. Consequently, the restoration of heart tissue
has been the focus of scientific efforts for years. Bergmann
et al. [5] have shown that 50 % of human cardiomyocytes
(CMs) are replaced during the lifespan. Recent rodent
studies confirm the capacity of postnatal CMs to prolifer-
ate, and this process is upscaled in the course of myocar-
dial injury [6, 7]. In humans, the regenerative potential of
the heart through proliferation of pre-existing CMs seems
to be limited to children and adolescents [8]. Other obser-
vations point to residual cardiac progenitor cells (CPC) as
the possible source for human CMs in vivo [9]. Neverthe-
less, these physiological processes are limited and insuffi-
cient to achieve restitutio ad integrum after MI.
Application of stem cells or stem-cell-derived CMs is a
possible therapeutic approach for improvement of postis-
chemic cardiac function. This has already been confirmed
with multiple observations of better heart pump function
and overall outcome in the animal model of ischemic
heart disease after human embryonic stem cell (ESC)
transplantation [10–12]. Nevertheless, application of
pluripotent stem cells is connected with a high risk of
teratoma formation, which restricts their clinical
utilization [13]. Furthermore, ethical concerns exclude
broad clinical application of human ESCs. Alternatively,
application of mesenchymal stem cells (MSCs) has shown
promising results. A reduction of infarct size and an im-
provement in ventricular remodeling were observed in pa-
tients with ischemic cardiomyopathy after administration
of bone marrow-derived MSCs (BM-MSCs) (POSEIDON
and REPAIR-AMI studies) [14–16]. Similar or better re-
sults were achieved with transplantation of the CPC sub-
sets: cardiosphere-derived cells (CADUCEUS study) and
c-kit-positive cardiac stem cells (SCIPIO trial) [17, 18].
Observed amelioration of the cardiac function is caused
predominantly by the paracrine anti-inflammatory and
antiapoptotic effect, as well as neovascularization with
stem cell differentiation into endothelial and smooth
muscle cells [19–21]. In addition, transplanted CPCs are
supposed to stimulate proliferation of the preexisting CMs

and/or cardiogenesis of the residual CPCs. Nevertheless,
there is no evidence for the successful cardiac differenti-
ation of transplanted MSCs or CPCs in humans. Strategies
based on in-vitro differentiation of the stem cells toward
CMs followed by their transplantation into ischemic myo-
cardium were possible with ESCs and induced pluripotent
stem cells (iPSCs) only. Nevertheless, the differentiation
efficacy remained low, with phenotypical immaturity of
the iPSC-derived CMs [22]. Furthermore, arrhythmias
were observed in a nonhuman primate model of iPSC-
CM transplantation [23]. Different promising strategies
are based on direct transdifferentiation of mature somatic
cells into CMs, thus omitting the pluripotent state. This
approach was applied by Fu et al. [24] who presented a
successful direct reprogramming of human fibroblasts to-
ward CMs in vitro. The clinical translation of such a strat-
egy will allow transformation of the cardiac postischemic
scar to a functional myocardium.
Diverse differentiation abilities have been observed for

stem cells derived from bone marrow and different adi-
pose tissue compartments. Nevertheless, the majority of
previous studies on the characteristics of different
sources of ADSCs do not discern the epicardial and peri-
cardial adipose tissue. This is influenced by the fact that
little or no epicardial fat is present in rodents, which is
the most common experimental animal model. Because
of close anatomical and physiological connections with
the heart, we hypothesized that ADSCs from epicardium
and pericardium may express a high cardiomyogenic po-
tential. Nevertheless, both differ in their morphogenesis,
anatomy, and physiology, which may influence ADSC
differentiation and expansion abilities [25, 26]. Further-
more, proepicardium plays a crucial role in cardiac mor-
phogenesis. During cardiogenesis epicardial cells are
subjected to epithelial–mesenchymal transformation,
allowing their further migration and differentiation into
the cardiac fibroblasts, smooth muscle cells, and puta-
tively CMs [27–29]. Moreover, epicardial fat exerts the
origin and characteristics of brown adipose tissue [30].
Experimental trials confirm a higher ability of brown
ADSCs to differentiate into CMs, as compared with cells
derived from white adipose tissue [31, 32].
Taking into account these observations, we aimed to

analyze and compare key morphological features and
differentiation abilities, including cardiomyogenic poten-
tial, of epicardial (E-ADSCs), pericardial (P-ADSCs), and
omental (O-ADSCs) stem cells derived from adipose tis-
sue, as well as human foreskin fibroblasts as the control
cell line. We aimed to apply the 5-azacytidine (5-aza)-in-
duced cardiac differentiation method, previously proven
for successful BM-MSC cardiogenesis [33]. Furthermore,
we tested the ADSC transdifferentiation method, adopt-
ing the reprogramming approach described by Fu et al.
for fibroblasts [24].
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Methods
Tissue procurement
Stanford University IRB approved discarded human tis-
sue utilization for research purposes (approval #16440
and #19810). The pericardial and omental adipose tissue
samples were harvested from five deceased organ do-
nors, without chronic comorbidities. The ventricular epi-
cardial fat tissue was procured from one organ donor
and four explanted hearts from cardiac transplant recipi-
ents with comorbidities, including heart failure and ath-
erosclerosis. None of the donors had insulin-dependent
diabetes. Average age in all three groups did not differ
significantly: 46.9 ± 10.8 (n = 5, O-ADSCs and P-ADSCs)
and 58.5 ± 9.2 (n = 5, E-ADSCs). The human foreskin
fibroblast cell line (BJ fibroblasts) was obtained from the
American Type Culture Collection (ATCC # CRL-2522).

ADSC isolation and culture
Harvested tissue (20–50 ml) was washed in sterile PBS
(10010; Gibco) containing 1 % penicillin and strepto-
mycin (P/S, P4333; Sigma-Aldrich) and cleaned of any
visible blood vessels and fibrotic layers, minced mechan-
ically with sterile scissors, and digested with 0.01 % col-
lagenase IV (17104-019; Life Technologies) DMEM F12
(SH3027101; HyClone) solution for 2 h at 37 °C. The ac-
quired cell suspension was centrifuged at 300 × g for
5 minutes. The supernatant was discarded and a stromal
vascular fraction pellet was collected, washed, and fil-
tered (100 μm and 40 μm cell strainer). The achieved
cell fraction was plated onto cell culture flasks and cul-
tured in low-glucose DMEM media (11885; Gibco) sup-
plemented with 10 % FBS (ES-009-B; Millipore) and 1 %
P/S in 5 % CO2 at 37 °C. Cultures were washed after
72 h to remove unattached cells and expansion medium
was changed every 48 h thereafter. To keep cells at low
density, preventing cell death and spontaneous differen-
tiation, cultures were repassaged when reaching 80 %
confluence. Cells were harvested using 0.25 % trypsin
(TrypLE™; Life Technologies) for 3 min at 37 °C,
followed by trypsin inactivation using 2 volumes of cul-
ture medium containing serum and replated onto new
cell culture dishes/flasks at a seeding density of 3 × 104

per 75 cm2 culture flask.

Osteogenesis and adipogenesis
Each cell line for each adipose tissue sample (passage 5,
5 × E-ADSCs, 5 × P-ADSCs, 5 × O-ADSCs, and 1 × BJ fi-
broblasts) was seeded on three 12-well plates at a seed-
ing density of 10 × 103/well and cultured to reach 80 %
confluence. The control cells were cultured continuously
in the expansion medium (low-glucose DMEM (11885;
Gibco), 10 % FBS, 1 % P/S). Differentiation media were
prepared ex tempore, as described previously [34].
Briefly, for osteogenic differentiation, the expansion

medium was supplemented with dexamethasone
(0.1 μM, D4902; Sigma-Aldrich), β-glycerol phosphate
(10 mM, G9891; Sigma-Aldrich), and ascorbic acid
(50 μM, A4544; Sigma-Aldrich). Concurrently,
adipogenesis was stimulated with expansion medium
supplemented with dexamethasone (1 μM, D4902;
Sigma-Aldrich), isobutylmethylxanthine (0.5 mM, I5879;
Sigma-Aldrich), and indomethacin (200 μM, I7378;
Sigma-Aldrich). Respective expansion/differentiation
medium was changed every 72 h. Successively, 1, 2, and
3 weeks after induction, the differentiation potential was
analyzed and compared. Part of the treated and control
cell cultures from each group were fixed with 4 % para-
formaldehyde for 10 min, washed three times with PBS,
and stored at 4 °C until processing/analyzing. Osteogenic
differentiation was evaluated by cellular alkaline phos-
phatase (ALP) activity (Alkaline Phosphatase kit, 86R;
Sigma-Aldrich) and staining for mineralized matrix (Ali-
zarin red S, A5533-25G; Sigma-Aldrich). Staining was
quantified by spectrophotometry, measuring the absorb-
ance at 405 nm and 550 nm, for ALP and Alizarin, re-
spectively (Tecan InfiniteM200 plate reader; GENios,
Switzerland). Adipogenesis was confirmed by Oil red O
staining of intracellular lipids. Quantification was based
on counting stained cells.

Differentiation towards CMs with 5-aza
E-ADSCs, P-ADSCs, and O-ADSCs as well as BJ fibro-
blasts were plated and cultured in expansion medium
(passage 4, low-glucose DMEM (11885; Gibco), 10 %
FBS, 1 % P/S at 37 °C in 5 % CO2) in four replicates.
When the cells reached 80 % confluence, half of the cell
cultures were treated with 10 μM 5-aza (Sigma-Aldrich)
for 24 h, as described previously [35, 36]. The following
day, differentiation medium was removed and washed
with sterile PBS, and the cell cultures were continued in
expansion medium for another 3 weeks. The cellular
morphology was monitored under a microscope every
other day. After 21 days of culture, immunohistochemis-
try and gene expression analysis were performed.

Direct differentiation of ADSCs into CMs using seven
retroviral transcription factors
The retroviral vectors harboring ESRRG, GATA4,
MEF2C, MESP1, MYOCD, TBX5, and ZFPM2 (seven
factors) and YFP were transfected into HEK293 cells
with FuGene 6 (E269; Promega) as described elsewhere
[24] (retroviral vectors obtained from Dr Srivastava’s lab,
Gladstone Institute, UCSF). Reprogramming medium
containing generated virus was collected next. The
ADSC subsets and BJ fibroblasts were seeded on 12-well
plates (passage 4) in four replicates for each cell line
(5 × E-ADSCs, 5 × P-ADSCs, 5 × O-ADSCs, and 1 × BJ fi-
broblasts) and cultured in an expansion medium until
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they reached 80 % confluence. Subsequently, the cell
transduction with seven factors was performed by 12-h
incubation in fresh expansion medium supplemented
with reprogramming viral solution (20 μl of each/well of
12-well plate) and polybrene (4 μg/ml) or polybrene only
(respective control group). Effectiveness of the cell trans-
duction was assessed by the appearance of YFP-positive
cells under fluorescent microscopy. Cell cultures were
continued for the following 3 weeks in the CM culture
medium (80:20 DMEM, M199 (11150; Gibco), 10 %
FBS, P/S, Non-Essential Amino Acids Solution (11140;
Gibco)). The culture medium was changed every 48 h.
Immunohistochemistry and gene expression analysis was
performed 21 days after reprogramming.

Real-time reverse transcriptase PCR
Total RNA was extracted from collected cells using Tri-
zol reagent (15596; Life Technologies). The cDNA was
then synthesized, using SuperScript III First-Strand Syn-
thesis SuperMix (18080-400; Invitrogen). Real-time PCR
was performed on TaqMan (Applied Biosystems) in du-
plicate. MasterMix (Applied Biosystems) and TaqMan
probes (Life Technologies) were used as follows: ALP,
Hs01029144_m1; GATA4, Hs00171403_m1; Nanog,
Hs04260366_g1; OCT4, Hs04260367_gH; cardiac tropo-
nin T (cTNT), Hs00943911_m1; and alpha-actinin 2
(Actn2), Hs00153809_m1. The amount of the target
gene was normalized to an endogenous reference gene
18S (4333760; Life Technologies). Results were analyzed
using the 2–ΔΔCt method and expressed as the fold
change in gene expression relative to the respective con-
trol groups or BJ fibroblasts.

Flow cytometry analysis
A single cell suspension of analyzed cells was collected by
treating the cells with 0.25 % trypsin for 3 min at 37 °C,
followed by washing in complete culture medium. Cells
were washed twice with 3 % FCS–PBS (ES-009-B; Milli-
pore), resuspended at a concentration of 5 × 105 cells/ml,
and stained with allophycocyanin, fluorescein isothiocyan-
ate, phycoerythrin, Alexa 647, or PerCP/Cy5.5-conjugated
monoclonal mouse-anti-human CD29, CD31, CD34,
CD44, CD45, CD73, CD90, CD105, and CD166 antibodies
and lineage cocktail 1 (lin-1; BD Biosciences: CD3, CD14,
CD16, CD19, CD20, CD56) at 4 °C for 30 min. Cells were
then washed twice, resuspended, and analyzed for cell sur-
face marker expression by flow cytometry (FACSCalibur™;
BD Biosciences).

Immunocytochemistry
Cultured cells were fixed with 4 % paraformaldehyde for
15 min, washed twice with PBS, and subsequently
permeabilized with 0.5 % Triton X-100 (X100; Sigma-
Aldrich) for 10 min. The washed cells were blocked for

30 min at room temperature with 1 % BSA (A9418;
Sigma-Aldrich), and then incubated overnight at 4 °C
with primary monoclonal mouse anti-alpha-actinin
(A7811; Sigma-Aldrich) antibody diluted in 0.2 % BSA
solution. After three serial washes with PBS, cells were
incubated with AlexaFluor 594 conjugated goat anti-
mouse antibody for 1 h at room temperature, and then
washed and incubated in 300 nM DAPI for 5 min for
nuclear counterstain.

Proliferation assay
For the comparison of cell proliferation, 10 × 103 cells
were plated into each well of a 12-well plate and cells
were counted daily in triplicate for 14 days. Doubling
time (Td) for each cell sample was calculated by the fol-
lowing formula:

Td ¼ Δt�ln2=ln ΔNð Þ

where Δt is the analysis time period and ΔN is the cell
number increment. A mean doubling time was calcu-
lated for each cell subtype further on.

Statistical analysis
Statistical analysis was performed with STATISTICA
(StatSoft). All variables are expressed as mean ± standard
error (SEM). Significant differences between two groups
were determined by the independent Student’s t test.
Analysis of variance (ANOVA) with Fisher post-hoc
comparison was performed to evaluate repeated mea-
sures. P < 0.05 was considered statistically significant.

Results
ADSC morphology, genotype, and phenotype
Isolated ADSCs exhibited a fibroblast-like morphology
with the property of plastic adherence. Several surface
markers were analyzed via flow cytometry. All analyzed
ADSC subsets (passage 3–4) were characterized by posi-
tive constitutive expression of CD29, CD44, CD90, and
CD105 (the hallmark pattern of MSCs), as well as CD73
and CD166, and were negative for the CD31, CD34, and a
hematopoietic marker CD45 [37]. BJ fibroblasts expressed
a similar phenotype (Fig. 1). Transcription factor GATA4
plays a key role in myocardial morphogenesis [38, 39].
GATA4 overexpression is an essential cofactor in the stem
cells and fibroblasts reprogramming toward CMs in vitro
[24, 40, 41]. E-ADSCs were characterized by nearly four
times higher constitutive expression of GATA4 as
compared with P-ADSCs. Both showed higher GATA4 ex-
pression than O-ADSCs and fibroblasts (Fig. 2). Nanog
and OCT4 are recognized as pluripotency markers, highly
expressed in ESCs and iPSCs. The analyzed cell lines did
not differ significantly in expression of these genes. Com-
parison of the same donor samples revealed slightly higher
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Fig. 1 Characterization of human ADSC subsets and BJ fibroblasts (BJF). Results of flow cytometric analysis. ADSCs and BJ fibroblasts were positive
for the hallmark pattern of MSCs (CD29, CD44, CD90, CD105) and were negative for CD31, CD34, and hematopoietic marker CD45. E/O/P-ADSC
epicardial/omental/pericardial adipose-derived stem cell
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expression of OCT4 and Nanog in E-ADSCs, as compared
with P-ADSCs (1.12× and 1.22×, respectively). Interest-
ingly, E-ADSCs were characterized with a high constitu-
tive activity of the ALP (Fig. 3a–c) and ALP gene
expression (Fig. 3d,e), as compared with the other ADSC
subtypes and BJ fibroblasts. In all analyzed ADSC subsets,
ALP activity increased along the length of cell culture (F
= 4.35, P = 0.02; Fig. 4a). Negative Alizarin red S staining
excluded spontaneous osteogenic transformation as the
cause of the growing presence of ALP-positive cells
(Fig. 4c–f ).

ADSC osteogenic and adipogenic differentiation
All analyzed human ADSC lines revealed multipotent
properties with an osteogenic and adipogenic differen-
tiation potential. Extracellular mineralization, con-
firmed with Alizarin red S staining, was nearly
twofold more intense in epicardial than pericardial
and omental ADSC cultures, after 2 and 3 weeks of
osteogenesis (Fig. 4b). Furthermore, it correlated posi-
tively with the respective ADSC constitutive ALP ac-
tivity (week 2: R = 0.86 P < 0.05, week 3: R = 0.67 P <
0.05). As expected, ALP activity increased during
osteogenesis in all ADSC subsets (Fig. 4a) and corre-
lated positively with its activity in respective controls
(R = 0.81, P < 0.05). E-ADSCs were characterized with
the highest ALP activity increase over 3-week osteo-
genic differentiation. On the contrary, E-ADSCs re-
vealed lower adipogenic potential as compared with
the highly adipogenic O-ADSCs (Fig. 5). These data
points suggest a distinct differentiation potential of
the epicardial, pericardial, and omental stem cells de-
rived from adipose tissue.

Proliferation
We confirmed the exponential long-term growth of all
ADSC subtypes with 4 months of continuous culture. E-
ADSCs exhibited a higher proliferation potential than
pericardium and omentum-derived cells (Fig. 6).

Cardiomyogenic differentiation
First, we analyzed the effectiveness of 5-aza-induced car-
diogenesis of human ADSCs, as described previously
[33]. E-ADSCs, P-ADSCs, and O-ADSCs did not show
any cardiac-specific morphological changes 21 days after
exposure to 5-aza. Furthermore, they did not stain posi-
tively for alpha-actinin and did not reveal increased ex-
pression of Actn2 and cTNT, as compared with the
respective control culture. Subsequently, we analyzed in-
duction of cardiogenesis with seven factors (GATA4,
MEF2C, TBX5, ESRRG, MESP1, MYOCD, ZFPM2) and
YFP. As described by Fu et al. [24], these were shown to
initiate reprogramming of human cardiac fibroblasts to-
ward CMs in vitro. Three weeks after transduction with
the seven factors, E-ADSCs revealed 14 and 22 times
higher expression of Actn2 and cTNT, respectively, as
compared with the control culture (Fig. 7a,b). Concur-
rently, at the same transfection effectiveness, their rela-
tive expression was, on average, at least twice lower in
P-ADSCs, O-ADSCs, and fibroblasts. PCR results were
confirmed with immunohistochemistry showing alpha-
actinin-positive cells, exhibiting changes to an elongated
morphology. Single striated cells were noted in trans-
duced E-ADSCs only (Fig. 7c–i). Interestingly, analyzing
all ADSC subsets, Actn2 expression 3 weeks after seven-
factor transduction correlated positively with the consti-
tutive GATA4 expression (R = 0.79, P < 0.05). However
this dependence was not observed in the case of E-

Fig. 2 ADSC constitutive expression of the GATA4 gene. Quantitative real-time RT-PCR results performed in duplicate represented by fold-change values
as compared with fibroblasts, with a standard 18S endogenous control. Comparison of the collected ADSC subtype samples (n= 5 adipose tissue samples
for each ADSC subtype, mean ± SEM; *P< 0.05 vs E-ADSCs, #P= 0.06 vs P-ADSCs) (a), and epicardium and pericardium-derived stem cells harvested from
the same brain-dead organ donor free of comorbidities (b). E/O/P-ADSC epicardial/omental/pericardial adipose-derived stem cell
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ADSCs, and consequently the correlation was stronger
for P-ADSCs and O-ADSCs (R = 0.87, P < 0.05).

Discussion
Chong et al. have shown that perivascular multipotent
stem cells, which are present in the epicardial layer, do
not originate from the bone marrow despite having the
same antigen profile as BM-MSCs. Furthermore, they re-
vealed their potential role in cardiac regeneration after

MI [42]. Here we have confirmed the presence of human
MSCs in both pericardial and epicardial adipose tissue,
presenting dominant but distinct multipotent character-
istics. Both thoracic lineages revealed a higher constitu-
tive ALP expression and activity, and lower adipogenic
potential, as compared with O-ADSCs. This result is
consistent with observation of the reciprocally

Fig. 3 ADSC and BJ fibroblast (BJF) ALP activity (a–c) and
constitutive ALP gene expression (d, e). Comparison of ALP activity
quantitated by colorimetric analysis of the constitutive enzyme
activity in passage 5 ADSCs and BJ fibroblasts (n = 5, mean ± SEM,
*P < 0.05 vs E-ADSCs) (a). ALP staining in the same donor epicardial
(b) and pericardial (c) ADSCs. Quantitative real-time RT-PCR results
performed in duplicate represented by fold-change values as
compared with fibroblasts, with a standard 18S endogenous control.
Comparison of the collected ADSC subtype samples (n = 5 adipose
tissue samples for each ADSC subtype, mean ± SEM, *P < 0.05 vs E-
ADSCs) (d), and epicardium and pericardium-derived stem cells har-
vested from the same brain-dead organ donor free of comorbidities
(e). ALP alkaline phosphatase, E/O/P-ADSC epicardial/omental/pericar-
dial adipose-derived stem cell

Fig. 4 Evaluation of ADSC osteogenic potential. Changes of ALP activity
(a) and calcium mineral deposition (b) over 3 weeks of osteogenic
differentiation (O), as compared with the respective control culture and
between subsets (C), quantitated by colorimetric analysis (n= 5 adipose
tissue samples for each ADSC subtype, mean ± SEM; $P< 0.001, *P<
0.005, %P< 0.05 vs week 1; ^P< 0,001; #P< 0.05 vs week 2; and &P< 0.05,
@P= 0.05 vs respective E-ADSCs). Example of P-ADSC ALP and
Alizarin red S staining after 3-week osteogenesis (c, d) or control
culture (e, f). ALP alkaline phosphatase, E/O/P-ADSC epicardial/
omental/pericardial adipose-derived stem cell
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competing osteogenic and adipogenic capacity of MSCs
[43]. Previous studies disclosed the presence of ALP-
positive human BM-MSCs in young patients [44]. D’Ip-
polito et al. [45] described ALP+ BM-MSCs as the osteo-
progenitors and similarly observed their declining
number in aging patients. Simultaneously, a few observa-
tions point to the higher proliferation potential of
MSCs/ADSCs in juveniles [46]. Our analysis confirmed
a positive correlation between constitutive ALP expres-
sion and ADSC osteogenic potential. These results
would seem consistent with previous observations unless
we observed the highest ALP expression in the
epicardium-derived stem cells, physiologically unrelated
to neo-osteogenesis in vivo. Interestingly, apart from the
higher ALP expression, E-ADSCs were characterized by
higher proliferation potential. In line with these observa-
tions, we hypothesize that ALP-positive ADSCs may
have higher proliferation potential and that in effect
ALP-positive cells dominate the cell culture, which could
explain the observed increase of ALP activity over

prolonged culture. This hypothesis can be supported
with the study by Lee et al. [43] revealing the higher ex-
pression of PKCδ with higher ALP activity in human
MSCs; and observations revealing the positive correl-
ation between PKCδ expression and cell mitotic activity
[47]. This hypothesis could also be supported with the
previous observation of ALP overexpression in germ cell
tumors [48]. Interestingly, pluripotent stem cells, includ-
ing human ESCs and iPSCs, are characterized by high
membrane expression of ALP that is recognized as one
of the pluripotency markers. Moreover, high ALP ex-
pression is a distinctive feature of pericytes, recognized
as MSC progenitors, which were shown to exert a cardi-
oprotective effect in heart ischemic injury, and are rec-
ognized as the myogenic precursors in skeletal muscles
[49–51]. Nevertheless, the analyzed E-ADSCs did not re-
veal overexpression of the OCT4 and Nanog genes. The
achieved results point to the potentially different role of
ALP activity in ADSCs, apart from its influence on the
differentiation ability (osteogenesis) analyzed in vitro.
This calls for further studies into ALP function in stem
cells and its influence on their proliferation potential.
Interestingly, we have observed a much higher expres-

sion of the zinc finger transcription factor GATA4 in E-
ADSCs as compared with other ADSC subtypes. GATA4
overexpression activates the promoters and enhancers of
the alpha-myosin heavy chain and cTNT in models of
cardiogenesis [40, 52, 53]. The crucial role of GATA4 in
cardiac morphogenesis has been confirmed previously
with embryonic lethality in GATA4 knockout mice [54].
The contribution of epicardium-derived stem cells to
CMs remains a matter of debate, with a few studies con-
firming derivation of the CMs from proepicardial stro-
mal cells [55–57]. The observed high constitutive
expression of GATA4 in E-ADSCs may point to their
high plasticity toward a cardiomyogenic lineage. Thus,
we analyzed the ability for ADSCs to differentiate into
CMs, applying two methods described previously. We
did not observe an increase in Actn2 and cTNT

Fig. 5 Evaluation of ADSC adipogenic potential. Comparison of
adipogenic transformation efficiency between E-ADSCs, P-ADSCs,
and O-ADSCs, as determined by Oil red O staining 1, 2, and 3 weeks
after differentiation onset (n = 5 adipose tissue samples for each
ADSC subtype, mean ± SEM, *P < 0.05 vs week 1, #P < 0.05 vs week
2). BJ fibroblasts were negative for Oil red O staining after 3-week
adipogenic differentiation. E/O/P-ADSC epicardial/omental/pericardial
adipose-derived stem cell

Fig. 6 Comparison of proliferation abilities of the analyzed ADSC subtypes and BJ fibroblasts (BJF). Cell proliferation expressed as the doubling time
(a) and the increase of cell number within 2 weeks of cell culture (log2 scale) (b). E/O/P-ADSC epicardial/omental/pericardial adipose-derived stem cell

Wystrychowski et al. Stem Cell Research & Therapy  (2016) 7:84 Page 8 of 12



expression, as well as myogenic change in cell morph-
ology after 5-aza-induced cardiac differentiation. Our
observation is consistent with data presented by Lee et
al., Safwani et al., and Balana et al. [58–60], but remains
in contradiction to previous findings confirming effect-
iveness of this method in differentiation of BM-MSCs
into CMs [33, 61]. Subsequently, we applied a method
described by Fu et al., who identified a minimum cock-
tail of seven transcription factors inducing transdifferen-
tiation of human fibroblasts into CMs [24]. This work
was preceded with an experimental study presenting
successful derivation of the beating CMs from rodent fi-
broblasts, induced with three factors only (GATA4,
Mef2c, and Tbx2), as well as a successful in-vivo repro-
gramming of the cardiac fibroblasts to CMs [41, 62]. A
few analyses underline the fact that there is not a spe-
cific marker allowing a distinction between fibroblasts
and ADSCs. Indeed, particular fibroblast subsets can
meet part or all of the criteria defining MSCs. We

confirm this observation, revealing the stem cell specific
phenotype of the BJ fibroblasts and their osteogenic po-
tential. Thus, MSCs and fibroblasts are hypothesized to
be just different states in a single cellular family [63, 64].
Consequently, we have concluded that a technique de-
scribed previously might be applicable for ADSCs, puta-
tively with higher effectiveness, taking into account their
multipotent characteristics. Our results confirm this hy-
pothesis, with observation of the alpha-actinin-positive
stem cell derivatives, overexpressing Actn2 and cTNT.
Nevertheless, because single cells revealed a myogenic
phenotype, we have not observed beating cells within
3 weeks of observation. Analyzing all ADSCs, the result-
ant differentiation towards CMs correlated positively
with the constitutive GATA4 expression. This could ex-
plain the observed variation of the reprogramming ef-
fectiveness in the E-ADSC samples, unless this
dependence was not observed for the selectively ana-
lyzed E-ADSCs. Because GATA4 is one of the

Fig. 7 E-ADSCs, P-ADSCs, and O-ADSCs 3 weeks after seven-factor transduction. Expression of Actn2 and cTNT. Quantitative real-time RT-PCR results
performed in duplicate represented by fold-change values in the treated culture (reprogramming viral solution + polybrene) as compared with the
respective control (polybrene only) (n = 5 adipose tissue samples for each ADSC subtype) (a, b). Bright-field microscopy and anti-alpha-
actinin immunostaining (E-ADSCs c–f, P-ADSCs g, h, O-ADSCs i), revealing alpha-actinin-positive cells, changes in cell morphology (c, e–i),
and striations (d). BJF BJ fibroblasts, E/O/P-ADSC epicardial/omental/pericardial adipose-derived stem cell, 7 F seven factor (GATA4, MEF2C,
TBX5, ESRRG, MESP1, MYOCD, ZFPM2)
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transfected factors, we hypothesize that higher constitu-
tive GATA4 expression in E-ADSCs might be one of
many other factors responsible for their higher cardiac
potential revealed with Actn2 and cTNT overexpression.
It is of note that we examined the phenotype and geno-
type of the transfected cells. This is the limitation of our
study and provides scope for further future research, in-
cluding electrophysiological evaluation of E-ADSC-
derived CM-like cells, as well as experimental trials on the
application of E-ADSC-derived CMs in the experimental
model of myocardial ischemia, with subsequent compari-
son with iPSC-derived CMs.
The presented results are consistent with previous ob-

servations of successful cardiac and subcutaneous fibro-
blast transdifferentiation, as presented by Srivastava’s
team [24]. Their approach makes feasible the in-situ
transformation of the postinfarction scar into a
functional myocardium. Our observation of the high E-
ADSC cardiomyogenic potential may allow complemen-
tary treatment based on an in-vitro ADSC differentiation
into CMs with an autologous epicardial adipose tissue
sample harvested through the minimally invasive tech-
nique. Despite the fact that subcutaneous fibroblasts are
more easily obtainable and thus provide a more conveni-
ent source for induced CMs, our results point to the
higher cardiogenic capacity of E-ADSCs, which calls for
further studies into their potential role in cardiac regen-
eration. Taking into account the fact that epicardial fat
constitutes 15 % of the heart mass and mean epicardium
thickness is 5.3 ± 1.6 mm [65, 66], the alternative ap-
proach may comprise a direct stimulation of E-ADSCs,
with their recruitment to the ischemic territory and in-
vivo transdifferentiation into CMs. This is supported by
our observation of the high proliferation abilities of E-
ADSCs in vitro.
Four of five epicardial adipose tissue samples were har-

vested from the heart transplant recipients (explanted
hearts). This group of patients was insignificantly older
and burdened with comorbidities, which according to
previous observations could affect negatively the multi-
potency of the MSCs [46]. Despite this fact, the achieved
results point to the outstanding properties of E-ADSCs.
Furthermore, heart transplant recipients represent the
target population for the proposed therapeutic approach,
which increases the clinical significance and applicability
of the achieved results. Similarly, comparison of E-
ADSCs and P-ADSCs harvested from the same brain-
dead organ donor, free of chronic morbidities, revealed
distinct characteristics to stem cells derived from epicar-
dial adipose tissue. The fact that not all respective ADSC
subsets were harvested from the same donors is a limita-
tion of this study.
Just a few studies comparing characteristics of human

ADSCs from different sources have been already reported.

Baglioni et al. [67] analyzed genotypes, phenotypes, and
differentiation abilities of the subcutaneous and omental
ADSCs, showing no significant differences. The analysis of
intrathoracic fat depots as the source of the ADSCs was
the subject of just a few studies. Wang et al. compared ro-
dent pericardial and subcutaneous ADSCs showing similar
surface marker phenotype, and lower osteogenic and adi-
pogenic potential in P-ADSCs. Concurrently, P-ADSCs
showed higher GATA4 and MEF-2C constitutive expres-
sion with the presence of cTNT-positive cells after 5-aza
stimulation [68]. Recently, Naftali-Shani et al. presented a
comparative analysis of human epicardial (aortic root fat
pad), pericardial, and subcutaneous MSCs confirming
their similar cellular phenotype. Interestingly, the authors
observed a higher cardioprotective effect of human
subcutaneous ADSC transplantation, as compared with E-
ADSCs, in the rodent model of MI. These unexpected
results were explained by a lower anti-inflammatory char-
acteristic of E-ADSCs as compared with P-ADSCs and
subcutaneous stem cells [69]. This remains in accordance
with previous observations pointing to the MSC-mediated
improvement of postischemic heart function predomin-
antly through the paracrine effect [70]. Nevertheless, these
data do not exclude a potential application of E-ADSCs in
cardiac regeneration through effective in-vitro cardiogen-
esis, based on their unique cardiogenic capacity.

Conclusions
The presented data point to a significant dissimilarity in
reprogramming potential of different human ADSC sub-
sets. Human E-ADSCs are characterized by higher cardi-
omyogenic potential as compared with the other ADSC
subtypes. This observation points us to E-ADSCs as a
valuable subject for further studies into a more effective
method of MSC differentiation into CMs.
The presented results call for further studies into

the role of ALP and its influence on ADSC prolifera-
tion and differentiation abilities. Taking into account
the high constitutive ALP expression, application of
ALP as the marker of successful ADSC osteogenic
differentiation should be always accompanied by the
respective control.
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