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Abstract 

Objectives  Nasal polyp (NP) and inverted papilloma (IP) are two common types of nasal masses. And their differen-
tiation is essential for determining optimal surgical strategies and predicting outcomes. Thus, we aimed to develop 
several radiomic models to differentiate them based on computed tomography (CT)-extracted radiomic features.

Methods  A total of 296 patients with nasal polyps or papillomas were enrolled in our study. Radiomics features 
were extracted from non-contrast CT images. For feature selection, three methods including Boruta, random forest, 
and correlation coefficient were used. We choose three models, namely SVM, naive Bayes, and XGBoost, to perform 
binary classification on the selected features. And the data was validated with tenfold cross-validation. Then, the per-
formance was assessed by receiver operator characteristic (ROC) curve and related parameters.

Results  In this study, the performance ability of the models was in the following order: XGBoost > SVM > Naive Bayes. 
And the XGBoost model showed excellent AUC performance at 0.922, 0.9078, 0.9184, and 0.9141 under four condi-
tions (no feature selection, Boruta, random forest, and correlation coefficient).

Conclusions  We demonstrated that CT-based radiomics plays a crucial role in distinguishing IP from NP. It can 
provide added diagnostic value by distinguishing benign nasal lesions and reducing the need for invasive diagnostic 
procedures and may play a vital role in guiding personalized treatment strategies and developing optimal therapies.

Critical relevance statement  Based on the extraction of radiomic features of tumor regions from non-contrast 
CT, optimized by radiomics to achieve non-invasive classification of IP and NP which provide support for respective 
therapy of IP and NP.

Key points   
• CT images are commonly used to diagnose IP and NP.

• Radiomics excels in feature extraction and analysis.

• CT-based radiomics can be applied to distinguish IP from NP.

• Use multiple feature selection methods and classifier models.

• Derived from real clinical cases with abundant data.

Keywords  Inverted papilloma, Nasal polyp, Computed tomography, Radiomics

†Mengqi Guo and Xuefeng Zang contributed equally to this work and should 
be considered as co-first authors.

†Tong Li and Jianping Qiao contributed equally to this work and should be 
considered as co-corresponding authors.

*Correspondence:
Tong Li
litong131@163.com
Jianping Qiao
qiaojianping@sdnu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13244-023-01536-0&domain=pdf


Page 2 of 11Guo et al. Insights into Imaging          (2023) 14:188 

Graphical Abstract

Introduction
Sinonasal inverted papilloma (IP) is a nonmalignant 
disease that primarily affects the paranasal sinuses and 
nasal cavity [1]. It has garnered significant clinical atten-
tion due to its high recurrence rate and potential to pro-
gress into squamous cell carcinoma [2, 3]. For instance, 
S MIRZA et  al. reviewed sixty-three case series with 
adequate data, finding 163 (7.1%) cases of synchro-
nous carcinoma out of 2297 cases and 74 (3.6%) cases of 
metachronous carcinoma out of 2047 cases [4]. Among 
these synchronous carcinomas, the vast majority were 
squamous cell carcinomas. And some cases of transi-
tional cell carcinoma, adenocarcinoma, mucoepidermoid 
carcinoma, and verrucous carcinoma were also found. 
However, in clinical practice, IP is often mistaken for a 
common inflammatory lesion called nasal polyp, caus-
ing confusion among clinicians. Nasal polyps (NP) are 
benign masses associated with chronic rhinosinusitis 
originating from the nasal cavity and sinuses’ mucosa. 
Current clinical guidelines frequently classify nasal pol-
yps as a subtype of chronic rhinosinusitis, with a diag-
nosis established when nasal symptoms persist for over 
3 months and polyps are observed in the nasal cavity [5]. 
NP treatment predominantly involves conservative treat-
ment including corticosteroids or minimally invasive 

surgery, while endoscopic surgery is considered the pri-
mary approach for IP therapy, involving wide resection 
of the affected mucosa and bone [6]. Consequently, dis-
tinguishing between IP and NP is crucial for determining 
the optimal surgical approach and subsequent treatment.

Clinically, nasal congestion, rhinorrhea, and decreased 
olfactory function are commonly reported symptoms in 
nonmalignant lesions of the nasal sinuses and cavity [7]. 
These symptoms can be observed in both IP and NP. 
While nasal polyps typically occur on both sides of the 
nasal cavity, the presence of polyps limited to one side 
should raise suspicion of IP. Therefore, clinical symp-
toms alone have limited diagnostic value in distinguish-
ing between IP and NP. Additionally, preoperative biopsy 
is often considered an essential method for determining 
the nature of nasal tumors. However, this approach can 
be challenging to execute, especially in certain hospitals 
that lack access to high-quality pathological support. Fur-
thermore, the biopsy procedure itself carries risks such as 
tissue crushing from instruments like forceps, increased 
bleeding, and structural damage when dealing with deep 
lesions or performing incisions under general anesthesia. 
Moreover, the growth of NK/T-cell lymphomas can lead 
to vascular occlusion and extensive tissue necrosis, mak-
ing it difficult to obtain sufficient tumor tissue [8]. All 
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of these factors may result in an inadequate representa-
tion of the collected tissues. Moreover, the diagnosis of 
nasal tumors is sometimes subjective and relies on visual 
assessment, which can vary depending on the device 
used and the operator’s experience [9]. Therefore, relying 
solely on clinical symptoms and preoperative biopsy for 
distinguishing between IP and unilateral NP can be unre-
liable and problematic.

Preoperative imaging examination is commonly used 
to assess nasal tumors. Computed tomography (CT) is 
the best modality for assessing bone characteristics, such 
as erosion, proliferative sclerosis, destruction, and calci-
fication within lesions. It can provide some radiological 
diagnosis based on focal hyperostosis, although it may 
still be non-specific and inadequate for precisely locat-
ing the origin and extent of the tumor [10]. On the other 
hand, magnetic resonance imaging (MRI), which usually 
serves as a complementary diagnostic method to CT, 
provides excellent clinical results for evaluating the soft 
tissue components of tumors and assessing tumor infil-
tration beyond the bone. It is a suitable tool for distin-
guishing nasal lesions, especially T2-weighted images, 
and has been recommended as the preferred imaging 
method recently [11]. To go a step further, the accuracy 
of CT in diagnosing inverted papilloma of the nasal cav-
ity is high, but it lacks specific diagnostic criteria [10]. 
On CT images, it typically appears as a soft tissue density 
mass within the unilateral nasal cavity or sinus, exhibit-
ing polypoid expansile growth. The maxillary sinus, lat-
eral nasal wall, and ethmoid sinus are common locations, 
with characteristic bone proliferation or resorption, a 
sign referred to as “osteitis sign.” CT also reveals poly-
poid masses originating from the lateral nasal wall, nasal 
roof, and ethmoid sinus and involving the nasal cavity 
and sinuses, indicating nasal polyps. In cases where dif-
ferentiation from tumors is challenging, enhanced CT or 
MRI is necessary to aid in diagnosis. In fact, enhanced 
MRI scans often show a typical labyrinthine or convo-
luted cerebriform pattern (CCP), suggesting inverted 
papilloma [2]. That is the reason why differential diagno-
sis of nasal polyps and inverted papillomas relies more 
on enhanced MRI scans. However, despite these imaging 
techniques, accurately determining the site of origin and 
differentiating from similar lesions remains challenging. 
Therefore, there is a need for a more efficient, computer-
assisted diagnostic classification algorithm that can save 
time and improve accuracy. Such an algorithm would 
assist clinicians in making timely decisions and enable 
further evaluation of suspected cases.

In recent years, deep learning has emerged as a popu-
lar and highly valued topic, especially in the medical field. 
One notable application is radiomics, a rapidly advanc-
ing image analysis technology that plays a crucial role in 

precision medicine. Radiomics enables the extraction and 
quantification of features from medical images, provid-
ing valuable information on the heterogeneity of tumors. 
These radiomic features are instrumental in distinguish-
ing diseases with similar clinical presentations and deter-
mining disease staging [12]. As a result, they greatly 
contribute to etiological diagnosis, management strate-
gies, and prognostic assessment.

Recent studies have reported successful applications 
of convolutional neural networks (CNN) in identifying 
clinically significant portal hypertension using CT and 
MRI images [13]. Additionally, there have been indica-
tions that trained CNN models can differentiate between 
NP and IP using nasal endoscopic images [14]. Based on 
these investigations, it is reasonable to believe that CT 
radiomics can be applied to the diagnosis of otolaryn-
gological diseases. CT has long been a significant diag-
nostic tool for nasal inverted papilloma, and existing 
literature suggests that features such as bone thickening, 
bone erosion, and relative CT numbers on CT images 
hold significant value in differentiating IP from NP [15].

In summary, the objective of this study is to analyze 
and discuss the application of CT radiomics in the classi-
fication of nasal polyps and inverted papilloma. The find-
ings aim to provide guidance to otolaryngologists in their 
diagnostic process.

Materials and methods
Patients
The institutional review board of Shandong First Medi-
cal University has approved our research project. Due 
to its retroactive nature, written informed consent is 
naturally waived. We retrieved the CT scan results of 
suspected NP or IP patients from December 2012 to 
September 2022 from the picture archiving and com-
munication system (PACS) and conducted follow-up 
examinations. The CT images of 296 participants were 
gathered who met the following inclusion criteria (Fig. 1): 
(1) patients with nasal inverted papilloma or nasal polyp 
confirmed by pathology; (2) all patients had CT images 
before treatment; (3) all patients had complete clinical 
and pathological information; and (4) unilateral or unilat-
eral dominant NP should be selected because most IP is 
unilateral lesion, and lateral NP should be distinguished 
from IP. Unilateral dominant NP (bilateral polyps, but 
most of them are lateral) is acknowledged when it fits 
the following requirements: in one side of the nasal cav-
ity, NP reaches the conjoint nasal cavity, and it is located 
in the middle nasal meatus on the other side. The exclu-
sion criteria are as follows: (1) lesions were small in size 
and could not extract sufficient imaging features; (2) poor 
image quality or heavy artifacts; (3) when bilateral NP 
does not show laterality, such as bilateral NP reaching the 
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conjoint nasal cavity or bilateral NP in the middle nasal 
meatus, we will put it out from the study. The resulting 
workflow is shown in Fig. 1.

Image acquisition
This was a multi-center study that included CT examina-
tions without contrast media. We collected these relevant 
data from the two medical centers of the hospital affili-
ated with our school.

In two centers, patients underwent CT scanning using 
multidetector-row CT systems (Somatom Force, Siemens 
Healthcare; Discovery 750, GE Healthcare and Ingenuity 
CT, Philips; Aquilion ONE, TOSHIBA; Somatom Force, 
Siemens Healthcare; Lispeed 64, GE Healthcare) respec-
tively. We described the scanning by following parame-
ters: set the voltage to 100 kV or 120 kV; the tube current 
(automatic modulation tube current was used) was 100–
400 mAs, and CTDIvol was 15–60  mGy; a matrix of 
512 × 512, and a pitch of 0.6 or 1.0; detector collimation 
was installed to 192 × 0.6  mm or 64 × 0.625  mm; axial 
images with 1 mm slice thickness were reconstructed.

Image preprocessing
The noncontrast and thin slice images were down-
loaded from PACS and stored in DICOM format. And 
we resampled the CT image to 1 × 1 × 1, which means 
that the sampling interval is 1  mm on all three axes 
(x-axis, y-axis, and z-axis, respectively). This means 

that each two adjacent pixels in the image are sepa-
rated by 1 mm in each direction. Then, we imported the 
images into the Slicer 5.0.3 software, and the ROIs for 
the 3D images were subsequently confirmed layer-by-
layer by two otolaryngology radiologists. In this pro-
cess, we found the layer with the largest tumor volume 
displayed and outlined this layer and its adjacent upper 
and lower layers, totaling five layers. The relevant infor-
mation for the lesion dataset and manually annotated 
CT images is shown in Table 1 and Fig. 2.

Feature extraction
The ROIs delineated by the otolaryngologist were used 
as mask files, and the CT images obtained after resam-
pling of the original CT images were used as image files. 
The mask and image files were imported into Python, 
and 1288 features were extracted using radiomics.

Fig. 1  The workflow of the collection of patients. Created using WPS office

Table 1  Image data of patients

Lesions NP and IP, Images handcraft-annotation CT images, NP nasal polyp, IP 
inverted papilloma

Patients Lesions Images

NP 144 144 720

IP 152 152 760

Total 296 296 1480
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Feature selection
Not all features are beneficial for model classification, 
so feature selection is necessary. For feature selection, 
three methods including Boruta, random forest, and 
correlation coefficient were used. From 1288 features, 
they selected 96, 73, and 257, respectively.

Model construction
We choose three models, namely SVM, naive Bayes, 
and XGBoost, to perform binary classification on the 
selected features. And the data was validated with 
10-fold cross-validation. Nine results were obtained by 
combining three feature selection methods and three 
models.

Statistical analysis
The receiver operator characteristic (ROC) curve is con-
stantly regarded as a graphics technology to describe and 
evaluate the accuracy and sensitivity as well as specific-
ity of diagnostic tests or models. In this study, we gen-
erated ROC curves to compare the accuracy of different 
classifiers. The confusion matrix was shown in Fig. 3. We 
selected AUC, accuracy, sensitivity, specificity, precision, 
and F1 score to analyze the data in this paper.

Results
Demographic characteristics
We retrospectively reviewed 1480 thin slice-thick images 
of 296 subjects with pathologically confirmed lesions of 

IP or NP at our hospital. Of the 296 patients, 152 had 
IP, and 144 had NP. Table 2 aggregates the demographic 
characteristics of the patients in our paper. From the 
table, there are few significant differences in the percent-
age sex ratio between the two groups.

Visualization of feature selection
In this study, 1288 features were extracted, and three 
methods of feature selection (Boruta, random forest, and 
correlation coefficient) were applied. The extracted image 
radiomics features were divided into the following three 
main categories: second-order and higher-order texture-
based features, first-order gray-scale histogram features, 
and shape features. Figures 4 and 5 provide a visual rep-
resentation of these methods.

Diagnostic performance of various classifier models
We applied several different classifier models to the dif-
ferential diagnosis of NP and IP, and then obtained the 
results shown in Table 3. According to Table 3, the high-
est specificity (0.9929), sensitivity (0.8896), accuracy 
(0.9153), and AUC (0.922) are displayed. The superb 
AUC performance of 0.922, 0.9078, 0.9184, and 0.9141 
were shown for the XGBoost model, compared to the 
normal performance of the other models. Consequently, 
the performance order of these classifiers is as follows in 
our research: XGBoost > SVM > Naive Bayes. We sum-
marized the ROC equipped with these radiomic models 
with high AUC under various feature selection methods, 
as shown in Fig.  6. Finally, we obtained with high AUC 

Fig. 2  Handcrafted annotation CT images of IP and NP. a IP; b NP. Axial noncontrast CT scans of the paranasal sinuses demonstrate a mass filling 
the right nasal cavity and extending into the maxillary sinus. a The right middle nasal cavity is filled with soft tissue-like density lesion; the right 
middle nasal meatus is enlarged, and the right middle and lower turbinates are displaced. The right maxillary sinus and nasal mucosa are thickened, 
and a little gas density shadow can be seen; the nasal septum is partially deflected to the left. b Soft tissue density lesion filling can be seen 
in the right maxillary sinus and nasal meatus; the nasal meatus is narrow, and the lesion protrudes backward to the posterior naris. No significant 
absorption or destruction of the bone in the residual sinus wall is observed; the left maxillary sinus is well gasified, and the sinus cavity is clearly 
displayed; the nasal septum is in the middle
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under different feature selection methods. In addition, 
diagnostic performance of the radiomics models in inde-
pendent test CT scans was shown in Table 4.

Discussion
Accurate differentiation between sinonasal IP and NP has 
always been a significant challenge in clinical practice. 
The resemblance in clinical symptoms and the results of 
various auxiliary examinations contribute to the difficulty 

in distinguishing between these conditions [16]. Given 
that IP typically requires more extensive surgical resec-
tion, whereas NP can be managed with medical treatment 
or minimally invasive surgery, accurate preoperative pre-
diction of IP or NP is crucial for determining the optimal 
surgical strategy and predicting the prognosis.

In the field of otolaryngology, clinicians commonly 
employ CT scans prior to surgery to assess the extent of 
IP involvement in the sinuses and determine the appro-
priate surgical strategy. Earlier studies have indicated 
that focal hyperostosis is a notable CT feature for pre-
dicting IP [17]. For instance, Glikson et  al. conducted a 
study involving 195 IP patients and discovered that 65% 
of them exhibited focal hyperostosis [18]. However, the 
study concluded that the presence of focal hyperostosis 
detected in preoperative CT scans did not significantly 
impact the long-term prognosis of inverted papilloma 
resection. These findings collectively suggest that relying 
solely on the presence of focal hyperostosis is insufficient 
for distinguishing between IP and NP. Another study by 

Fig. 3  Confusion matrix

Table 2  Demographic of study subjects

IP (n = 152) NP (n = 144) p

Age mean ± SD 
(range)

41.00 ± 18.86 
(15–82 years)

53.44 ± 13.50 (6–83 years)

Gender 0.575

  Male 108 (71.1) 98 (68.1)

  Female 44 (28.9) 46 (31.9)

Fig. 4  Visual representation of Boruta and random forest
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Sukenik et al. reported a specificity of only 20% for pre-
operative CT examination in evaluating IP [19]. Similarly, 
in our own study, a considerable number of IP patients 
did not exhibit focal hyperostosis. These research find-
ings highlight the insufficiency of focal hyperostosis 
alone in differentiating IP from NP.

Nevertheless, the potential of CT in distinguishing the 
two remains to be tapped. Sano et al. tried to evaluate the 

meaning of relative CT value (CT attenuation number 
relative to those of the brainstem) for distinguishing NP 
and IP [15]. According to this research, CT values of the 
NP set and IP set were 28.0 ± 12.8 HU and 38.0 ± 10.0 HU 
separately, suggesting IP had superior CT values than NP. 
Therefore, we could acquire a simple and creative refer-
ence parameter for diagnosis of NP and IP. Based on this, 
our study tries to find a new way to extract image features 

Fig. 5  Visual representation of correlation coefficient

Table 3  Average performance of various machine learning models

Feature selection Model name AUC​ Accuracy Sensitivity Precision Specificity F1 score

No SVM 0.8969 0.8883 0.8270 0.9644 0.9668 0.8842

Naive Bayes 0.8604 0.8540 0.8543 0.8724 0.8666 0.8574

XGBoost 0.9220 0.9153 0.8510 0.9929 0.9929 0.9143

Boruta SVM 0.9068 0.8984 0.8260 0.9838 0.9876 0.8938

Naive Bayes 0.9013 0.8916 0.8602 0.9368 0.9424 0.8901

XGBoost 0.9078 0.9018 0.8573 0.9568 0.9582 0.9017

Random forest SVM 0.9077 0.9018 0.8512 0.9644 0.9643 0.8995

Naive Bayes 0.8872 0.8777 0.8466 0.9220 0.9278 0.8770

XGBoost 0.9184 0.9120 0.8896 0.9443 0.9473 0.9122

Correlation coefficient SVM 0.8803 0.8714 0.8263 0.9310 0.9342 0.8682

Naive Bayes 0.8659 0.8576 0.8407 0.8842 0.8911 0.8567

XGBoost 0.9141 0.9086 0.8707 0.9603 0.9575 0.9093
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of two diseases, including CT values, to maximize the use 
of CT images to achieve the identification of IP and NP, 
which involves the field of radiomics.

Radiomics currently plays a crucial role in non-inva-
sive clinical diagnosis, particularly in the field of tumors, 
and has shown promise in classification, staging, pre-
dicting healing outcomes of various tumors, and evalu-
ating treatment effects of different surgical options 
[20–25]. Moreover, radiomics can extract informative 
features from images that may be difficult for humans 
to detect [26, 27]. As the clinical application of radiom-
ics continues to be explored, an increasing number of 
otorhinolaryngology practitioners have started applying 
radiomics to their field. Yan et  al. demonstrated that a 
model combining morphological features and MR radi-
omics could accurately predict inverted papilloma with 
squamous cell carcinoma transformation, potentially 
enhancing patient consultation and facilitating more 
precise treatment planning [28]. Studies have also shown 
the feasibility of using artificial intelligence and radiom-
ics to diagnose difficult cases involving small round cell 

malignant tumors (SRCMTs) or non-SRCMTs [29, 30]. 
These findings suggest the promising potential of non-
invasive methods in clinical practice. Recent research 
by Du et al. revealed that a novel combination of clini-
cal features and MRI-based radiomics could effectively 
differentiate between IP and NP invading the olfactory 
nerve, highlighting the potential of radiomic models in 
addressing nasal diseases [31].

Radiomics has demonstrated strong capabilities in fea-
ture extraction and texture analysis, making it suitable for 
the intrinsic appearance evaluation of tumors. Previous 
studies have shown that radiomics can provide valuable 
insights, particularly in cases where radiologists have lim-
ited recognition ability, enabling precise and automatic 
tumor extraction [32–35]. While MRI is known for its 
ability to display soft tissues, making it potentially more 
suitable for differentiating between tumors and inflam-
matory conditions such as IP and NP, in clinical practice, 
patients suspected of having IP or NP often undergo CT 
examinations initially due to the high cost of MRI and the 
limited visualization of bone structures. Therefore, this 

Fig. 6  ROC of the 3 types of machine learning models under various feature selection methods
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study focusing on CT-based radiomics is more practi-
cal and applicable in a clinical setting compared to MRI-
based radiomic research.

In our study, we developed several radiomic mod-
els based on CT features to distinguish between IP 
and NP. The results demonstrated that these radiomic 
models, particularly the XGBoost classifier, exhibited 
excellent diagnostic accuracy, confirming their clinical 
application value. Our study possesses several advan-
tages compared to previous studies on radiomics models 

for differentiating NP and IP. Firstly, we approached the 
analysis of IP and NP from a clinical perspective rather 
than relying solely on a database, and our study included 
a larger population compared to most relevant studies. 
Secondly, we employed three different methods of feature 
extraction (correlation coefficient, Boruta, and random 
forest), which contributed to improved diagnostic perfor-
mance compared to previous radiomics models. Thirdly, 
we utilized multiple classifier models for classification, 
and some of these models demonstrated outstanding 

Table 4  Diagnostic performance of the radiomics models in independent test CT scans

Feature selection Model name Evaluation 
indicators

1 2 3 4 5 6 7 8 9 10

Accuracy 0.9310 0.9333 0.8000 0.7586 0.8966 0.8966 0.9333 0.9000 0.8333 1.0000

SVM FN 2 2 6 7 3 3 1 1 3 0

FP 0 0 0 0 0 0 1 2 2 0

Accuracy 0.7931 0.9000 0.7667 0.7586 0.8276 0.8276 0.9333 0.9000 0.8667 0.9667

No Naive Bayes FN 2 3 6 5 3 2 1 0 2 0

FP 4 0 1 2 2 3 1 3 2 1

Accuracy 0.9310 0.9333 0.8333 0.8276 0.8966 0.9310 0.9667 0.9667 0.8667 1.0000

XGBoost FN 2 2 5 5 3 2 1 1 3 0

FP 0 0 0 0 0 0 0 0 1 0

Accuracy 0.9310 0.8667 0.8000 0.7931 0.8966 0.8966 0.9667 0.9333 0.9000 1.0000

SVM FN 2 3 6 6 3 3 1 1 3 0

FP 0 1 0 0 0 0 0 1 0 0

Accuracy 0.8966 0.9000 0.8000 0.8276 0.8966 0.8621 0.9667 0.9000 0.8667 1.0000

Boruta Naive Bayes FN 2 3 6 5 2 2 1 0 2 0

FP 1 0 0 0 1 2 0 3 2 0

Accuracy 0.9310 0.9333 0.8000 0.8276 0.8966 0.8966 0.9333 0.9333 0.8667 1.0000

XGBoost FN 2 2 5 5 3 2 1 1 2 0

FP 0 0 1 0 0 1 1 1 2 0

Accuracy 0.9655 0.9333 0.8000 0.8621 0.8276 0.8966 0.9333 0.9333 0.8667 1.0000

SVM FN 0 2 6 4 4 3 1 1 3 0

FP 1 0 0 0 1 0 1 1 1 0

Accuracy 0.8966 0.9000 0.8333 0.8276 0.7931 0.7931 0.9667 0.9000 0.8667 1.0000

Random forest Naive Bayes FN 2 3 5 5 4 3 1 0 2 0

FP 1 0 0 0 2 3 0 3 2 0

Accuracy 0.8966 0.9333 0.8333 0.8621 0.8966 0.9310 0.9667 0.9000 0.9000 1.0000

XGBoost FN 1 2 5 4 2 1 1 1 1 0

FP 2 0 0 0 1 1 0 2 2 0

Accuracy 0.8966 0.9000 0.8000 0.7931 0.8276 0.8966 0.9333 0.8333 0.8333 1.0000

SVM FN 2 2 6 6 4 3 1 1 3 0

FP 1 1 0 0 1 0 1 4 2 0

Accuracy 0.8621 0.9000 0.7667 0.7931 0.8276 0.7931 0.9333 0.9333 0.8333 0.9333

Correlation coefficient Naive Bayes FN 2 2 6 5 4 3 1 1 3 0

FP 2 1 1 1 1 3 1 1 2 2

Accuracy 0.9655 0.9333 0.8333 0.8276 0.8966 0.8966 0.9000 0.9333 0.9000 1.0000

XGBoost FN 1 2 5 5 3 2 1 1 1 0

FP 0 0 0 0 0 1 2 1 2 0



Page 10 of 11Guo et al. Insights into Imaging          (2023) 14:188 

performance. Additionally, our study employed ten-fold 
cross-validation to validate the accuracy of the algorithm, 
a step that was lacking in previous studies.

Although our study has achieved some results, there 
are certain limitations that should be discussed. Firstly, 
we did not incorporate clinical factors or clinical indica-
tor features into the radiomics analysis. Clinical diagno-
sis is typically based on the comprehensive evaluation 
of all available data in clinical practice, including imag-
ing information of surrounding tissues and the impact 
of the tumor on neighboring structures. Therefore, it is 
important to conduct further research on clinical indi-
cators and explore their performance and impact on the 
identification of IP and NP. Fusion experiments incorpo-
rating clinical indicators could enhance the diagnostic 
efficiency of IP.

Secondly, the number of clinical cases in our study 
was limited, particularly the data on IP patients, which 
are relatively scarce in hospitals. This limited sample 
size affects the generalizability of our model. It would 
be beneficial to collect a larger and more diverse data-
set to improve the robustness and applicability of the 
radiomics models.

Lastly, the machine learning methods employed in 
our study mainly focused on traditional algorithms and 
did not involve deep learning techniques. Deep learn-
ing has demonstrated significant advancements and 
achievements in various research fields. Therefore, fur-
ther investigations utilizing deep learning methods 
are expected to contribute to the differential diagnosis 
between IP and NP.

Conclusions
In summary, we have constructed several CT-based radio 
models with reasonably great accuracy in distinguishing 
IP from NP. It not only demonstrates diagnostic value 
in distinguishing benign nasal lesions, thereby reducing 
the need for invasive diagnostic procedures, but can also 
be used to guide personalized treatment strategies and 
develop optimal therapies.
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