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Analyses of nervous system patterning 
genes in the tardigrade Hypsibius exemplaris 
illuminate the evolution of panarthropod brains
Frank W. Smith1,2* , Mandy Cumming1 and Bob Goldstein2

Abstract 

Background: Both euarthropods and vertebrates have tripartite brains. Several orthologous genes are expressed in 
similar regionalized patterns during brain development in both vertebrates and euarthropods. These similarities have 
been used to support direct homology of the tripartite brains of vertebrates and euarthropods. If the tripartite brains 
of vertebrates and euarthropods are homologous, then one would expect other taxa to share this structure. More 
generally, examination of other taxa can help in tracing the evolutionary history of brain structures. Tardigrades are an 
interesting lineage on which to test this hypothesis because they are closely related to euarthropods, and whether 
they have a tripartite brain or unipartite brain has recently been a focus of debate.

Results: We tested this hypothesis by analyzing the expression patterns of six3, orthodenticle, pax6, unplugged, 
and pax2/5/8 during brain development in the tardigrade Hypsibius exemplaris—formerly misidentified as Hypsibius 
dujardini. These genes were expressed in a staggered anteroposterior order in H. exemplaris, similar to what has 
been reported for mice and flies. However, only six3, orthodenticle, and pax6 were expressed in the developing brain. 
Unplugged was expressed broadly throughout the trunk and posterior head, before the appearance of the nervous 
system. Pax2/5/8 was expressed in the developing central and peripheral nervous system in the trunk.

Conclusion: Our results buttress the conclusion of our previous study of Hox genes—that the brain of tardigrades is 
only homologous to the protocerebrum of euarthropods. They support a model based on fossil evidence that the last 
common ancestor of tardigrades and euarthropods possessed a unipartite brain. Our results are inconsistent with the 
hypothesis that the tripartite brain of euarthropods is directly homologous to the tripartite brain of vertebrates.

Keywords: Brain evolution, Nervous system evolution, Body plan evolution, Homology

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
How brains evolved is one of the most perplexing ques-
tions in biology. Recent debates have centered on how 
to interpret similarities in brain development of dis-
tantly related animals [1–9]. During brain development 
in mice, Otx2 is expressed in the forebrain and mid-
brain. A paralogous group of paired box genes, Pax2, 
Pax5, and Pax8, along with the homeobox gene Gbx2, 
exhibit strong expression near the midbrain–hindbrain 
boundary. In the hindbrain and more posterior regions 

of the developing central nervous system, Hox genes are 
expressed [10]. Orthologs of these genes are expressed in 
a similar staggered anteroposterior pattern in the tripar-
tite brain of flies [10]. Based on these correspondences, it 
has been hypothesized that the ancient ancestor of mice 
and flies—the last common ancestor of Nephrozoa [11]—
had a tripartite brain [2, 10, 12–15].

Similarities extend to specific regions of the brains 
of protostomes and deuterostomes. Six3 orthologs are 
expressed in the anteriormost region of the developing 
brain in representatives of both protostomes and deuter-
ostomes—a region that gives rise to neurosecretory cells 
in both lineages [16]. Pax6 is expressed in a lateral region 
of the brain in many protostomes and deuterostomes that 
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have been investigated [17–19]. Structural and develop-
mental similarities between the vertebrate pallium and 
annelid mushroom bodies [20], and between the verte-
brate basal ganglia and the arthropod central complex 
[21] have also been identified. These similarities add sup-
port to the model of a nephrozoan ancestor with a com-
plex brain [2, 3, 7, 9, 10, 14].

Objections against this view of brain evolution have 
been raised [4, 5, 8, 22]. Each main lineage of bilateri-
ans includes representatives that lack complex brains, 
and several bilaterian lineages are characterized by dif-
fuse nervous systems, rather than centralized nervous 
systems [23]. Cladistic analyses suggest that the nephro-
zoan ancestor exhibited a nerve net and that centralized 
nervous systems evolved independently between five and 
nine times [4, 5], while brains evolved up to four times 
independently [8]. Intriguingly, orthologs of the genes 
that pattern the tripartite brains of flies and mice exhibit 
regionalized expression patterns during development of 
the hemichordate Saccoglossus kowalevskii, even though 
hemichordates lack a brain, and instead exhibit a much 
more diffuse nervous system [24–26]. Likewise, genes 
that pattern tripartite brains show similar regionalized 
expression patterns in molluscs that exhibit diffuse nerv-
ous systems [27–31]. Therefore, genes that control devel-
opment of the tripartite brains of insects and vertebrates 
exhibit conserved regionalized expression patterns in 
animals with diffuse nervous systems—animals that are 
predicted to have inherited their diffuse nervous systems 
from the last common ancestor of Nephrozoa [4, 5]. If so, 
this would indicate that these genes were independently 
co-opted for the evolution of tripartite brains several 
times in the nephrozoan lineage [1, 24, 25].

To trace the evolutionary history of complex nerv-
ous systems in Nephrozoa, additional taxa from diverse 
metazoan lineages must be investigated [1, 32, 33]. Stud-
ies of tardigrades may help elucidate nervous system 
evolution. Tardigrada is closely related to Euarthropoda 
[34–36] and, like euarthropods, tardigrades exhibit a 
segmented centralized nervous system (Fig.  1a) [37–
39]. Several paired lobes are recognizable in the tardi-
grade brain, which have been interpreted as homologs 
of the proto-, deuto-, and tritocerebral brain segments 
of insects and other euarthropods [40–43]. By contrast, 
our recent analysis of Hox genes in the tardigrade Hyps-
ibius exemplaris—formerly misidentified as H. dujardini 
and renamed H. exemplaris to reflect its burgeoning sta-
tus as a model system [44]—suggested that the brain of 
this species is homologous to just the protocerebrum of 
euarthropods [45] and therefore exhibits unipartite mor-
phology. Distinguishing between these hypotheses has 
important implications for our understanding of the evo-
lution of tripartite brain morphology.

To test the homology of the tardigrade brain to the 
brains of other animals, we investigated the expression 
patterns of several genes in H. exemplaris that have been 
implicated in the development of brains in both verte-
brates and insects. Our results build on our analysis of 
Hox genes, demonstrating that tardigrades have a unipar-
tite brain. These results support a model in which euar-
thropods evolved a tripartite brain after they diverged 
from tardigrades.

Methods
Maintaining H. exemplaris cultures
We used a standard protocol to culture H. exemplaris 
[46].

β‑Tubulin immunostaining
To visualize the developing nervous system, we stained 
H. exemplaris embryos with a β-tubulin antibody (E7, 
Developmental Studies Hybridoma Bank). To do this, we 
modified a method that was successfully implemented 
to stain the nervous system of hatchling [38] and adult 
H. exemplaris specimens [47] using the β-tubulin anti-
body, a method used to detect antibody localization in 
H. exemplaris embryos [48], and a method for embry-
onic in  situ hybridization for this species [45]. Staged 
embryos were washed for 1 h in a permeabilization buffer 
(5 units chitinase (Sigma-Aldrich C6137), 10 mg chymo-
trypsin (Sigma-Aldrich C4129), 1  ml 50  mM potassium 
phosphate buffer (pH 6.0)), followed by three 5-minute 
washes in 0.5X PBTw (0.5X phosphate-buffered saline, 
0.1% Tween-20, pH 7.4). Embryos were fixed in 4% for-
maldehyde/33% heptane in 0.5X PBTw for 30 min at RT. 
Embryos were then washed five times for 5 min with 0.5X 
PBTw. Next, embryos were taken through a MeOH dilu-
tion series, consisting of 25, 50, 70, and 90% MeOH in 
0.5X PBTw, followed by three washes in 100% MeOH. At 
this stage, embryos were kept in a − 20 °C freezer for at 
least 20 min. (Embryos can be stored indefinitely at this 
point.) Embryos were then taken through a reverse dilu-
tion series of MeOH and washed three times with 0.5X 
PBTw. Embryos were cut out of their eggshells with a 
25-gauge needle and then washed three times for 10 min 
and four times for 30 min in 0.2% bovine serum albumin 
in 0.5X PBTw (BSA). Next, they were washed two times 
for 30 min in 5% normal goat serum in 0.5X PBTw (NGS). 
Embryos were then incubated overnight in a 1:100 dilu-
tion of the β-tubulin antibody in 5% NGS at 4  °C. The 
next day, embryos were washed three times for 5 min and 
four times for 30  min in 0.5X PBTw. This was followed 
by two 30-minute washes in NGS and an overnight wash 
in a 1:200 dilution of a goat anti-mouse Cy3-conjugated 
secondary antibody (Jackson ImmunoResearch) in NGS. 
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The following day, embryos were washed three times for 
5 min and six times for 30 min with 0.5X PBTw.

Identifying candidate genes and phylogenetic analyses
We performed reciprocal BLAST searches using 
human and D. melanogaster sequences as queries to 
identify candidate genes from H. exemplaris. Initial 
analyses focused on our draft genome assembly [49]. 
Three studies identified containment sequences in our 
draft assembly for H. exemplaris [50–52]. Therefore, 

candidate genes that we identified with this method 
were then used as queries in BLAST search analyses 
of three independent transcriptome data sets [52–54] 
and two independent genome assemblies for H. exem-
plaris [51, 52], to verify that they were true H. exem-
plaris sequences. For phylogenetic analyses, we aligned 
sequences using MUSCLE [55]. We trimmed our matrix 
using Gblocks [56]. We performed both Bayesian and 
maximum likelihood analyses using the LG model [57] 
with an estimated proportion of invariable sites and an 

Fig. 1 Phylogenetic and structural analyses of He-elav. a ELAV phylogeny. Maximum likelihood tree topology is shown. Bootstrap support values 
(out of 500 replicates) are shown above branches and posterior probabilities are shown below branches. The branch leading to He-ELAV and its 
name are colored dark blue. The name of An-ELAV is colored red. b Genomic structure of He-elav. Relative to the sense strand, 5′ is to the left. Thick 
bars represent exons. Thin bars represent introns. Black = UTR. Blue = sequence that codes for the ELAV/HuD family splicing domain. Gray = all other 
coding sequences. The numbers represent nucleotide positions (see Additional file 1: Table S1). c Structure of He-ELAV protein. The N-terminus is to 
the left. Blue = ELAV/HuD family splicing domain. Gray = all other protein sequences. The numbers represent amino acid positions (see Additional 
file 1: Table S1). An, anonymous sequence (see main text); Cg, Crassostrea gigas; Dm, Drosophila melanogaster; Dma, Daphnia magna; He, Hypsibius 
exemplaris; Hs, Homo sapiens; Pd, Platynereis dumerilii; Sk, Saccoglossus kowalevskii 
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estimated gamma shape parameter with four substi-
tution rate categories. We used PhyML for maximum 
likelihood analyses [58], with branch supports calcu-
lated by 500 bootstrap replicates. We used MrBayes for 
Bayesian analyses [59]. The Bayesian analyses ran for 
450,000 generations after the standard deviation of split 
frequencies dropped below 0.01, with trees sampled 
every 100 generations. Posterior probabilities were cal-
culated from 4500 trees from the posterior tree distri-
bution. We identified domains in the predicted protein 
sequences of candidate H. exemplaris orthologs with 
CD-Search [60]. We identified intron/exon bounda-
ries by comparing transcriptome sequences to genome 
sequences using Splign [61]. When we could not find 
an ortholog of interest in H. exemplaris data sets, we 
tested for presence of the ortholog in the genome 
of Ramazzottius varieornatus [62] using reciprocal 
BLAST searches.

Cloning
Genes of interest were amplified with PCR from H. exem-
plaris embryonic cDNA, or from H. exemplaris genomic 
DNA in the case of He-pax6. Primers used for this study 
were as follows: He-elav, 5′-GCA TCC AGA ACA AGA 
ACA TCA AGG -3′, 5′-ACT GGG AAA AGC GAA GTG 
TCT AGC -3′; He-otd, 5′-GTT CCC GCA CCG AGG AAA 
CAG-3′, 5′-CTC TCA CGT CCT CCA CGC TGA-3′; He-
pax2/5/8, 5′-CGT TTT CCT TCA GAC TTT CGT CGT -3′, 
5′-TCC GAT AAC TCG TCT CGT TTC CTC -3′; He-pax6, 
5′-CGT TTT ATT TGC ACA CAG CGA GAT A-3′, 5′-ATC 
TAC CGG ATT GCA AAG TTC TGG -3′; He-six3, 5′-ATC 
TTC ACT TGA CGC GAT TGT GGT -3′, 5′-GTC CTT 
GCT GTT ATC CTC GTC CAT -3′; He-unplugged (unpg), 
5′-TTG CGA GAG AAA CAA AAC TGG ATG -3′, 5′-CAA 
AAC AAA CGC GCC AAG TG-3′; An-elav outer, 5′-AAA 
CGA TGA CAC AAG ACG AAA TTA -3′, 5′-CAG CAT ACC 
TGT ACC TAT TCA TGG -3′; An-elav inner, 5′-GTT CAG 
TTG GTG CTA TTG AGT CAT -3′, 5′-AGG TAG ATA GGA 
TGG TGC TAA TGG -3′; An-pax2/5/8 outer, 5′-TAT AAA 
CAT TTG GTG GAG ACG ACA -3′, 5′-GAA TCA ATC AAC 
TTG GAG GAG TTT -3′; An-pax2/5/8 inner, 5′-ATG GTG 
AGT GCG ACT ATC ATC TTC G-3′, 5′-ATG GTG AGT 
GCG ACT ATC ATC TTC -3′, 5′-ACA TCA GTC GAC AGT 
TAC GAG TGT -3′; An-poxm outer, 5′-CGA TTT GCA 
TAA CGT AAC GTA CTC -3′, 5′-GAA CTG GAA AGA AAT 
GAT CGA ACT -3′; An-poxm inner, 5′-GCA GAC TTT 
TAT TGA TGT TGT TCG -3′, 5′-TTT CAA AGT GAT TCA 
AAC CAA GAA -3′. Genes were cloned into the pCR™4-
TOPO® (Invitrogen) vector following the manufactur-
ers protocol. Minipreps for each clone were made using 
a QIAprep Spin Miniprep Kit (Qiagen) and following 

the manufacturers protocol. Miniprep plasmids were 
sequenced to verify their identity.

In situ hybridization
To make in situ probes, we linearized plasmids with PCR 
by using the M13 forward and reverse primers that come 
with the TOPO™ TA Cloning™ Kit for Sequencing (Inv-
itrogen). Linearized template was used in a transcription 
reaction using either T7 or T3 RNA polymerase (Pro-
mega), DIG RNA labeling mix (Roche), and following 
the manufacturer’s protocols. Synthesized probes were 
cleaned using an  RNAeasy® Mini Kit and following the 
manufacturer’s instructions. In  situ hybridization was 
performed as previously described [45]. For counter 
staining the nervous system of in situ hybridization spec-
imens, the β-tubulin antibody was added after we washed 
out the anti-DIG-AP (Roche) antibody. Instead of wash-
ing out the anti-DIG-AP antibody with maleic acid 
buffer, as we normally do for in  situ hybridizations, for 
counter staining with the β-tubulin antibody, we washed 
it out with 0.5X PBTw. After these washes, we followed 
the β-tubulin immunostaining method described above. 
After completion of the immunostaining procedure, we 
washed the embryos with maleic acid buffer (pH 9.5) and 
continued through the development steps of the in  situ 
hybridization method.

Imaging
After in  situ hybridization and/or β-tubulin immu-
nostaining, embryos were mounted in DAPI Fluoro-
mount-G (SouthernBiotech). Fluorescent images were 
collected on a Zeiss 710 LSM. Maximum projections 
were produced in ImageJ. DIC images were taken on 
a Nikon Eclipse 800 microscope. Minimum and maxi-
mum displayed pixel values were adjusted in ImageJ and/
or Photoshop. In cases where the in  situ stain occluded 
β-tubulin or DAPI signal, we used either the Cyan Hot or 
glow LUT in ImageJ to better visualize the β-tubulin or 
DAPI signal.

Results
Identification of an elav ortholog
ELAV/HuD family splicing factors are RNA-binding pro-
teins that are almost exclusively expressed in differenti-
ating and mature neurons [63]. We used elav expression 
to identify early stages in nervous system development 
in H. exemplaris embryos. We identified two candidate 
elav genes in our H. exemplaris nucleotide data. One of 
these predicted genes was present in all data sets that we 
analyzed, except for the Yoshida et al. [52] transcriptome 
(Additional file 1: Table S1). We refer to this sequence as 
He-elav. The other candidate elav ortholog was missing 
in all other data sets that we analyzed except for our H. 
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exemplaris genome assembly (Additional file 2: Table S2) 
[49]. We were unable to amplify this gene from genomic 
DNA using nested PCR (Additional file 3: Fig. S1). Fur-
thermore, this predicted gene sequence is located on a 
small scaffold of only 7049 nucleotides in our genome 
assembly and it is the only gene predicted to be located 
on this scaffold. Therefore, we concluded that this 
sequence most likely represents a contaminant in our 
genome assembly. We call this sequence anonymous elav 
(An-ELAV), referring to its likely inclusion as a contami-
nant from an unknown organism.

We performed phylogenetic analyses on a matrix 
of 239 amino acid positions from 14 ELAV sequences 
stemming from 10 species, in addition to He-ELAV and 
An-ELAV (Additional file  1: Table  S1; Additional file  2: 
Table  S2; Additional file  4: FASTA alignments). Both of 
these sequences were nested within a well-supported 
clade (470/500 bootstrap support; 1.0 posterior prob-
ability) that separated all deuterostome elav genes from 
all protostome elav genes (Fig.  1a). We interpret this 
as phylogenetic support for the assignment of both 
sequences to the elav orthology group. A CD-Search 
detected an ELAV/HuD family splicing factor domain 
(Accession TIGR1661; E-value = 6.88e-123) character-
istic of ELAV proteins in the He-elav sequence that we 
identified (Fig. 1b, c). Interestingly, 37 amino acids within 
the ELAV/HuD family splicing factor domain were not 
recognized as part of this domain by the CD-Search 
algorithm (between amino acid positions 250 and 287, 
Fig. 1c). We also detected the nucleotide sequence that is 
predicted to give rise to this intervening region in the He-
elav sequence that we amplified from embryonic cDNA.

Expression pattern of He‑elav and β‑tubulin
We used a β-tubulin antibody to visualize the nervous 
system of H. exemplaris. The central nervous system of 
H. exemplaris includes a brain that is housed in the head 
and ventral trunk nervous system [47]. Inner connec-
tives (ic) extend from the inner brain region (ib) to the 
anteriormost trunk ganglion (ga1; Fig. 2a) [47]. The inner 
brain region is composed of neuropil [64]. Outer connec-
tives extend between the outer brain region (ob) and the 
anteriormost trunk ganglion (Fig.  2a) [47]. Neurites of 
the inner and outer brain regions meet at a thick band of 
dorsal neuropil [64]. Trunk ganglia adjoin adjacent trunk 
ganglia by paired connectives (cn) [47]. We detected this 
basic nervous system architecture with the β-tubulin 
antibody in 45  h post-laying (hpl) embryos (Addi-
tional file 5: Movie 1). The nervous system of our 45 hpl 
embryos appears to be in the final stage of development, 
based on a staging series for H. exemplaris [65].

For in  situ hybridizations, we focused on three devel-
opmental stages: 24  hpl, when evidence of ectodermal 

segmentation is apparent, but the nervous system and 
legs are not; 35 hpl, when developing ganglia are appar-
ent, and leg buds are discernible; and 45 hpl, when legs 
have reached their final size and the central nervous sys-
tem exhibits the connectivity that is visible post-embry-
onically (Additional file 5: Movie 1) [38]. Strong He-elav 
staining in 45  hpl embryos was restricted to the region 
where the central nervous system develops (Fig.  2b–d). 
The He-elav in  situ pattern closely matched the pattern 
of β-tubulin localization in 45  hpl embryos (compare 
Fig. 2b–d to Additional file 5: Movie 1). At 24 hpl, expres-
sion of He-elav staining was noticeably variable between 
specimens (Fig.  2e). Only one specimen exhibited He-
elav staining near the future position of the central 
nervous system (black arrowhead, Fig.  2e), and He-elav 
staining was relatively light in this specimen compared to 
35 hpl and 45 hpl embryos (Fig. 2f, g). This indicates that 
specification of neuronal identity begins in embryos at 
24 hpl or shortly after.

Identification of a six3 ortholog
The Six family includes three groups of genes—
Six1/2/sine oculis, Six3/6/optix, and Six4/5 [66]. We 
identified three-candidate Six family genes in available 
H. exemplaris genome and transcriptome assemblies 
(Additional file  1: Table  S1; Additional file  2: Table  S2). 
We performed a phylogenetic analysis using a matrix 
that included 164 amino acid positions (Additional file 4: 
FASTA alignments). Each candidate gene from H. exem-
plaris fell within a different Six family group in our phylo-
genetic analysis. If we rooted the tree with the candidate 
gene that appeared to be nested within the Six3/6/optix 
group, this group was no longer monophyletic. This sug-
gests that this candidate gene represents an H. exempla-
ris ortholog of the Six3/6/optix group. This gene contains 
a predicted SIX domain (SIX1_SD) and a homeodomain 
(Fig. 3b, c), both of which are characteristics of Six fam-
ily genes [66]. Because the direct ortholog of Six3/optix 
is referred to as six3 in most animals, we refer to the H. 
exemplaris ortholog as He-six3.

Expression pattern of He‑six3
Strong He-six3 signal was detected during all develop-
mental periods that we investigated (Fig. 4a–c). At 24 hpl, 
He-six3 signal was detected broadly across the ecto-
derm in the developing head (Fig.  4d, g). He-six3 signal 
did not extend to the posterior border of the dorsal head 
at 24  hpl (Fig.  4d). At 35  hpl, He-six3 transcripts were 
detected in regions of the head that will give rise to both 
the outer (ob) and inner (ib) brain regions (Fig. e, h). We 
also detected transcripts near the developing stomodeal 
complex in 35 hpl embryos (st; Fig. 4e). At 45 hpl, He-six3 
signal was detected broadly across the lateral ectoderm 
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of the head (Fig. 4f ). We also detected He-six3 signal in 
the region of the inner brain where neuropil develops, 
but not in the dorsal neuropil (dnp; compare Fig.  4j to 
frames 19–27 of Additional file 5: Movie 1).

Identification of an otd ortholog
We previously identified an otd ortholog in H. exempla-
ris [45]. In order to better characterize this gene from a 

phylogenetic perspective, we performed an analysis that 
included He-otd and candidate H. exemplaris PRD Class 
homeobox genes from our genome assembly (Additional 
file 1: Table S1; Additional file 2: Table S2). We followed 
a previously published naming scheme for PRD Class 
homeobox families [67]. Our matrix included the 60 
amino acid long homeodomains of 74 PRD Class home-
obox proteins stemming from several species (Additional 

Fig. 2 Embryonic expression of He-elav. a, c, d Nuclei are stained with DAPI (blue). a Maximum projection of a H. exemplaris hatchling showing the 
central nervous system. The head and first three trunk segments are shown. Neurons are stained with a fluorescent secondary antibody bound to 
a β-tubulin antibody (red). The scale bar in the bottom left corner of the top panel equals 10 μm. b DIC image of an in situ hybridization targeting 
He-elav (blue) in a laterally mounted 45 hpl embryo. The dashed line traces the ventral surface of the embryo. c, d Confocal micrographs of He-elav 
(green) embryos in 45 hpl embryos. c Maximum projection of a laterally mounted embryo. Dashed lines trace the inner and outer brain regions. d, 
d′ Individual slices from a Z-series showing a frontal view of the head of an embryo. d′ A deeper slice than (d). The solid line in (d) traces the ventral 
part of the head. The dashed lines trace the inner brain space where neuropil and commissures are found in fully developed brains. e–g Results of 
in situ hybridizations targeting He-elav at different developmental stages. Arrows point to specimens that are enlarged (inset). In the inset panels, 
all specimens are laterally mounted, facing right, with anterior toward the top. Arrowheads in the inset panels point to He-elav expression in the 
developing brain and ventral nerve cord. Dashed lines trace the ventral surface of the specimens in the inset panels. cn, connective; ga1–ga4, 
ganglion 1–ganglion 4; hpl, hours post-laying; ib, inner brain region; L1–L4, leg 1–leg 4; mo, mouth; ob, outer brain region; st, stomodeal complex
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file  4: FASTA alignments). In the maximum likelihood 
tree, He-OTD was nested within a highly supported 
monophyletic OTX clade (Fig.  5a; 432/500, bootstrap 
support; 1.00 Bayesian posterior probability; Additional 
file  6: Fig.  S2). The homeodomain was the only con-
served domain present in the predicted He-OTD protein 
(Fig. 5b, c), as is the case for D. melanogaster OTD. We 
did not detect Pax3/7 prd or Pax eyg subfamily members 
in any of the H. exemplaris databases that we analyzed. 
We analyzed the genome assembly of a second tardigrade 

species—R. varieornatus [62] using reciprocal BLAST 
searches, but did not find matches for either of these Pax 
subfamily members.

Expression pattern of He‑otd
At all stages that we analyzed, He-otd signal was strongly 
localized to the developing head (Fig.  6a–j). At 24 hpl, 
He-otd signal was detected broadly throughout the ecto-
dermal layer of the head, extending to near the posterior 
border of the head (Fig. 6d) [45]. At 35 hpl, He-otd signal 

Fig. 3 Phylogenetic and structural analyses of He-six3. a Phylogeny of Six family protein sequences. Tree topology resulted from a maximum 
likelihood analysis. Bootstrap support values are shown above branches (out of 500 bootstrap replicates). Posterior probabilities, based on a 
Bayesian analysis, are shown below branches. The branch leading to He-Six3 and its name are colored light blue. The names of other H. exemplaris 
proteins in the tree are colored red. b Structure of the He-six3 gene in the genome. Relative to the sense strand, 5′ is to the left. Thick lines represent 
exons. Black = UTR. Light blue = sequence that codes for conserved domains. Gray = all other coding sequences. Thin black lines represent introns. 
The numbers represent nucleotide positions (see Additional file 1: Table S1). c Structure of the He-SIX3 protein. The N-terminus is to the left. Regions 
that are predicted to be conserved protein domains are colored blue. All other protein sequences are colored gray. The numbers represent amino 
acid positions (see Additional file 1: Table S1). Dm, Drosophila melanogaster; He, Hypsibius exemplaris; Hs, Homo sapiens 
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appeared strongest within the head, including in or near 
the developing stomodeal complex (st; Fig. 6e). At 45 hpl, 
we detected strong He-otd signal in the inner brain (ib) 
and outer brain (ob) neuropil (compare Fig. 6f to frames 
11–27 of Additional file 5: Movie 1). He-otd signal colo-
calized with β-tubulin signal in the inner brain region 
(Fig.  6j). Strong He-otd signal was also detected in the 
developing stomodeal complex at 45 hpl (Fig. 6j).

Identification of a pax6 ortholog
PAX6 proteins generally contain a paired box domain 
(PAX) and a homeodomain [68, 69]. We identified a 
single H. exemplaris ortholog of pax6 in our analysis of 
PRD Class homeodomains (Fig. 7a). He-PAX6 was nested 
within a well-supported monophyletic PAX6 clade in this 
tree (416/500, bootstrap support; 1.00 Bayesian posterior 
probability). We also performed phylogenetic analyses 
on a matrix that included 112 amino acids of the paired 
box domain (Additional file 4: FASTA alignments). This 
same gene was also nested within a monophyletic PAX6 
clade in our analysis of PAX domains (Fig.  7a; Addi-
tional file  1: Table  S1; Additional file  2: Table  S2). Sup-
port for this clade was low in our PAX domain analysis, 
but we recovered good support for the more inclusive 
clade PAX4/6 (492/500, bootstrap support; 1.00 Bayes-
ian posterior probability). A Pax domain and a homeodo-
main were the only conserved domains that we detected 
in He-PAX6 (Fig.  7b, c). We also detected an ortholog 
of paxα (Fig.  7a), a gene that is predicted to have been 
present in the nephrozoan ancestor, but independently 
lost in the chordate and Drosophila lineages [69]. We did 
not include PAX EYG proteins in our analysis of PAX 
domains because the D. melanogaster PAX EYG mem-
bers—Eyegone and Twin of Eyegone—have highly diver-
gent PAX domains, and we had already established that 
H. exemplaris was missing a pax eyg ortholog (Fig. 5a). As 

with our analysis of PRD Class homeodomains (Fig. 5a), 
we did not detect an H. exemplaris PAX3/7 member in 
our analysis of PAX domains (Fig. 7a).

Expression pattern of He‑pax6
At 24 hpl, the in  situ pattern was consistent between 
embryos, but signal intensity appeared variable (Fig. 8a), 
suggesting that there are dynamic changes in expression 
levels of He-pax6 at this development stage. We did not 
detect He-pax6 transcripts at 35 hpl or 45 hpl (Fig.  8b, 
c), when nervous system morphology is apparent and 
He-elav signal is strong (Fig. 2). At 24 hpl, He-pax6 sig-
nal was detected in a relatively large lateral region of the 
outer ectoderm of the developing head (Fig.  8d–f). We 
did not detect He-pax6 signal in the internal layer of cells 
in the developing head, which we predict give rise to the 
foregut (fg; Fig. 8e). In the developing trunk, we detected 
He-pax6 signal in paired ventromedial domains in the 
ectodermal cell layer (Fig. 8e, f ).

Identification of an unpg ortholog
Gbx/unpg codes for an ANTP class homeodomain pro-
tein. In order to identify an ortholog of Gbx/unpg, we 
looked for ANTP class homeobox genes in available 
H. exemplaris sequence data, using Ryan et al. [67] as a 
guide to choosing human and D. melanogaster ANTP 
class homeodomain proteins to use in our BLAST 
searches. We identified 35 candidate ANTP class home-
obox genes with this method. We performed phyloge-
netic analyses on a matrix of 60 amino acids of the ANTP 
homeodomain from 167 sequences (Additional file  1: 
Table  S1; Additional file  2: Table  S2; Additional file  4: 
FASTA alignments). Of these candidates, one predicted 
protein sequence was most closely related to a monophy-
letic group of GBX/UNPG proteins (Fig.  9a; Additional 
file 7: Fig. S3). Together with the GBX/UNPG clade, this 

Fig. 4 Embryonic He-six3 expression. a–c Fields of He-six3-stained embryos at 24 hpl, 35 hpl, and 45 hpl, respectively. Arrows point to specimens 
that are enlarged in the inset panels. a–c (Inset) The left inset specimens in panels (a, b) are facing forward, with anterior toward the top. The left 
inset specimen in panel (c) is facing forward, but rotated slightly left. Solid white lines trace the space between the anterior and posterior ends of 
the specimens. The right inset specimens in panels (a–c) are laterally mounted, facing right, with anterior toward the top; a dashed line traces the 
ventral surface. d–f, j–j″ Confocal micrographs. He-six3 expression is shown in green. DAPI labels nuclei (blue). d Dorsal view of a 24 hpl embryo. 
Dashed lines trace the boundaries between the head and trunk segment 1, and between trunk segments 1 and 2. A dashed line also outlines 
the developing foregut. The scale bar equals 10 μm. (Inset) A laterally mounted 24 hpl embryo; dashed lines trace segment boundaries. e Frontal 
view—relative to the head—of a 35 hpl embryo. The solid line traces the ventral surface of the head. Dashed lines outline the inner brain space 
where neuropil and commissures are located in the fully developed brain. (Inset) The head of the same specimen using the glow LUT in ImageJ to 
help visualize nuclei. f Oblique view of a 45 hpl embryo. The specimen is laterally mounted, and facing right, but slighted rotated onto its back. Legs 
on the right side of the body are outlined. g–i DIC images of in situ hybridizations. g, h Laterally mounted embryos. A dashed line traces the ventral 
surface. i Oblique view of a 45 hpl embryo. The specimen is positioned as in (f), but is a different specimen. A dash line traces the ventral surface of 
the head and the ventral surface of the posteriormost leg of the right side of the body. j–j″ A laterally mounted 45 hpl embryo. The lateral part of 
the inner brain space, where neuropil is found in fully developed brains, is outlined. j′–j″ β-tubulin expression is colored red. dnp, dorsal neuropil; 
fg, foregut; ga1–ga4, ganglion 1–ganglion 4; hpl, hours post-laying; ib, inner brain region; L1–L4, leg 1–leg 4; ob, outer brain region; st, stomodeal 
complex

(See figure on next page.)



Page 9 of 23Smith et al. EvoDevo  (2018) 9:19 



Page 10 of 23Smith et al. EvoDevo  (2018) 9:19 

Fig. 5 Phylogenetic and structural analyses of He-otd. a A phylogeny of PRD class homeobox genes based on analyses of the homeodomain. 
The full PRD class phylogeny is shown in Additional file 6: Fig. S2. The names of different PRD families—based on Ryan et al. [67]—are shown 
in large bold text. Maximum likelihood tree topology is shown. Bootstrap support values, based on 500 replicates, are shown above branches. 
Posterior probabilities, based on a Bayesian analysis, are shown below branches. The branch leading to He-OTD and its name are colored orange. 
The names of other PRD class homeobox genes from H. exemplaris are colored red. The OTX clade (boxed) is enlarged in A′. b Structure of the 
He-otd gene in the genome. Relative to the sense strand, 5′ is to the left. Thick lines represent exonic regions. Black = UTR. Orange = position of 
sequence that codes for the homeodomain. Gray = all other coding sequence. Thin black lines represent intronic regions. The numbers represent 
nucleotide positions (see Additional file 1: Table S1). c Structure of the He-OTD protein. The N-terminus is to the left. The region that corresponds 
to the homeodomain is colored orange. All other protein sequences are colored gray. Numbers represent amino acid positions (see Additional 
file 1: Table S1). Dm, Drosophila melanogaster; He, Hypsibius exemplaris; Hs, Homo sapiens; Lottia gigantea; Mm, Mus musculus; Sp, Strongylocentrotus 
purpuratus 

Fig. 6 Embryonic expression patterns of He-otd. a–c DIC micrographs of several specimens from He-otd in situ hybridizations. Arrows point to 
specimens that are enlarged in inset panels. a The arrowhead points to damage to the head of a specimen; this cut does not represent the body 
axis. (Inset a–c) Specimens are facing forward in the left panels of (a, b). The solid line traces the space between the anterior and posterior ends of 
the specimens. In left inset panel in (c), the specimen is facing backward. The dashed line traces the boundary between the head and first trunk 
segment. In the right inset panels, specimens are facing right. In the right inset panel in (b), the image is mirrored. d–f, j–j′″) Confocal micrographs. 
He-otd expression is shown in green. DAPI labels nuclei (blue). d Dorsal view of a 24 hpl embryo. Dashed line in the head traces presumptive 
developing foregut. Dashed lines also trace boundaries between the head and first trunk segment and the first (1) and second (2) trunk segments. 
The scale bar equals 10 μm. e Ventral view of a 35 hpl embryo. Dashed line traces the boundary between the head and first trunk segment. In the 
head, the dashed line traces the nuclei of the developing stomodeal complex. (Inset) The same image using the cyan hot LUT in ImageJ to aid in 
visualization of embryo morphology. f Lateral view of a 45 hpl embryo. Dashed lines outline the inner brain region. (Inset) The same specimen, 
showing a more lateral view. The region where outer brain neuropil develops is outlined. g–i DIC micrographs of in situ hybridizations. A dashed line 
outlines the ventral surface of embryos. j–j″ Face-on view of the head of a 45 hpl embryo. β-Tubulin expression is colored red. Dashed lines trace 
the inner brain region. j Scale bar equals 10 μm. Inset shows DAPI using the cyan hot LUT in ImageJ to aid in visualization of embryo morphology. 
ga1–ga4, ganglion 1–ganglion 4; hpl, hours post-laying; ib, inner brain; L1–L4, leg1–leg4; fg, foregut; mo, mouth; ob, outer brain; st, stomodeal 
complex

(See figure on next page.)
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Fig. 7 Phylogenetic and structural analysis of Pax genes. a Phylogenetic analysis of the Pax domain. Maximum likelihood tree topology is shown. 
Bootstrap support values are shown above select branches (out of 500 replicates) and posterior probabilities are shown below select branches. 
He-PAX6 is colored tan. He-PAX2/5/8 is colored pink. The names of other sequences from our analysis of H. exemplaris nucleotide data are colored 
red. b Structure of He-pax6 gene. Relative to the coding strand, 5′ is to the left. Thick lines represent exons. Thin lines represent introns. Black exons 
represent UTR. Tan exons represent sequences that code for the PAX domain and the homeodomain. Gray exons represent other coding sequences. 
c Structure of the He-PAX6 protein. d Structure of He-pax2/5/8 gene. The same labeling scheme that is used in panel b is used here, except that the 
PAX domain is colored pink. e Structure of the He-PAX2/5/8 protein. (b–e) Numbers represent nucleotide or amino acid positions (see Additional 
file 1: Table S1). An, anonymous sequence (see main text); Dm, Drosophila melanogaster; Ek, Euperipatoides kanangrensis; Er, Euperipatoides rowelli; He, 
Hypsibius exemplaris; Hs, Homo sapiens 
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Fig. 8 Embryonic expression patterns of He-pax6 and He-unpg. a–c, g–i Fields of embryos at different developmental stages. a, g Arrows point 
to specimens that are enlarged in inset panels. Inset, a, g Anterior is toward the top. The backs of the specimens are facing forward. Dashed lines 
demarcate the approximate boundary between the head and first trunk segment. d, e, j, k Confocal micrographs. Gene expression is shown in 
green. DAPI labels nuclei (blue). a–f He-pax6 expression detected with in situ hybridization. d Lateral view of a 24 hpl embryo. Dashed lines trace 
segment boundaries. The scale bar equals 10 μm. e, f Arrows point to gene expression in the ventral trunk region. e Oblique view of a 24 hpl 
embryo showing expression in the head and first two trunk segments. Dashed lines trace segment boundaries and outline the developing 
foregut. (Inset) A deeper focal plane showing the presumptive ventral neurectoderm of all trunk segments. f Lateral view of a 24 hpl embryo. The 
dashed line traces the ventral surface of the embryo. g–l He-unpg expression detected with in situ hybridization. j Lateral view of a 24 hpl embryo. 
Dashed lines trace segment boundaries. (Inset) The same specimen showing DAPI staining using the Cyan Hot LUT in ImageJ to aid in visualizing 
morphology. The asterisks denote the position of endomesodermal pouches. k Dorsoventral mounted 24 hpl embryo. The dashed oval in the trunk 
(bottom) outlines the endomesodermal cell layer of an oblique transverse section through the third trunk segment. The vertical dashed line shows 
the approximate position of the focal plane shown in (j). (Inset) The same specimen showing DAPI staining using the Cyan Hot LUT in ImageJ to aid 
in visualizing morphology. l Lateral view of a 24 hpl embryo. em, endomesodermal cell layer; fg, developing foregut; hpl, hours post-laying
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sequence formed a monophyletic group with good sup-
port (366/500, bootstrap support; 1.00 Bayesian posterior 
probability). Although it is not nested within the clade of 
previously identified GBX/UNPG sequences, it is a recip-
rocal best blast hit to both Homo sapiens and D. mela-
nogaster GBX/UNPG sequences. Like human GBX1 and 
GBX2 and D. melanogaster UNPG, the homeodomain is 
the only conserved domain in the candidate GBX/UNPG 
sequence (Fig.  9b, c). We refer to this gene as He-unpg, 
since it is referred to as unpg in onychophorans [70] and 
flies [10].

Expression pattern of He‑unpg
We detected strong He-unpg signal at 24 hpl (Fig. 8g). He-
unpg signal at 35 hpl and 45 hpl was either weak or absent 
(Fig. 8h, i), suggesting that it does not play an important 
role in later stages of nervous system development. At 24 

hpl, He-unpg signal was detected broadly throughout the 
trunk (Fig. 8j–l). He-unpg signal was mostly absent in the 
developing head, but was detected in a relatively small 
dorsoposterior domain (Fig. 8j). Signal was detected most 
strongly between the nuclei of the ectodermal layer and 
the nuclei of the endomesodermal layer (em), but was 
still detectible within the endomesodermal layer (Fig. 8k).

Identification of a pax2/5/8 ortholog
We identified two candidate pax2/5/8 orthologs in the 
initial BLAST search analysis of our genome assembly 
[49]. One of these candidates was found in all data sets 
except the transcriptome assemblies from Yoshida et al. 
[52] and Levin et al. [53]. We refer to this sequence He-
pax2/5/8. The second candidate sequence was not identi-
fied in any other database that we analyzed (Additional 
file 2: Table S2). We were unable to amplify this sequence 
from genomic DNA using nested PCR (Additional file 3: 
Fig.  S1). Furthermore, this predicted gene sequence is 
located on a small scaffold of just 2867 nucleotides in our 
genome assembly. It is the only predicated gene sequence 
on this scaffold. Therefore, we predict that this sequence 
represents a contaminant in our genome assembly. We 
refer to this sequence as anonymous pax2/5/8 (An-
pax2/5/8). We detected another PAX sequence in our 
genome assembly [49] that was not found in any other 
database. This predicted sequence was recovered in 
a highly supported PAX1/9 clade in our phylogenetic 
analysis (Fig.  7a). We were unable to amplify this gene 
from genomic DNA using nested PCR (Additional file 3: 
Fig.  S1). Therefore, we refer to this sequence as anony-
mous poxm (An-poxm).

We analyzed a matrix of Pax genes that included 112 
amino acids (Additional file  4: FASTA alignments). He-
PAX2/5/8 and An-PAX2/5/8 were both nested within a 
monophyletic PAX2/5/8 clade in our analysis of PAX 
domains (Fig.  7a), supporting our assignment of these 
sequences to the pax2/5/8 subfamily. The PAX domain 
was the only domain that we detected in He-pax2/5/8 
(Fig.  7d, e). Likewise, a PAX domain was the only con-
served domain detected in CD-Search analyses of the D. 
melanogaster and Euperipatoides rowelli (Onychophora) 
pax2/5/8 orthologs that we used in our phylogenetic 
analyses.

Expression pattern of He‑pax2/5/8
He-pax2/5/8 signal was detected at all developmen-
tal stages of our study (Fig. 10a–c). Strong He-pax2/5/8 
signal was detected in the developing trunk at all stages 
investigated (Fig.  10a–i). At 24 hpl, strong He-pax2/5/8 
signal was detected between the ectodermal layer and 
endomesodermal layer and within the endomesoder-
mal layer of the developing trunk (Fig.  10d). At 35 hpl, 

Fig. 9 Phylogenetic and structural analysis of He-unpg. a Analysis of 
the ANTP Class genes based on an alignment of the homeodomain. 
Maximum likelihood tree topology is shown. The full ANTP Class 
phylogeny is shown in Additional file 7: Fig. S3. Bootstrap support 
values (out of 500 replicates) are shown above select branches. 
Posterior probabilities are shown below select branches. He-unpg is 
colored purple. b Structure of He-unpg gene. Relative to the coding 
strand, 5′ is to the left. Thick lines represent exons. Thin lines represent 
introns. Black exons represent UTR. Purple exons represent sequences 
that code for the homeodomain. Gray exons represent other protein 
coding sequences. c Structure of He-UNPG protein. b, c Numbers 
represent nucleotide or amino acid positions (see Additional file 1: 
Table S1). Dm, Drosophila melanogaster; He, Hypsibius exemplaris; Hs, 
Homo sapiens 
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He-pax2/5/8 signal was detected in the developing leg 
buds (L1–L2; Fig.  10e). At 45 hpl, He-pax2/5/8 signal 
was detected in the developing trunk ganglia (ga1–ga4; 
Fig. 10f ) and legs (L4; Fig. 10c; L1–L3; Fig. 10j).

Discussion
An earlier reconstruction of the nervous system of the 
ancient nephrozoan ancestor relied on developmental 
data from just two species—mice and flies [10]. Analy-
ses of additional taxa are required to more confidently 
resolve the evolution of nervous systems in Nephrozoa 
[1, 32, 33]. D. melanogaster is part of the highly diverse 
lineage Euarthropoda. Euarthropoda is part of a larger 
lineage called Panarthropoda that includes Tardigrada 
and Onychophora. Like euarthropods, both tardigrades 
[37, 41, 42, 47, 71–74] and onychophorans [75–79] 
exhibit centralized nervous systems and complex brains. 
Reconstructing the evolution of nervous systems in 
Panarthropoda requires consideration of nervous system 
development in representatives of all three panarthro-
pod lineages. According to two phylogenomic studies of 
Panarthropoda that carefully controlled for long branch 
attraction artifacts, Tardigrada is the outgroup of a euar-
thropod + onychophoran lineage [34, 36], which makes 
the tardigrade lineage, especially important for recon-
structing nervous system evolution in Panarthropoda. 
Here, we compare the results of our study to studies of 
euarthropods and onychophorans to reconstruct nervous 
system evolution in Panarthropoda.

Tardigrades have a unipartite brain
To determine whether tardigrades have a tripartite or 
unipartite brain, it is necessary to determine how the 
head of tardigrades—the brain housing unit—relates 
to segments of other panarthropods. Previous stud-
ies have compared expression patterns of developmen-
tal genes to homologize segments between chelicerates 

and mandibulates [80–82] and between euarthropods 
and onychophorans [83, 84]. The expression patterns of 
developmental genes in anterior segments are remark-
ably similar across the euarthropod/onychophoran 
clade (Fig. 11a). Six3 is expressed in the anterior part of 
the first segment [16, 85]. Otd is expressed broadly in a 
more posterior domain of the first segment and in a more 
restricted mid-ventral region of more posterior segments 
[82, 85–89]. Pax6 is expressed in a large lateral domain in 
the first segment and in more restricted ventral domains 
in more posterior segments [17, 19, 85, 89–91]. The ante-
rior expression border of unpg is in the second segment 
in D. melanogaster [10, 92] and onychophorans [70]. 
Pax2/5/8 is expressed segmentally in D. melanogaster 
[10] and onychophorans [90], with the anteriormost 
expression domain located in the first segment. The ante-
rior expression borders of labial (lab), proboscipedia 
(pb), and Hox3 are in the third segment, Deformed (Dfd) 
in the fourth segment, and fushi tarazu (ftz) in the fifth 
segment in both euarthropods [93, 94] and onychopho-
rans [83, 84]. Results of these studies indicate that—in 
terms of homology—anterior segments of euarthropods 
and onychophorans align one to one in anterior–poste-
rior order.

The tripartite brain hypothesis suggests that the tardi-
grade head is homologous to the first three segments of 
euarthropods and onychophorans [38]. This hypothesis 
predicts that genes that are expressed in the first three 
segments of euarthropods and onychophorans should 
be expressed in the head of tardigrades. Our analyses 
of gene expression patterns in H. exemplaris contra-
dict the tripartite hypothesis. The tripartite hypothesis 
predicts that six3 should only be expressed in the ante-
rior part of the first segment of a three-segment head 
(Fig.  11a). However, He-six3 is expressed broadly in the 
head (Fig. 4), rather than being restricted to a small ante-
rior domain. The tripartite hypothesis predicts that broad 

Fig. 10 Embryonic expression patterns of He-pax2/5/8. a–c DIC micrographs of several specimens from He-pax2/5/8 in situ hybridizations. Arrows 
point to specimens that are enlarged in inset panels. Inset, a A laterally mounted embryo. The dashed line traces the ventral surface. Inset, b, c The 
left panels show embryos facing backward. The dashed line traces the approximate boundary of the head and first trunk segment. The right panels 
show embryos facing right. In the inset panel in (c), the image is mirrored. d–f, j–j″ Confocal micrographs. He-pax2/5/8 expression is shown in 
green. DAPI labels nuclei (blue). d Lateral view of a 24 hpl embryo. The dashed line traces the boundary between the head and first trunk segment. 
The scale bar equals 10 μm. (Inset, top) The same specimen shown with DAPI signal visualized with the Cyan Hot LUT in ImageJ to help visualize 
morphology. The asterisks denote the position of endomesodermal pouches. (Inset, bottom) A dorsoventrally mounted 24 hpl embryo. The upper 
dashed line traces the boundary between the head (above) and the posterior end (below) of the embryo. An oblique coronal plane of the third 
(3) and fourth (4) trunk segments is shown. The lower dashed line traces the nuclei of the endomesodermal cell layer of the third and fourth trunk 
segments. e Lateral view of a 35 hpl embryo. Dashed lines trace the developing first and second legs. f Lateral view of a 45 hpl embryo. Dashed 
lines outline the inner brain region and the trunk ganglia. (Inset) The same specimen, with DAPI signal viewed with the Cyan Hot LUT in ImageJ to 
better visualize morphology. g–i DIC micrographs of in situ hybridizations. A dashed line outlines the ventral surface of embryos. j–j″ Lateral view 
of a 45 hpl embryo. This is the same specimen that is shown in (f). Dashed lines trace the first three legs. β-Tubulin expression (red) is shown to help 
visualize leg morphology. Inset, j β-tubulin expression visualized with the Glow LUT in ImageJ to help visualize the nervous system. fg, foregut; ga1–
ga4, ganglion 1–ganglion 4; hpl, hours post-laying; ib, inner brain; L1–L4, leg1–leg4

(See figure on next page.)
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otd expression should be restricted to the first segment 
of a three-segment head (Fig.  11a). By contrast, broad 
expression of He-otd continues to the posterior border 
of the head (Fig. 6d). The same contradiction applies for 
pax6 (Fig. 7a, b). The tripartite hypothesis predicts that 
both labial and Hox3 should be expressed in the tardi-
grade head (Fig. 11a). In actuality, neither of these genes 
is expressed in the head of tardigrades [45]. Furthermore, 
this hypothesis predicts that the anterior expression bor-
der of Dfd and ftz should lie in the first and second trunk 
segment, respectively, in tardigrades (Fig. 11a). However, 
the anterior expression borders of these genes lie in the 
third and fourth trunk segments in tardigrades [45].

The unipartite hypothesis suggests that the tardigrade 
head is homologous to just the first segment of euar-
thropods and onychophorans [38]. In contrast to the tri-
partite brain hypothesis, the unipartite brain hypothesis 
correctly predicts expression patterns of several develop-
mental genes in H. exemplaris. This hypothesis predicts 
that six3, otd, and pax6 should be expressed broadly in 
the head of tardigrades (Fig. 11a), as is the case (Figs. 4, 6, 
8a–c), although He-six3 is even more broadly expressed 

than predicted (see below). Furthermore, this hypoth-
esis correctly predicts the anterior expression domains of 
Hox3, Dfd, and ftz (Fig. 11a).

While the expression patterns of some genes sup-
port the unipartite hypothesis, expression patterns of 
He-unpg, He-lab, and He-pax2/5/8 are not predicted by 
either the tripartite hypothesis or the unipartite hypothe-
sis. The tripartite hypothesis predicts that anterior border 
of unpg expression should lie in the middle of the tardi-
grade head (Fig. 11a), a position that would correspond 
to the middle segment of a three-segment head. The uni-
partite hypothesis predicts that the anterior border of 
unpg should lie in the first trunk segment of tardigrades 
(Fig.  11a). However, the anterior border of He-unpg 
expression is in a posterior region of the developing 
head (Fig.  8j). Although this result is not predicted by 
either hypothesis, to our knowledge, in Panarthropoda, 
unpg expression has only been investigated in D. mela-
nogaster and the onychophoran Euperipatoides kanan-
grensis. Even between these species, there appears to be 
variation in the exact position of the anterior border of 
unpg expression. Therefore, unpg expression should be 

Fig. 11 The evolution of panarthropod brains. a Models depicting gene expression domains in euarthropods (left), onychophorans (center), and 
tardigrades (right). In the anatomical models, red ovals represent brain segments, black ovals represent ganglia, and black lines that connect to ovals 
represent connectives. In the models of gene expression domains, thin bars represent reduced expression or more restricted expression. Light bars 
represent expression domains that have been identified in some species, but not others. Gray bars labeled “tripartite” and “unipartite” underscore 
the segments that are homologous to the tardigrade head under these competing hypotheses. b Model for the evolution of panarthropod brains 
based on developmental, morphological, and paleontological data. The phylogeny is based on Campbell et al. [34] and Rota-Stabelli et al. [36]
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investigated in additional panarthropod representatives 
to determine whether the anterior expression boundary 
of He-unpg is atypical. Concerning He-lab, the tripartite 
brain hypothesis predicts that the anterior expression 
boundary of this gene should be in the tardigrade head, 
in a region that corresponds to the third brain segment 
of euarthropods (Fig. 11a). The unipartite hypothesis pre-
dicts that the anterior expression boundary of lab should 
lie in the second trunk segment in tardigrades (Fig. 11a). 
In actuality, the anterior boundary of He-lab expression 
is in the first trunk segment [45]. If the unipartite hypoth-
esis is correct, as suggested by the expression domains of 
several other genes (see above), then the anterior expres-
sion boundary of lab must have expanded into a more 
anterior segment in the tardigrade lineage, or retracted 
into a more posterior segment in the lineage leading to 
Euarthropoda and Onychophora.

Lastly, the tripartite hypothesis predicts that there 
should be two or three segmental expression domains of 
pax2/5/8 in the tardigrade head, based on the expression 
patterns of this gene in D. melanogaster and onychopho-
rans (Fig.  11a). The unipartite hypothesis predicts that 
He-pax2/5/8 should exhibit a single segmental expression 
domain in the head (Fig. 11a). Matching neither hypoth-
esis, strong He-pax2/5/8 expression is restricted to the 
developing trunk (Fig.  10). In the case of He-pax2/5/8, 
comparisons to more distantly related animals reveal 
clues about the composition of the tardigrade brain. In 
most non-panarthropod animals that have been investi-
gated, the anterior border of pax2/5/8 abuts the poste-
rior border of otx/otd expression [30]. In H. exemplaris, 
the anteriormost border of strong pax2/5/8 expression 
closely aligns with the posterior border of strong He-
otd expression where the developing ventral nerve cord 
meets the developing brain (compare Fig. 10c to Fig. 6f ). 
Therefore, concerning the discrepancy between the ante-
riormost expression domain of pax2/5/8 of H. exempla-
ris and other panarthropods, H. exemplaris most likely 
retains the ancestral condition. In sum, the weight of 
evidence supports the unipartite hypothesis for the com-
position of the tardigrade brain. Changes in expression 
domains of developmental genes have previously been 
implicated in the diversification of animal body plans 
[95–97], raising the possibility that changes in the expres-
sion domains of lab, unpg, and pax2/5/8 played a role in 
the diversification of panarthropod body plans.

Six3 and otd patterns overlap extensively in the developing 
brain of H. exemplaris
Across Nephrozoa, expression and function of six3 and 
otd/otx overlap minimally during development of the 
anterior nervous system—the brain of many animals [16]. 
Six3 is expressed in the anteriormost median domain 

of the body axis of nephrozoans [29, 85, 98], where it is 
thought to play an ancient conserved role in specifying 
neurosecretory cells [16]. Otx/otd is typically expressed 
in a more posterolateral part of the developing brain, 
where it regulates eye development [16, 99–101]. In con-
trast to other animals, He-six3 appeared to be expressed 
broadly across the developing head, including in lateral 
regions (Fig. 4), rather than being restricted to an anter-
omedial domain. It appeared that expression of He-six3 
and He-otd broadly overlapped in H. exemplaris, rather 
than being restricted to nearly non-overlapping expres-
sion domains, as seen in most other animals [16]. In fact, 
we detected expression of both genes in the develop-
ing inner brain region and stomodeal complex (Figs. 4e, 
f, j; 6e, f, j). Furthermore, in the outer parts of the head, 
strong He-otd signal was restricted to brain neuropil 
(Fig. 6f, inset), while He-six3 was more broadly expressed 
(Fig.  4e, f ). Comparing our results to a previous study 
of euarthropods, onychophorans, and annelids [16], it 
appears that six3 expression expanded from an antero-
medial domain into more posterior and lateral regions of 
the developing brain in the tardigrade lineage, after this 
lineage diverged from other animals. Determining where 
in tardigrade phylogeny expansion of six3 evolved will 
require studies of additional tardigrade species, includ-
ing species within Heterotardigrada—the most distant 
tardigrade relatives of H. exemplaris. Additionally, the 
exact location of the cell bodies where otd and six3 are 
expressed in tardigrades would further illuminate the 
composition of the tardigrade brain.

Pax6 and unpg exhibit unique temporal dynamics
The canonical nervous system patterning genes that we 
investigated in this study all exhibited strong expres-
sion during the earliest stage that we investigated, 
24 hpl. Of these genes, only two—He-pax6 and He-
ungp—were not expressed strongly at the later stages 
that we investigated (Fig. 8b, c, h, i). Orthologs of the 
canonical nervous system patterning genes, including 
pax6 and unpg orthologs, continue to be expressed 
during development of onychophorans and euarthro-
pods after appendages and the central nervous system 
are apparent [10, 16–19, 70, 82, 85–92], stages that are 
presumably later than the stages when pax6 and unpg 
are expressed in H. exemplaris, since legs and the nerv-
ous system are not morphologically visible at 24 hpl in 
this species. While it is likely that pax6 and ungp play 
roles in setting up the general regionalized pattern of 
the H. exemplaris nervous system, our results suggest 
that—unlike in onychophorans and euarthropods—
these genes do not play later roles in nervous system 
patterning, such as specifying or maintaining neural 
cell types [3]. However, it is possible that these genes 
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are expressed at later stages at a low level that is dif-
ficult to detect with our in situ hybridization method, 
but biologically significant. Testing this possibility will 
require establishment of new methods of visualizing 
gene expression in H. exemplaris and functional data 
for these genes.

The evolution of the panarthropod Pax family
A recent analysis of Pax family genes that included 
transcriptome data from H. exemplaris and the onych-
ophoran E. rowelli revealed a highly supported gene 
clade that was referred to as paxα [90]. Based on this 
study, it appears that the nephrozoan ancestor had at 
least seven Pax gene subfamilies [69]: (1) Pax alpha, 
(2) Pax eyg, (3) Pox neuro, (4) Pax4/6/10, (5) Pax2/5/8, 
(6) Pax3/7 prd, and (7) Pax1/9 meso. We identified Pax 
family genes in two analyses—an analysis of PRD Class 
homeodomains (Fig.  5), which are present in some 
Pax gene subfamilies [69, 102], and an analysis of PAX 
domains (Fig.  7). Our analyses suggest that H. exem-
plaris possesses single orthologs of each Pax gene sub-
family except Pax eyg and Pax3/7. We were surprised 
to not find a pax3/7 ortholog in any nucleotide data-
base for H. exemplaris, since an ortholog of this gene 
is strongly predicted to have been present in the last 
common ancestor of Nephrozoa and is present in non-
tardigrade panarthropods [69, 90, 102]. Additionally, 
we did not detect a pax3/7 ortholog in the genome of 
the tardigrade R. varieornatus. Our results suggest that 
pax3/7 was deleted somewhere in the tardigrade line-
age after it split from the lineage leading to euarthro-
pods and onychophorans, but before the divergence of 
the H. exemplaris and R. varieornatus lineages.

The conclusion that a Pax eyg ortholog was present 
in the nephrozoan last common ancestor is a relatively 
recent idea. This idea stems from a phylogenetic analy-
sis of Pax family genes that recovered a clade of insect 
pax eyg genes and pax eyg candidates from sea urchins 
and hemichordates [103]. However, there does not 
appear to be a pax eyg ortholog in either tardigrades 
or onychophorans [90]. To our knowledge, pax eyg 
orthologs have not been identified in any animals out-
side of sea urchins, hemichordates, and Holometabola. 
Therefore, we predict that pax eyg evolved in the line-
age leading to holometabolous insects, after this lineage 
split from other insects. In this view, previously iden-
tified pax eyg orthologs in sea urchins and hemichor-
dates evolved independently from the pax eyg gene of 
Holometabola. The nomenclature of Pax genes should 
be modified to reflect the fact that the previously iden-
tified sequences referred to as pax eyg are not directly 
orthologous across Nephrozoa.

Conclusion
The tripartite brain hypothesis suggests that the fore-
brain, midbrain, and hindbrain of vertebrates are directly 
homologous to the proto-, deuto-, and tritocerebral brain 
segments of flies. Therefore, this hypothesis suggests 
that the ancestor of vertebrates and flies—the last com-
mon ancestor of Nephrozoa—also exhibited a tripar-
tite brain [2, 10, 12–15]. Based on this hypothesis, other 
nephrozoans should also exhibit tripartite brains. While 
all euarthropods are generally interpreted as possessing 
tripartite brains [39], developmental [83] and morpho-
logical [77] data suggest that Onychophora—the sister 
lineage of Euarthropoda [34, 36]—is characterized by a 
bipartite brain. Additionally, several stem representa-
tives of both onychophorans and euarthropods exhibited 
unipartite brains [39, 104]. A comprehensive model of 
panarthropod brain evolution, based on investigations 
of extant and extinct representatives of Panarthropoda, 
presents a more parsimonious view of panarthropod 
brain evolution compared to the tripartite hypothesis 
[39, 104]. Under this model, the last common ancestor 
of Euarthropoda and Onychophora is predicted to have 
possessed a unipartite brain homologous to the protocer-
ebrum of modern euarthropods. More complex brains 
evolved independently along the onycophoran and euar-
thropod lineages, according to models that include data 
from fossils [39, 104]. In the onychophoran lineage, the 
central nervous system of the second segment fused 
to the protocerebral brain, forming a bipartite brain. In 
the euarthropod lineage, the central nervous system of 
the second segment fused to the ancestral protocerebral 
brain, giving rise to the deutocerebral brain segment. 
The central nervous system of the third segment fused to 
the deutocerebrum, giving rise to the tritocerebral brain 
segment. Conceivably, tardigrades could have also inde-
pendently evolved a multipartite brain—a possibility that 
draws support from the fact that the evolution of small 
body size is often associated with the fusion of segmen-
tal ganglia [105]. However, our analyses of brain pattering 
genes in H. exemplaris suggest that tardigrades possess 
a unipartite brain. Even if the tardigrade brain is cur-
rently unipartite, we need to consider the possibility that 
the tardigrade brain was secondarily simplified from a 
multipartite brain during the evolution of the tardigrade 
lineage. Although we cannot completely rule out this 
possibility, it is a less parsimonious view of brain evolu-
tion. Our results place the origin of the unipartite brain 
in the stem lineage leading to Panarthropoda and suggest 
that tardigrades retain the ancestral protocerebral-grade 
brain [39, 104]. This model of brain evolution is incon-
sistent with an ancestral tripartite nephrozoan brain.

Although the ancestor of Panarthropoda most 
likely exhibited a unipartite brain, it is clear based on 
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comparisons between H. exemplaris and other panar-
thropods that its nervous system patterning genes exhib-
ited regionalized expression patterns. Our study supports 
the model in which regionalized expression patterns of 
vertebrate and fly brain patterning genes evolved in a 
nephrozoan ancestor that did not possess a tripartite 
brain and that these regionalized patterns were co-opted 
independently for the evolution of tripartite brains in the 
vertebrate and euarthropod lineages [1, 24, 25, 29, 30].
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