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Abstract

Background: Age is the cardinal risk factor for Alzheimer's disease (AD), and white matter hyperintensities (WMH),
which are more prevalent with increasing age, may contribute to AD. Higher cardiorespiratory fitness (CRF) has
been shown to be associated with cognitive health and decreased burden of AD-related brain alterations in older
adults. Accordingly, the aim of this study was to determine whether CRF attenuates age-related accumulation of
WMH in middle-aged adults at risk for AD.

Methods: One hundred and seven cognitively unimpaired, late-middle-aged adults from the Wisconsin Registry for
Alzheimer's Prevention underwent 3 T magnetic resonance imaging and performed graded maximal treadmill
exercise testing from which we calculated the oxygen uptake efficiency slope (OUES) as our measure of CRF. Total
WMH were quantified using the Lesion Segmentation Tool and scaled to intracranial volume. Linear regression
adjusted for APOE4 carriage, family history, body mass index, systolic blood pressure, and sex was used to examine
relationships between age, WMH, and CRF.

Results: As expected, there was a significant association between age and WMH (p <.001). Importantly, there
was a significant interaction between age and OUES on WMH (p =.015). Simple main effects analyses revealed

that the effect of age on WMH remained significant in the Low OUES group (p <.001) but not in the High
OUES group (p=.540), indicating that higher CRF attenuates the deleterious age association with WMH.

Conclusions: Higher CRF tempers the adverse effect of age on WMH. This suggests a potential pathway through
which increased aerobic fitness facilitates healthy brain aging, especially among individuals at risk for AD.
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Background

With the aging population, the number of people with
Alzheimer’s disease (AD) in the United States is pro-
jected to reach 13.8 million people by 2050, in the ab-
sence of preventative or curative therapies [1]. White
matter hyperintensities (WMH), commonly observed in
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older adults, are characterized by bright areas on mag-
netic resonance imaging (MRI) using T2-weighted or T2
fluid-attenuated inversion recovery (FLAIR) sequences
[16, 47]. WMH have been shown to predict AD earlier
in life, and may be the “second hit” required to progress
a person to clinical AD [8, 16, 33, 40]. Indeed, WMH
are now considered by some to be a core component of
AD pathophysiology, and/or caused by chronic ischemia
associated with cerebral small vessel disease [9, 33]. The
factors that most contribute to the development of
WMH are aging and cardiovascular disease [34, 39, 49].
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Cardiorespiratory fitness (CRF), an index of habitual
physical activity, has been associated with preserved
cognitive function and brain structure in older adults
[10, 20, 21, 25, 27, 38]. It has also been associated with a
lower risk of dementia in the elderly [14, 18, 46]. Inter-
estingly, individuals with higher CRF have also been
shown to have lower WMH [7, 13, 37]. This association
may indicate that by leading a physically active lifestyle,
an individual might slow their accumulation of WMH as
they age, and thus enjoy healthier brain aging.

Although peak oxygen consumption (VO peal) is trad-
itionally regarded as the gold standard measure for CRF [2],
older adults as a whole are known to struggle with meeting
the criteria for peak effort during maximal graded exercise
testing (GXT). The oxygen uptake efficiency slope (OUES)
was developed as an effort-independent measure of CRF
that is nonetheless highly correlated with VO, peaic [3, 24].
Accordingly, the OUES served as our index of CRF in this
study, which examined associations between CRE, age, and
WMH [19]. We hypothesized that older age would be asso-
ciated with more WMH, but that higher CRF would attenu-
ate this deleterious effect of aging on WMH.

Methods

Participants

We utilized data provided by 107 participants enrolled in
an ancillary study—Fitness, Aging, and the Brain—of the
Wisconsin Registry for Alzheimer’s Prevention (WRAP).
WRAP is a longitudinal study consisting of approximately
1500, late-middle-aged adults who were free of dementia
and were between the ages of 40 and 65 years at study
entry [28]. The cohort is enriched with risk factors for AD
including positive family history for AD (FH) and/or apoli-
poprotein E €4 allele (APOE4) carriage [28, 32, 42]. Partic-
ipants were enrolled in the ancillary study if they were
determined to have no MRI contraindications and could
perform a GXT safely. The mean amount of time between
the MRI and GXT was 1.04 + 1.04 years. All study proce-
dures were approved by the University of Wisconsin Insti-
tutional Review Board and each participant provided
informed consent prior to participation.

Graded exercise testing

GXT was performed using a modified Balke protocol [4].
A comfortable, yet quick, walking speed was determined
for each participant before testing, as a safety measure.
For those able to, a walking speed of 3.5 miles per hour
was used throughout the test. Every 2 min, the incline of
the treadmill was increased by 2.5% until the participant
reached volitional exhaustion. Oxygen uptake (VO,), car-
bon dioxide production, minute ventilation (VE), heart
rate, and work rate were measured continuously using a
metabolic cart and two-way nonrebreathing valve
(TrueOne® 2400; Parvomedics, Sandy, UT, USA). The
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OUES was determined for each participant by calcu-
lating the regression slope from the linear relationship
of absolute VsO, (ml-min~ 1) plotted as a function of
logio VE (ml'min~ b (e, VO, =alogoVE + b) [3]. The
OUES values were then adjusted for body surface area
(BSA) to account for individual differences [24]. BSA
was calculated using the Mosteller formula (BSA =
0.016667 x W° x H°®). A higher OUES value (i.e., a
steeper VO, / VE slope) indicates more efficient oxy-
gen extraction from the cardiopulmonary system by
the working skeletal muscles [3]. Because the OUES
value is calculated as a regression slope, the unit is
arbitrary. The OUES computation only included
metabolic data collected during the GXT and ex-
cluded the warm up and recovery stages due to ir-
regular ventilation that is often observed during those
stages. We have previously shown excellent reliability
(ICC=.995, p<.001) between OUES values calculated
at 75%, 90%, and 100% of the exercise duration [19].
Therefore, we used the OUES values that sampled the
entire exercise duration (100%) as the primary CRF
variable for the current study.

Brain imaging acquisition

MRI scanning was performed on a GE x 750 3 T scanner
(General Electric,c, Waukesha, WI, USA) with an
eight-channel head coil and parallel imaging with the
Array Spatial Sensitivity Encoding Technique. A
T1-weighted volume scan was acquired in the axial plane
with a 3D fast spoiled gradient-echo sequence using the
following parameters: inversion time (TI) = 450 ms; repeti-
tion time (TR)=8.2 ms; echo time (TE)=3.2 ms; flip
angle = 12°; acquisition matrix =256 mm x 256 mm, field
of view (FOV) =256 mm; slice thickness =1.0 mm, no
gap, yielding a voxel resolution of 1 mm isometric. A
3D T2 FLAIR sequence was acquired in the sagittal
plane using the following parameters: TI=1868 ms;
TR=6000 ms; TE=123 ms; flip angle =90°; acquisi-
tion matrix =256 mm x256 mm, FOV =256 mm;
slice thickness=2.0 mm, no gap, yielding a voxel
resolution of 1 mmx1 mm x2 mm. Additional de-
tails have been previously described [6, 7].

White matter hyperintensities segmentation

The Lesion Segmentation Tool (LST) version 1.2.3 in
SPM12 was used to calculate the total volume of WMH
[43]. This toolbox is open source and uses automated
segmentation with high reliability. For lesion segmenta-
tion, LST seeds lesions based on spatial and intensity
probabilities from T1 images and hyperintense outliers
on T2 FLAIR images. The intracranial volume (ICV)
was calculated using the “reverse brain masking” method
[30]. Total WMH was then divided by ICV and multi-
plied by 100 to obtain a measure of lesion-to-cranial



Vesperman et al. Alzheimer's Research & Therapy (2018) 10:97

volume in percent units [6, 7, 43]. This measure served
as the dependent variable in all analyses and was
log-transformed to normalize its distribution, as re-
quired by the assumptions for ordinary least squares re-
gression [45].

Statistical analysis

Multiple linear regression was used to examine relation-
ships between CREF, age, and WMH. We first fitted a
model that investigated the relationship between age and
WMH while controlling for APOE4, FH, body mass
index, systolic blood pressure, and sex (Model 1). These
covariates were applied to account for their contribu-
tions to interindividual variations in brain size, WMH,
and/or risk for AD [1, 22, 41, 48].

Next, we refitted the original model while additionally
including the OUES and age x OUES terms (Model 2).
The OUES and age were centered at the mean of each
variable. Where significant, the age x OUES term would
indicate that the effect of age on WMH differs by CRF.
A significant age x OUES interaction was further inter-
rogated using simple main effects analyses. All analyses
were conducted using IBM SPSS version 24. Statistical
tests were considered significant at p < .05.

Results

Similar to the larger WRAP cohort, many participants in
this sample had a positive FH (71%) and were APOE4
positive (43%). The sample studied was 65.4% female.
Other sample characteristics are presented in Table 1.

The results of Model 1 (see Table 2) revealed a strong
positive association between age and WMH (5(SE) =.01
(.003); £=3.89; p<.001). Sex was also a significant pre-
dictor of WMH (5(SE) = -.082 (.03); t=-2.71, p =.008),
with men harboring less WMH burden compared to
women. Of note, APOE4 was not a significant predictor of
WMH (B(SE) = -.015 (.031); £ = - 0.50, p = .620). Similarly,
FH was not a significant predictor of WMH (5(SE) = .029
(.034); £ = 0.85, p = .396).

Model 2 (see Table 3) showed a significant inter-
action between age and CRF on WMH (B(SE)=
-.000024 (.0000096); t=-2.47; p =.015). Per standard
practice [12], we followed up on this interaction by
conducting simple main effects analyses of the effect
of age on WMH for Low OUES vs High OUES. To
accomplish this, we set anchor points for Young vs
Old and for Low OUES vs High OUES at one stand-
ard deviation below vs above the mean of each vari-
able (see Table 1 for the respective values). As
depicted in Fig. 1, these simple main effects analyses
revealed that the effect of age on WMH accumulation
remained significant in the Low OUES group (B(SE)
=.19 (.043); t=4.41; p<.001) but not in the High
OUES group (B(SE) =.029 (.047); t=0.62; p = .540).
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Table 1 Background characteristics
Characteristic Value
Age (years) 64.19 (5.85) (49.58-74.96)
Female (%) 65.40

Education (years) 16.30 (2.35) (12-22)

FH (%) 71

APOE4 (%) 43

MMSE 29.37 (1.01) (24-30)
Hypertension (%) 14.0

Diabetes (%) 18

Smoker (%) 346

Beta blocker usage (%) 6.5

BMI (kg/m?) 27.84 (5.31) (17.65-48.03)

123.72 (15.66) (94-162)
7041 (9.62) (44-90)

Systolic blood pressure (mmHg)

Diastolic blood pressure (mmHg)

OUES 1153.52 (290.72) (460-2290)
WMH (ml) 290 (5.23) (0.011-28.03)
ICV (ml) 1466.46 (140.65) (1175-1927)

1.04 (1.04) (0-4.42)

All values presented as mean (standard deviation) (range) unless

noted otherwise

FH family history of Alzheimer’s disease, APOE4 apolipoprotein E €4 allele
carriage, MMSE Mini-Mental State Examination, BMI body mass index, OUES
oxygen uptake efficiency slope, WMH white matter hyperintensities, ICV
intracranial volume, MRI magnetic resonance imaging, GXT graded

exercise testing

Interval between MRI and GXT (years)

As noted earlier, our set of covariates (i.e., APOE4, FH,
body mass index, systolic blood pressure) were selected
based on prior evidence that they influence WMH and/
or AD risk. However, in this study, none of these covari-
ates were significantly associated with WMH at the .05
threshold (all p >.124). Therefore, we repeated our ana-
lyses after excluding these covariates. Our original find-
ings remained essentially unchanged. That is, there
remained a positive association between age and WMH
(B(SE) =.01 (.002); ¢t =4.3223; p <.001) and there
remained a significant interaction between CRF and age
on WMH (B(SE)=-.000025 (.000009); ¢ =-2.62;

Table 2 Association between age and WMH

Variable B (SE) t p
Age .01(.003) 3.89 <.001
Sex —082 (03) -2.71 008
SBP 001 (001) 035 728
FH 029 (.034) 0.85 396
BMI —001 (.003) -034 731
APOE4 —-015 (031) -0.50 620

WMH white matter hyperintensities, SE standard error, SBP systolic blood
pressure, FH family history of Alzheimer’s disease, BMI body mass index, APOE4
apolipoprotein E €4 allele carriage
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Table 3 CRF attenuates the effect of age on WMH

Variable B (SE) t p

Age 009 (.003) 348 001
Sex —073 (035) -2.07 041
SBP 000088 (.001) 0.091 928
FH 027 (033) 0.81 419
BMI -001 (003) -0.50 619
APOE4 —-011 (031) -034 732
OUES —000043 (.000063) -0.68 495
Age x OUES —.000024 (.0000096) —247 015

CRF cardiorespiratory fitness, WMH white matter hyperintensities, SE standard
error, SBP systolic blood pressure, FH family history of Alzheimer’s disease, BM/
body mass index, APOE4 apolipoprotein E €4 allele carriage, OUES oxygen
uptake efficiency slope

p =.01). For completeness sake, we opted to retain the
original model that included the covariates.

Furthermore, we ran additional analyses to investigate
whether our primary findings were influenced by poten-
tial confounders such as vascular risk factors (e.g., hyper-
tension, smoking, and diabetes), beta blocker usage, and
physical activity (as measured by caloric expenditure on
the CHAMPS questionnaire [44]). The relationship be-
tween age and WMH remained significant when further
adjusted for these covariates (B(SE) =.01 (.003); ¢ =3.23;
p =.002). Similarly, the interaction between age and CRF
on WMH also remained significant (5(SE) = -.000022
(.00001); t=-2.22; p=.029). Accordingly, we opted to
retain our original findings.
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Discussion

In this study, we found that older age was associated
with greater accumulation of WMH. Importantly, our
results showed that aerobic fitness attenuates the rela-
tionship between age and WMH. For those with low aer-
obic fitness, there was a significant difference in white
matter lesion volume between younger and older partici-
pants. However, for those with high CREF, a similar dele-
terious effect of age on the prevalence of white matter
lesions was not observed.

A prior study from our group reported that advancing
age predisposes individuals to an aggregation of WMH,
and that an increase in WMH is associated with de-
creased cognitive function [6]. Other groups have also
found that WMH track with older age in the general
population [15, 17, 31, 49]. Our results mirror these past
findings despite the fact that our cohort is relatively
younger. Of interest, we present novel results showing
that CRF moderates the relationship between age and
WMH. Given that WMH contributes to the clinical
manifestation of AD [8, 16, 33, 40], CRF’s curtailment of
WMH accumulation raises the possibility that CRF may,
thereby, slow progression toward the clinical syndrome
of AD.

Previous reports have found significant relationships
between CRF and WMH using VO, peak as the index of
CRF [11, 23, 50]. As discussed earlier, although deemed
the gold standard for measuring CRE, true VO, peak is
often unattainable by older adults. Hence, various alter-
natives have been considered in the literature such as

Young
@old

0.3
2 p<.001
0.25 o
0.2 1 -
p<.540
=
%’0.15 1
0.1 4 T
Z
0.05 o %
. /é
Low OUES High OUES
Fig. 1 Estimated WMH as a function of age and OUES. Although age and OUES were modeled as continuous variables in our analyses, to depict
these simple main effects, Low OUES vs High OUES were set to one standard deviation below vs above mean OUES. Similarly, Young vs Old were
set to one standard deviation below vs above mean age WMH white matter hyperintensities, OUES oxygen uptake efficiency slope
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non-GXT-based measures of CRF [7, 29] and OUES [3,
24]. Consistent with our recent publication [19], our
present findings support the utility of the OUES as a vi-
able metric for CRF in older adults, and highlight its
sensitivity to important health outcomes such as cere-
brovascular disease, brain aging, and risk for AD.

One possible mechanism for the results found in this
study relates to cerebral perfusion. Previous studies in
cognitively normal individuals have shown that an in-
crease in WMH is associated with lower cerebral blood
flow [9, 36]. Also, higher cardiorespiratory fitness is as-
sociated with increased cerebral blood flow and better
cognition in older adults [9, 26]. Therefore, it is possible
that higher cardiorespiratory fitness may protect against
reductions in cerebral blood flow with advancing age,
which then translates to a reduction in WMH. A formal
test of this hypothesis will be the focus of future studies
from our group.

This study is not without limitations. Neither APOE4
nor FH was significantly associated with WMH in our
sample, even though other studies have previously re-
ported such associations [5, 35]. Similarly, we did not as-
sess relationships between WMH and B-amyloid or tau,
the core pathological characteristics of AD, as such an
investigation was not the objective of this study. Accord-
ingly, we cannot definitively say that interindividual vari-
ations in WMH in this sample are AD specific. Our
design is cross-sectional in nature, which limits our abil-
ity to draw causal inferences. Future studies incorporat-
ing longitudinal observations would provide clearer
insights into the evolution of WMH over time and how
CRF affects that trajectory. Also, because the WRAP co-
hort is largely composed of highly educated,
non-Hispanic white individuals harboring specific risk
factors for AD, there is a potential restriction of the
generalizability of our results to the larger population.
Relatedly, WRAP participants who volunteer for add-
itional ancillary studies might differ in unmeasured ways
from those who do not (e.g., our study sample was
slightly older (mean age 64.19 years) than the larger
WRAP cohort (mean age 62.89 years)). Lastly, we did
not have information about the physical fitness of the
participants earlier in their life, so we cannot determine
how that may affect their current physical fitness or our
outcomes of interest.

Conclusion

We found that in a small sample at risk for AD, advan-
cing age was associated with an accumulation of WMH.
However, higher CRF attenuated this adverse impact of
age on WMH. These findings contribute to the larger
body of evidence highlighting the potential benefits of a
physically active lifestyle, specifically as relates to im-
proved cerebrovascular health and healthier brain aging.
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