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Abstract

Background: As human longevity increases and Alzheimer’s disease (AD) increasingly becomes a significant societal
burden, finding pathways or protective factors that facilitate exceptional brain aging without AD pathophysiologies
(ADP) will be critical. The goal of this viewpoint is two-fold: 1) to present evidence for “exceptional brain aging” without
ADP; and 2) to bring together ideas and observations from the literature and present them as testable hypotheses for
biomarker studies to discover protective factors for “exceptional brain aging” without ADP and AD dementia.

Discovering pathways to exceptional aging: There are three testable hypotheses. First, discovering and quantifying
links between risk factor(s) and early ADP changes in midlife using longitudinal biomarker studies will be fundamental
to understanding why the majority of individuals deviate from normal aging to the AD pathway. Second, a risk factor
may have quantifiably greater impact as a trigger and/or accelerator on a specific component of the biomarker
cascade (amyloid, tau, neurodegeneration). Finally, and most importantly, while each risk factor may have a
different mechanism of action on AD biomarkers, “exceptional aging” and protection against AD dementia will
come from “net sum” protection against all components of the biomarker cascade. The knowledge of the
mechanism of action of risk factor(s) from hypotheses 1 and 2 will aid in better characterization of their effect
on outcomes, identification of subpopulations that would benefit, and the timing at which the risk factor(s) would
have the maximal impact. Additionally, hypothesis 3 highlights the importance of multifactorial or multi-domain
approaches to “exceptional aging” as well as prevention of AD dementia.

Conclusion: While important strides have been made in identifying risk factors for AD dementia incidence, further
efforts are needed to translate these into effective preventive strategies. Using biomarker studies for understanding the
mechanism of action, effect size estimation, selection of appropriate end-points, and better subject recruitment based
on subpopulation effects are fundamental for better design and success of prevention trials.
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Background
The two primary histopathological changes to the brain
due to Alzheimer’s disease (AD) are the deposition of
amyloid and tau [1]. These two AD-related brain changes
are the primary underlying causes of neurodegeneration
and cognitive dysfunction which ultimately leads to
dementia. As human longevity increases, and AD dementia
increasingly becomes a major societal burden, finding
pathways that lead to brain aging without AD pathologies

(ADP) are critical. Currently, much of the research has
been focused on resilience or cognitive reserve [2], wherein
the focus has been on discovering how and why individuals
are able to remain clinically unimpaired or cognitively
normal despite ADP. However, it is important to inves-
tigate, using surrogates of amyloid and tau pathologies
via cerebrospinal fluid (CSF) and positron emission
tomography (PET), why majority of individuals develop
ADP as they age and how some oldest old individuals are
able to age without significant ADP. The latter individuals
are called “exceptional agers” without ADP. While the
absence of ADP can be defined using various thresholds,
we refer to the absence of ADP as not reaching the
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neuropathological definition of AD in pathology studies
and the imaging cutoffs of amyloid and tau positivity in
imaging studies. Amyloid and tau PET scans of an excep-
tional ager in comparison to a clinically unimpaired indi-
vidual and an AD dementia individual are shown in Fig. 1.
In this view point, the main goal is to bring together

ideas and observations from the literature and present
them as testable hypotheses or frameworks that can be
employed in biomarker studies to discover protective
factors or pathways to “exceptional brain aging”. In the
context of the terminology we recently proposed, for
hypotheses 1 and 2 the focus is on “resistance to ADP”
[3] and for hypothesis 3 the focus is on both resistance
to ADP and prevention of AD dementia.
These concepts are presented in the context of the pri-

mary AD pathophysiological processes in the biomarker
cascade (amyloid, tau, and neurodegeneration due to AD
pathologies). The focus is on primary prevention in midlife,
designing effective trials by understanding the mechanisms
of action on the biomarker cascade, and looking at the net
sum protection against all components of the biomarker
cascade. Although additional AD processes are not explicitly
addressed, such as inflammation, synaptic and microglial
dysfunction that are relevant to aging and AD dementia, the
concepts here can also be extended to other measurable
biomarkers that are mechanistically relevant to AD.

“Exceptional brain aging” without ADP: is it really
possible?
Several pathology and observational studies have provided
evidence for aging without ADP [4, 5] and have focused

on optimal or successful aging without cognitive decline
[6–8] in the oldest old. In addition, specific evidence for
“exceptional brain aging” without ADP comes from these
three different lines of investigation.

Prevalence of AD pathologies
Nelson et al. [9] published an amalgamation of neuropatho-
logical literature showing that each added year of life does
not lead to an increased prevalence of AD pathologies,
unlike hippocampal sclerosis and cerebrovascular disease.
Neuroimaging studies in the Mayo Clinic Study of Aging
(MCSA) have also found non-monotonicity in the
frequency of amyloid positivity in clinically unimpaired
individuals [10, 11]. The data from our previous work [11]
were consolidated to plot the prevalence of elevated amyloid
versus excess cerebrovascular disease burden in clinically
unimpaired individuals (Fig. 2a). These curves are reminis-
cent of two types of growth curve models in population
ecology: exponential, or J-shaped, and logistic, or S-shaped,
models. While exponential models have uninhibited growth
in numbers, logistic growth models exhibit a slowing in
growth as the population reaches its carrying capacity. Vas-
cular pathologies show a steady increase in the prevalence
or rate of growth representing an exponential model over
an age range of 50–100 years. On the contrary, the amyloid
elevation curves exhibit a slow saturation alluding to the fact
that there may be a proportion of the population that will
never develop elevated levels of amyloid, supported by evi-
dence from Khachaturian et al. [12]. Amyloid data collected
from 55 studies by Jansen et al. also showed that a logistic
model was the best fit for amyloid prevalence [13].

Fig. 1 Tau and amyloid positron emission tomography (PET) scans in a typical clinically unimpaired, typical AD, and an exceptional ager (> 85-year-old
APOE4 carrier)
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Declining AD incidence and amyloid levels
Recent evidence of age-specific decline in both incidence
of dementia [14, 15] and amyloid levels [16] in aging
brains provides compelling evidence for the possibility of
aging without AD pathologies. With the strong possibility
that better medical care and increasing education levels
may have contributed to these declining trends [17],
investigation into the underlying mechanisms may lead us
closer to understanding the differences between normal
aging and developing ADP.

APOE4 carriers without AD dementia and AD pathologies
in the oldest old
Age and the apolipoprotein (APO)E4 genotype are the
two well-established risk factors for AD [13]. Therefore,
one would expect that, as people age, the odds of an
APOE4 individual developing AD dementia would increase
with age. However, there have been several observations
showing that the association between APOE4 genotype
and development of AD dementia is weak in the oldest
old, i.e., there are some APOE4 carriers who live into their
90s without AD dementia [12, 18–20]. While these studies
have proven the presence of very old APOE4 carriers with-
out AD dementia, one may argue that protection against
AD dementia primarily comes from “resilience to ADP, i.e.,
coping with pathology”. However, the presence of amyloid-
negative APOE4 cognitively normal individuals at 85 years
of age (~ 25%) in a large meta-analysis [13] supports
the idea of “resistance to ADP” in the oldest old APOE4
carriers.

While the observed evidence can be attributed to excess
mortality early in life in those at risk (for example, for
APOE4 carriers), it is important to study and understand
how some individuals are able to age without ADP.

Discovering pathways to “exceptional aging”
Given the possibility of “exceptional aging”, how does
one discover the important protective factors. Three
inter-related ideas or hypotheses are presented here
that, when taken together, can aid in discovering pro-
tective pathways and help design effective preventive
strategies.

Hypothesis 1 (primary prevention in midlife)
Discovering and quantifying links between risk factors
and early ADP changes in midlife using longitudinal
biomarker studies is fundamental to understanding why
the majority of individuals deviate from normal aging to
the AD pathway.

Normal aging versus pathological aging
Aging acts through a number of biological mechanisms at
the cellular or tissue level that lead to loss of reserve and
function [21]. Prominent aging-related changes occur in the
brain during midlife, and more so in the sixth to seventh
decades. Midlife also represents the time during which
(neurodegenerative and cerebrovascular) pathologies are
observed in brain autopsies [9]. Even in the absence of
pathologies, individuals suffer from age-related neural
structure alterations [22, 23] and alterations in gene expres-
sion [24] starting in midlife. However, in the presence of

Fig. 2 a Prevalence of elevated amyloid levels (A+) versus vascular disease (V+) in clinically unimpaired individuals based on data from Vemuri
and Knopman [11]. Vascular pathologies show a steady increase in the prevalence (exponential growth curve models) but the amyloid positivity
curves exhibit a slow saturation similar to logistic growth curve models. b Data from our previous study [25] illustrates the slow longitudinal
cognitive decline seen in a clinically unimpaired 80-year-old male without amyloid and cerebrovascular pathologies (in blue) in comparison with
significantly greater decline seen in a clinically unimpaired individual of the same age with both elevated amyloid and cerebrovascular pathologies (in red)
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neurodegenerative and cerebrovascular pathologies, the
structural and functional deterioration of the brain has
been observed to be greater. This accelerated decline in
brain health due to neurodegenerative and cerebrovascular
pathologies is the primary observed cause of dementia. By
age 80, > 60% of clinically unimpaired individuals have
either ADP or cerebrovascular disease. Figure 2b based on
data from our previous study [25] illustrates the slow lon-
gitudinal cognitive decline seen in a clinically unimpaired
80-year-old male without amyloid and cerebrovascular
pathologies (in blue) in comparison with a significantly
greater decline in a clinically unimpaired individual of the
same age with both amyloid and cerebrovascular patholo-
gies (in red). There is also consensus about the significant
heterogeneity in the cognitive aging process [7]. All these
studies taken together provide evidence that normal aging
is different from pathological aging and late midlife
represents a critical time period during which we observe
noticeable divergence of these two pathways. Given that
slowing of age-related changes in midlife can be observed
with better lifestyle factors such as physical activity and
ideal levels of cardiovascular health [26–28], our focus
should be on primary prevention during midlife and early
adulthood.
There is well-established literature supporting that

midlife conditions have a significant impact on late-life
dementia, especially cardiorespiratory fitness [29] and
vascular risk factors [30]. The relationship between
several risk factors (obesity, hypertension, dyslipidemia)
and dementia incidence has been observed to be U-shaped
in nature with the greatest association during midlife
[31–33]. Additionally, the prevalence of amyloid curves
(as mentioned above) follows a logistic growth curve
model with the greatest rate of amyloid accumulation in
the population during late midlife. The first hypothesis
proposes that greater focus needs to be placed on longitu-
dinal biomarker studies that can discover and quantify
links between risk factors in midlife and increased ADP
accumulation in late midlife to understand why individuals
deviate from the normal aging process.
One may argue that there has been extensive literature

already supporting the hypothesis that midlife risk factors
such as vascular risk factors increase late life dementia
incidence. However, the results from intervention stud-
ies based on a reduction of vascular risk factors [34]
highlights the need for longitudinal biomarker studies
in midlife that focus on understanding the mechanisms
of action of the suggested risk factors as early ADP
changes evolve. This is especially important for risk or
protective factors that are highly debated in the literature
[35–37]. Understanding how the risk factors or combin-
ation of risk factors impact early ADP changes (whether it
is amyloid, tau, or neurodegeneration) using longitudinal
studies will facilitate a better understanding of how

protective factors can be employed for primary prevention
[38, 39]. While significant focus has been placed on amyl-
oid imaging since it has been available from the mid-
2000s, the same concepts can be extended to tau-related
studies as longitudinal tau data become available [40].

Hypothesis 2 (designing effective trials)
A specific risk factor may have quantifiably greater impact
as a trigger and/or accelerator on a specific component of the
biomarker cascade (amyloid, tau, or neurodegeneration).

The biomarker cascade framework and quantifying the
impact of each risk/protective factor
Although amyloid and tau deposition can be initiated
independently, there is sufficient recent evidence sup-
porting the hypothesis that amyloid deposition accelerates
tau deposition which, in turn, is closely associated with
cognitive decline [41–44]. Autosomal dominant AD
studies that represent younger-onset pure AD cases
have confirmed the sequence of amyloid followed by
tau, followed by cognitive decline [45, 46]. The biomarker
model presented and refined based on the literature by
Jack et al. [43] synthesized AD processes into a set of
testable hypotheses. Amyloid, tau, neurodegeneration, and
cognitive decline form the biomarker cascade and this
framework has helped significantly improve our under-
standing of disease onset and progression [41, 47–49].
The presence of suspected non-AD pathophysiology

(SNAP; neurodegeneration in the absence of amyloid)
[50] and primary age-related tauopathy (PART) in the
absence of amyloid [51] illustrate the heterogeneity in
the age-related neurodegenerative processes and share
some pathophysiological aspects (neurodegeneration or
tau) of the AD biomarker cascade. Since each of these
pathophysiologies plays a role in the development of AD
dementia, as discussed further in hypothesis 3 below,
studying independent triggers and accelerators for each
component of the AD biomarker cascade will be important.
In the second hypothesis, it is proposed that looking at
each individual component of the biomarker cascade
(amyloid, tau, neurodegeneration) to explore the impact
of the risk factor of interest will aid in understanding
the mechanisms through which the specific risk factor
impacts AD processes.

Importance of knowing the mechanisms
Although a vast amount of literature has provided evidence
for the impact of risk factors on dementia incidence, less
has been published on the impact of each individual risk
factor on the primary disease mechanisms. Discerning the
disease stage at which the reduction of a specific risk factor
would be helpful will be important for designing effective
preventive strategies. A recent example was the failure
of the TOMORROW trial, which targeted diabetes
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medications for reduction of dementia [38]. While there
has been substantial evidence that diabetes is associated
with AD dementia incidence, the primary mechanism of
action may be through neurodegeneration (discussed fur-
ther below) [52]. Therefore, with diabetes as a preventive
strategy, the focus should be on measuring the reduction
in neurodegeneration and not on reduction in amyloid
deposition. Another example is that of sleep as a prevent-
ive strategy. While poor sleep has been shown to impact
amyloid deposition through poor clearance of amyloid
[53, 54], and thus could mechanistically be linked to
greater dementia incidence [55] and brain atrophy [56],
improving sleep quality as a preventive strategy for AD
dementia may fail in individuals who have high levels of
amyloid. Therefore, quantifying the effect size of risk
factors on each component of the biomarker cascade will
aid in choosing appropriate outcomes and the sample sizes
required. In addition, determining the effect modifiers
(main biological and disease-related factors that may influ-
ence the treatment response such as additional interactions
of the risk factors with age and APOE4 status) will aid in
better enrichment strategies and intervention optimization.
Figure 3 illustrates well-established triggers and accelera-

tors for some of the components of the biomarker cascade.
A specific example of vascular health and neurodegenera-
tion is discussed here. Poor vascular health and vascular risk
factors are clearly related to higher incidence of dementia
[57] as well as causing significant brain changes independent
of amyloid and tau [58]. While there has been no doubt that
vascular risk factors, specifically diabetes and hypertension,
increase neurodegeneration (cortical thinning and hip-
pocampal atrophy), there has been considerable debate
about the impact of vascular risk on amyloid deposition.
In a recent study, we found that the impact of vascular

health was quantifiably greater on neurodegeneration than
on amyloid deposition supporting the second hypothesis
[52]. If one were to consider that vascular risk factors cause
significantly greater neurodegeneration and cognitive decline
compared with their effect on early amyloid deposition, it
strongly supports the epidemiological findings that vascular
risk factors lower the threshold of dementia detection and
are related to a higher incidence of dementia [57].

Hypothesis 3 (net sum game)
“Exceptional aging” as well as protection against AD de-
mentia will come from “net sum” protection against all
the components of the AD biomarker cascade.
If protection against AD pathology in each individual

were viewed as a “net sum” of effects from all triggers
and accelerators (lifestyle, midlife risk factors, chronic
conditions, net difference between protective and risk genes)
as well as additive and interactive non-AD processes, then
“exceptional aging” without ADP and ultimately without
AD dementia would be possible if a large positive “net sum”
were present. This hypothesis highlights the importance for
multifactorial or multidomain approaches to “exceptional
aging” without ADP and AD dementia.
The support for “net sum” against AD dementia

primarily comes from dementia risk score studies [59, 60]
that have shown that a combination of several risk factors
are best at predicting dementia risk compared with indi-
vidual risk factors. The large positive “net sum” against
ADP was also observed in our recent study where we
found that, irrespective of the impact of a risk factor on
amyloid or neurodegeneration, several protective factors
(absence of midlife risk factors, lower chronic conditions)
had moderate effect sizes in predicting those who were
greater than or equal to 85 years of age without abnormal

Fig. 3 Framework for the second hypothesis and examples of triggers and accelerators of some of the components of the biomarker cascade.
AD, Alzheimer’s disease; APOE, apolipoprotein E
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amyloid and neurodegeneration levels compared with those
who had significant amyloid and neurodegeneration [37].
In addition, greater intellectual enrichment can further aid
in delaying the onset of impairment through its impact on
cognition, as illustrated by Fig. 4a [61–63].
The presence of non-AD processes such as cerebrovas-

cular disease, TDP-43, Lewy bodies (often alongside AD
processes) and their contribution to cognitive impairment
are important to consider in this context since non-AD
neurodegenerative pathologies reduce the threshold to
AD dementia when present along with ADP [57, 64]. This
concept can be observed in Fig. 4b, which illustrates two
subsets of individuals: the first have cognitive decline or
neurodegeneration only due to ADP, and the second have
a greater rate of neurodegeneration or cognitive decline
due to other non-AD neurodegenerative processes along
with ADP. A clear difference can be observed in the levels
of ADP at which the same level of cognitive impairment
would be expected for both groups. The second group
would need a much lower level of amyloid to experience
the same level of cognitive impairment as the first group.
This figure illustrates the importance of viewing protection
against AD dementia as protection against all components
of the AD biomarker cascade.
A major limitation of this work was limiting the scope

to the three main AD biomarkers for simplicity. However
the concepts illustrated in Figs. 3 and 4 can be extended
after inclusion of additional measurable AD-specific pro-
cesses such as inflammation as well as non-AD processes
and pathologies.

Conclusions
While important strides have been made in identifying
risk factors for AD dementia incidence, future efforts
need to be directed towards discovering the timing and
mechanism of action of each of these risk factors on
AD processes. In this work, three inter-related ideas are
presented that are important to consider while studying
risk factors and may help us move towards developing
effective preventive strategies to maneuver individuals
away from the AD pathway towards the pathway of
“exceptional brain aging” without ADP.
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