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An integrative genome-wide transcriptome
reveals that candesartan is neuroprotective
and a candidate therapeutic for Alzheimer’s
disease
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Abstract

Background: Alzheimer’s disease is the most frequent age-related dementia, and is currently without treatment. To
identify possible targets for early therapeutic intervention we focused on glutamate excitotoxicity, a major early
pathogenic factor, and the effects of candesartan, an angiotensin receptor blocker of neuroprotective efficacy in cell
cultures and rodent models of Alzheimer’s disease. The overall goal of the study was to determine whether gene
analysis of drug effects in a primary neuronal culture correlate with alterations in gene expression in Alzheimer’s
disease, thus providing further preclinical evidence of beneficial therapeutic effects.

Methods: Primary neuronal cultures were treated with candesartan at neuroprotective concentrations followed by
excitotoxic glutamate amounts. We performed genome-wide expression profile analysis and data evaluation by
ingenuity pathway analysis and gene set enrichment analysis, compared with alterations in gene expression from two
independent published datasets identified by microarray analysis of postmortem hippocampus from Alzheimer’s
disease patients. Preferential expression in cerebrovascular endothelial cells or neurons was analyzed by comparison to
published gene expression in these cells isolated from human cortex by laser capture microdissection.

Results: Candesartan prevented glutamate upregulation or downregulation of several hundred genes in our cultures.
Ingenuity pathway analysis and gene set enrichment analysis revealed that inflammation, cardiovascular disease and
diabetes signal transduction pathways and amyloid β metabolism were major components of the neuronal response to
glutamate excitotoxicity. Further analysis showed associations of glutamate-induced changes in the expression of several
hundred genes, normalized by candesartan, with similar alterations observed in hippocampus from Alzheimer’s disease
patients. Gene analysis of neurons and cerebrovascular endothelial cells obtained by laser capture microdissection revealed
that genes up- and downregulated by glutamate were preferentially expressed in endothelial cells and neurons, respectively.

Conclusions: Our data may be interpreted as evidence of direct candesartan neuroprotection beyond its effects on
blood pressure, revealing common and novel disease mechanisms that may underlie the in vitro gene alterations
reported here and glutamate-induced cell injury in Alzheimer’s disease. Our observations provide novel evidence for
candesartan neuroprotection through early molecular mechanisms of injury in Alzheimer’s disease, supporting testing
this compound in controlled clinical studies in the early stages of the illness.
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Background
Alzheimer’s disease is the most common age-related de-
mentia and a major and increasing burden for our soci-
ety [1]. This disorder is currently without treatment, and
therapies to ameliorate alterations in amyloid beta (Aβ)
or tau metabolism, initiated too late in the disease
course, have proven disappointing [2]. For this reason
the search for early pathogenic mechanisms susceptible
to therapeutic intervention is a medical necessity.
Emerging evidence indicates a role for multifactorial

mechanisms involved in the early stages of the disease
and preceding diagnosis. These mechanisms include
genetic factors, possibly of cumulative impact [3], risk
factors, such as cardiovascular disease and diabetes [4, 5],
alterations in the microvasculature [4–6], chronic dysreg-
ulated inflammation [6, 7] and glutamate-mediated excito-
toxicity [3, 8–10].
In the present report we focused on glutamate excito-

toxicity. Glutamate is the predominant excitatory neuro-
transmitter in the mammalian brain and participates
in mechanisms associated with long-term potentiation
and synaptic plasticity [11]. Excessive production and
release of glutamate, however, leads to neuronal injury
and is a major pathogenic factor in many acute and
chronic brain conditions, including Alzheimer’s dis-
ease [3, 8–10, 12].
In our search for novel compounds with neuroprotec-

tive effects against glutamate neurotoxicity, we focused
in a class of compounds, the angiotensin receptor
blockers (ARBs) or sartans, that effectively blocks the
physiological AT1 receptor (AT1R) and therefore the ef-
fects of angiotensin II, the main active factor of the
renin–angiotensin system [13] both in the periphery and
the brain [14]. Excessive peripheral AT1R activity associ-
ates with hypertension, heart and kidney failure, periph-
eral vascular and tissue inflammation, and metabolic
abnormalities such as insulin resistance [15–17]. Conse-
quently, the use of sartans, because of their beneficial ef-
fects on inflammatory and metabolic alterations beyond
their effect on blood pressure control, has become a
cornerstone for the treatment of cardiovascular and
chronic kidney disease [18]. In turn, increased brain
AT1R stimulation associates with brain ischemia, blood–
brain barrier breakdown, Aβ production and toxicity,
brain inflammation, traumatic brain injury and glutam-
ate excitotoxicity, risk factors leading to neuronal injury,
cognitive decline, and the incidence and progression of
neurodegenerative diseases [19–26]. For this reason it is
not surprising that sartans have been found to be effect-
ive neuroprotective compounds. In vitro experiments
demonstrated that sartans ameliorate neuronal injury
produced by glutamate excitotoxicity and high levels of
interleukin (IL)-1β, and microglia activation as a result
of systemic administration of bacterial endotoxin

(lipopolysaccharide (LPS)) [25, 27–29]. In rodent models
of Alzheimer’s disease, sartans (candesartan, losartan,
valsartan and telmisartan) ameliorate all risk factors for
human Alzheimer’s disease, including protecting cere-
bral blood flow and cognition during stroke, decreasing
inflammation and Aβ neurotoxicity, and reducing trau-
matic brain injury [24, 26, 27, 30–37]. Furthermore, clin-
ical studies indicate that ARBs protect cognition after
stroke and during aging [15, 22, 38, 39], and cohort ana-
lyses reveal that treatment of hypertension with sartans
significantly reduces the incidence and progression of
Alzheimer’s disease [40, 41].
To clarify the role of glutamate excitotoxicity, we used

primary rat cerebellar granule cells (CGCs) in vitro. This
is a well-characterized and reliable primary neuronal
model to analyze mechanisms and excitotoxic neuronal
damage and neuroprotection [42, 43]. Although in
humans CGCs are not primary targets for Alzheimer’s
disease, rat CGCs are very sensitive to glutamate excito-
toxicity, a major early injury factor in this illness, and
are extensively used in Alzheimer’s disease research
[44–46]. We selected the ARB candesartan for our
study because of its demonstrated neuroprotective effects
on cultured primary cortical neurons, microglia and cere-
brovascular endothelial cells, and its amelioration of brain
inflammation in vivo [27] including reducing glutamate-
induced apoptosis in cultured CGCs [25].
Our study was initially designed to provide mechanis-

tic insight into the potential targets and pathways that
may underlie glutamate-induced cell injury and its pos-
sible reversal by the neuroprotective action of candesar-
tan. To this aim, we performed genome-wide expression
analysis and evaluated the data with several pathway
analysis programs: ingenuity pathway analysis (IPA),
gene set enrichment analysis (GSEA) [47, 48] and Kyoto
encyclopedia of genes and genomes (KEGG).
The strong correlation of our findings with many sig-

nal transduction mechanisms and pathways associated
with Alzheimer’s disease prompted us to determine
whether there was an association between the changes
in gene expression in our study with those found in
postmortem brain samples from patients who suffered
from Alzheimer’s disease. To this end, we compared our
results with alterations in gene expression published in
two independent microarray studies of hippocampal
samples obtained postmortem from brains of patients
diagnosed with Alzheimer’s disease. Because of evi-
dence of cerebrovascular endothelial dysfunction in
Alzheimer’s disease, we wanted to establish which of
the genes altered in Alzheimer’s disease patients were
predominantly expressed in cerebrovascular endothelial
cells or in neurons. To clarify this point, we compared
gene expressions altered in published Alzheimer’s disease
patients with published analysis of predominant gene
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expression in human cerebrovascular endothelial cells and
neurons obtained by laser capture microdissection from
postmortem dorsolateral prefrontal cortex samples and
then we looked at the effect of candesartan on these gene
signatures in our CGC study.

Methods
Culture of primary neurons
Animal housing, handling and experimentation were in
compliance with guidelines and protocol approval by the
NIMH (NIH) Institutional Animal Care and Use Com-
mittee (protocol MH002762-17), and followed guidelines
of the US National Institute of Health Guide for the
Care and Use of Laboratory Animals published by the
US National Academy of Sciences (http://oacu.od.nih.
gov/regs/index.htm).
We used primary cultures of rat primary CGCs,

which are very sensitive to glutamate excitotoxicity
and extensively used in Alzheimer’s disease research
[44–46]. CGCs were isolated from 8-day old Sprague
Dawley rat pups (Charles Rivers Laboratories, Wilmington,
MA, USA) as described previously [49, 50] which
were euthanized by decapitation. Brains were dis-
sected immediately and the cerebella were collected
and placed in ice-cold Hank’s balanced salt solution
(Invitrogen, Carlsbad, CA, USA). After removal of the
meninges, the cerebella were dispersed into the same
buffer containing 0.025 % trypsin (Invitrogen) and
digested for 15 min at 37 °C. Trypsin digestion was
stopped by adding the same volume of Dulbecco’s
modified Eagle’s medium (Invitrogen), supplemented
with 10 % fetal bovine serum (Invitrogen) and
0.1 mg/ml DNase I (Sigma-Aldrich, St. Louis, MO,
USA). After gentle trituration, digested tissues were
centrifuged at 1000 rpm for 5 min. The cell pellets
were suspended in the complete Neurobasal culture
medium supplemented with 2 % B27 (Invitrogen) and
0.5 mM GlutaMax (Invitrogen). After filtration through a
70 mm cell restrainer (BD Falcon, Vernon Hills, IL,
USA), cells were plated at a density of 1 × 106 cells/ml
onto poly-L-lysine coated plates (Becton Dickinson and
Company, Franklin Lakes, NJ, USA) or chamber glass
slides (Nalge Nunc International, Naperville, IL, USA).
Cultures were incubated in a humidified atmosphere of
5 % CO2 95 % air at 37 °C. Cytosine arabinofuranoside
(Invitrogen) (10 µl) was added to the cultures 24 h after
plating to arrest the growth of non-neuronal cells. Cul-
tures of 6 to 7 days in vitro were used in this study.
Immunocytochemical validation with antimicrotubule-
associated protein-2 antibody (EMD Millipore, Billerica,
MA, USA) and 4-6-diamino-2-phenylindole (Invitrogen)
revealed that more than 95 % of the cells in our culture
system were neurons at the time of experiment (data not
shown).

Cell culture treatments
We performed microarray analysis of gene expression in
four sets of rat primary neuronal cultures: controls;
treated with candesartan at concentrations in the range
of blood levels obtained in humans after oral administra-
tion [51]; exposed to excitotoxic glutamate concentra-
tions [25]; and treated with candesartan before the
exposure to glutamate. Excitotoxicity was induced by ex-
posing cultures to 100 μM glutamate (Sigma-Aldrich)
and pretreated for 1 h with vehicle (0.1 % saline and
0.1 N Na2CO3 at pH 7.4), or the AT1R blocker candesar-
tan (10 μM) (Sigma-Aldrich) dissolved in 0.1 N Na2CO3,
pH 7.4. After addition of candesartan, the compound
was not removed and was present throughout the incu-
bation. Candesartan and glutamate concentrations and
timing of the experiments were selected on the basis of
prior studies demonstrating protection of cultured neu-
rons from inflammation and glutamate-induced injury
[25, 27]. Figure 1 is a flow chart for data analysis.

Gene expression analysis
Total RNA was extracted from CGC treated with vehicle,
CGC treated with candesartan, CGC treated with glutam-
ate and CGC treated with candesartan and glutamate.
Each group consisted of five independent experiments.
Standard procedures for labeling, hybridization, washing
and staining were as per manufacturer’s recommendation
(Affymetrix, Santa Clara, CA, USA). Briefly, the RNA was
purified using a RiboPure Kit (Ambion, Austin, TX, USA)
according to the manufacturer’s protocol. The quality and
quantity of RNA were ensured using the Bioanalyzer
(Agilent, Santa Clara, CA, USA) and NanoDrop (Thermo
Scientific, Waltham, MA, USA), respectively. For RNA la-
beling, total RNA (300 ng) was used in conjunction with
the Affymetrix-recommended protocol with the WT Plus
Reagent Kit catalog #902280. The hybridization cocktail
containing the fragmented and labeled complementary
DNAs (cDNAs) was hybridized to the Rat GeneChip 2.0
ST chips. The chips were washed and stained by the Affy-
metrix Fluidics Station using the standard format and pro-
tocols from Affymetrix. The probe arrays were stained
with streptavidin phycoerythrin solution (Molecular
Probes, Carlsbad, CA, USA) and enhanced by using an
antibody solution containing 0.5 mg/ml biotinylated anti-
streptavidin (Vector Laboratories, Burlingame, CA, USA).
The probe arrays were scanned using an Affymetrix Gene
Chip Scanner 3000. Gene expression intensities were cal-
culated using the Gene Chip Operating software 1.2 (Affy-
metrix). A GC-corrected robust multichip analysis (RMA)
normalization model was used to correct for background,
and nonspecific binding. All analyses were performed
using Partek Genomics Suite (Fig. 1). The raw data is sub-
mitted to Gene Expression Omnibus (GEO) under acces-
sion GSE67036.
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Quantitative real-time polymerase chain reaction
Aliquots from samples from the same experiment were
used for quantitative real-time polymerase chain reac-
tion (qPCR) and for microarray analysis. For qPCR we
studied three individual independent samples, and each
sample was analyzed in triplicate.
To determine gene expression, total RNA was isolated

as indicated using 1 ml TRIzol (Invitrogen), followed by
purification using an RNeasy Mini kit (Qiagen, Valencia,
CA, USA) according to the manufacturer’s instructions.
Synthesis of cDNA was performed using 0.6 mg total
RNA and Super-Script III first-Strand Synthesis kit (Invi-
trogen). qPCR was performed on DNA Engine Opticon
(MJ Research, Waltham, MA, USA) with SYBR Green
PCR Master Mix (Applied Biosystems, Foster City, CA,
USA). qPCR was performed in a 20 μl reaction mixture
containing 10 μl SYBR Green PCR Master Mix, 4 μl
cDNA and 0.3 μM of each primer for a specific target.
Primers for qPCR were synthesized by BioServe (Beltsville,
MD, USA). The specific primers are listed in Additional
file 1 (Table S1). The remaining reagents for RNA isola-
tion and reverse transcription were from Invitrogen. The
amplification conditions consisted of one denaturation/
activation cycle at 95 °C for 10 min, followed by 45 cycles
at 95 °C for 15 s and 60 °C for 60 s. Serial dilutions of
cDNA from the same source as samples were used to
obtain a standard curve. The individual targets for

each sample were quantified by determining the cycle
threshold and by comparison with the standard curve.
The relative amount of the target mRNA was normalized
with the housekeeping gene glyceraldehyde-3-phosphate
dehydrogenase.
Multiple group comparisons for data obtained by

qPCR were performed by one-way analysis of variance
(ANOVA) followed by Newman-Keuls post-test. Statis-
tical significance was determined using GraphPad Prism
5 Software (GraphPad Software, San Diego, CA, USA).
In all cases, data are accepted as statistically significant
given a probability value of ≤0.05.

Datasets description and microarray data mining
To compare our data to published datasets, we used GSEA
[52] (Fig. 1). The GSEA algorithm computes a ranked list
of all genes from a microarray comparison between two
conditions and identifies whether individual members of an
a priori functionally defined gene set (black vertical bars)
are enriched at either the top (red area) or bottom of the
ranked genes (blue area) or randomly distributed across the
whole ranked gene list, using a modified Kolmogorov-
Smirnov statistic. These predefined gene sets are part of a
functionally well-established and/or published pathway
from databases such as KEGG [53], BioCarta [54], Reac-
tome [55] and gene ontology. An enrichment score (green
graph) is calculated based on the level to which a gene set

Fig. 1 Flow chart for data analysis. ACE angiotensin converting enzyme, AD Alzheimer’s disease, ANOVA analysis of variance, CGC cerebellar
granule cell, ES enrichment score, GSEA gene set enrichment analysis, IFN interferon, IPA ingenuity pathway analysis, KEGG Kyoto encyclopedia of
genes and genomes, LPS lipopolysaccharide, pval p value, TGF transforming growth factor, TNF tumor necrosis factor
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is overrepresented at the top (positive correlation) or bot-
tom (negative correlation) of the ranked gene list and is
calculated as the maximum deviation from zero. Genes
occurring at the very extreme (dark red or dark blue area)
on either side of the ranked list are weighted more heavily
compared with genes occurring in the middle (light red or
light blue area) of the ranked gene list that contain genes
that are not differentially expressed. Statistical significance
is defined by the p-value, which is also adjusted for mul-
tiple hypothesis testing. A gene set-based permutation test
of 1000 permutations was applied and genes were ranked
according to Student’s t statistic. All other parameters
were set to GSEA defaults [47, 48]. For a more compre-
hensive description of the GSEA [47, 48, 52] and the
Broad Molecular Signatures Database v5.0 (MSigDB) [56]
see [47, 48, 52]. The MSigDB actually consists of over
4000 different gene sets. Alternatively, we used microarray
datasets from the GEO database [57] to derive gene sets
that we then used for GSEA analysis. IPA [58] (Ingenuity
Systems, Redwood City, CA, USA) was used to identify
canonical pathways associated with the differentially
expressed genes. All of the differentially expressed genes
were included in the analysis.
Datasets from normal/Alzheimer’s disease whole hippo-

campus tissue comparisons (GSE1297 [59] GSE48350
[60], and GSE36980 [61]) and from laser capture micro-
dissected normal neuronal/endothelial cell comparisons
(GSE12679 [62] and GSE12293 [63]) were downloaded
from NCBI’s GEO database [57] and imported into Partek
Genomics Suite software (Partek, Inc., St. Louis, MI, USA)
(Fig. 1). After RMA normalization, differential gene ex-
pression was accessed by one-way ANOVA. For micro-
array cross-platform comparisons we used a p value of
<0.05 and a 1.2-fold change cutoff. Raw data from these
datasets were analyzed with Partek Genomics Suites under
similar conditions used for the CGC data. In order to
avoid cross-platform heterogeneity we focused only on
datasets generated on the Affymetrix chips.
GSE1297 [59] (Fig. 1) is a dataset collected from nine

postmortem normal and 22 Alzheimer’s disease patients
with different degrees of severity, obtained from the Brain
Bank of the Alzheimer’s disease Center of the University of
Kentucky. Only seven severe cases (mean Braak stage 5.9,
mean age 84 years old) were included in this analysis.
GSE48350 [60] (Fig. 1) is a dataset collected from

postmortem human hippocampus tissue from 33 con-
trols and 26 Alzheimer’s patients (Braak stage 5–6, mean
age 79–90 years old) and obtained from the NIH/NIA
Alzheimer’s Disease Research Center Brain Bank
(Bethesda, MD, USA) and profiled on the Affymetrix
Human Genome U133 Plus 2.0 Array.
GSE36980 [61] (Fig. 1) is a dataset from hippocampus

gene expression of ten controls and seven Alzheimer pa-
tients (83 to 105 years old at Braak stages 5 to 6)

selected from autopsy samples obtained from Hisajama,
Japan residents and profiled on the Affymetrix Human
Gene 1.0 ST Arrays.
GSE12679 [62] (Fig. 1) is a dataset from a laser capture

microdissection of microvascular endothelial cells and
neurons from human dorsolateral prefrontal cortex ob-
tained at autopsy from 12 control individuals, obtained
from the Stanley Medical Research Institute brain collec-
tion (Bethesda, MD, USA) and profiled on the Affyme-
trix Human Genome U133 Plus 2.0 Array.
GSE12293 [63] (Fig. 1) is a dataset from autopsy sam-

ples of human dorsolateral prefrontal cortex obtained
from the Stanley Medical Research Institute brain collec-
tion (Bethesda, MD, USA). Neurons from six control sub-
jects and endothelial cells from seven control subjects
were isolated by laser-capture microdissection and profiled
on the Affymetrix Human Genome U133 Plus 2.0 Array.
Detailed demographic information may be consulted

in the selected references [59–63].
GSE46871 [64] (Fig. 1) is a dataset from hippocampal

gene expression of Tg2576 mice, a rodent model of Alz-
heimer’s disease, comparing untreated controls and mice
treated with the angiotensin converting enzyme inhibitor
(ACEI) captopril.

Results
Global gene expression analysis
Candesartan prevents glutamate-induced upregulation or
downregulation of multiple genes in primary neurons
Differential gene expression comparing results from
glutamate-treated neurons with those of vehicle-treated
neurons yielded over 1100 transcripts significantly up-
or downregulated by glutamate (Additional file 2: Table
S2). Differential gene expression shows over 800 tran-
scripts (including microRNAs and noncoding RNAs)
that are up- or downregulated when candesartan was
added prior to glutamate, as compared with those ex-
posed to glutamate only (Additional file 2: Table S2).
Candesartan completely prevented the glutamate-

induced up- or downregulation of 501 of these transcripts
(twofold or higher, p < 0.05; Additional file 2: Table S2).
Interestingly, the comparison of neurons treated with can-
desartan to the control untreated neurons generated only
a few genes with no functional annotation that may repre-
sent the system noise, confirming the fact that candesar-
tan does not have any significant effect on normal
neurons (Additional file 2: Table S2).

Confirmation of microarray results by qPCR
Candesartan prevents glutamate-induced gene
upregulation
We confirmed microarray results by determination of ex-
pression of a number of genes upregulated by glutamate
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exposure by qPCR. In all these genes, candesartan pretreat-
ment very significantly, and in many cases completely, pre-
vented glutamate-induced upregulation. The exception was
superoxide dismutase 2; in this case there was a clear trend,
but the results were not statistically significant (Fig. 2;
Additional file 3: Figure S1, Additional file 4: Figure S2 and
Additional file 5: Figure S3).

Pathway analysis
Specific diseases and functions, and upstream regulators
associated with glutamate exposure and candesartan
treatment
The list of functionally annotated genes from the glu-
tamate versus glutamate + candesartan (423 unique
genes) was submitted to IPA analysis [58]. As a result,
cell movement, cell death and lesion formation, inflam-
mation and synthesis of reactive oxygen species, diabetes
and glucose metabolism, vascular disease and blood ves-
sel development came top of the list of diseases and
functions (Table 1; Additional file 6: Table S3). Many
genes within these pathways were up- or downregulated

by glutamate, and these changes were significantly pre-
vented by candesartan (Additional file 2: Table S2).
Within the IPA program, analysis of upstream regula-

tors of these differentially expressed genes included the
well-known inflammatory associated cytokines tumor
necrosis factor (TNF) alpha, IL-1β and interferon (IFN)
gamma, LPS, the growth factor transforming growth fac-
tor (TGF) beta-1, and five upstream regulator drugs
PD98059, SB203580, U0126, SP600125 and LY294002
(Table 2; Additional file 7: Table S4). Additional up-
stream regulators were amyloid precursor protein (APP),
retinoid acid (Tretinoin) and apolipoprotein E (APOE)
(Table 2; Additional file 7: Table S4).

Gene set enrichment analysis
Association with Alzheimer’s disease
To further define candesartan molecular and functional
pathways, we ran our glutamate versus glutamate + cande-
sartan CGC microarray data through GSEA [52]. As pre-
dicted, inflammatory pathways associated with IFN-γ,
TNFα, IL-1β and LPS, and several mechanisms of apoptosis

Fig. 2 Candesartan prevents alterations in glutamate-induced gene expression in rat CGCs. Alterations in gene expression revealed by microarray
analysis were confirmed by qPCR. Results are means ± SEM of at least three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, glutamate
vs. control; #p < 0.05, ##p < 0.01, candesartan + glutamate vs glutamate. GAPDH glyceraldehyde-3-phosphate dehydrogenase. a: Interleukin 1 alpha.
b: Heme oxygenase 1. c: Endothelin 1. d: Intercellular adhesion molecule 1.e: Apolipoprotein E. f: ADAM metallopeptidase domain 17
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were the most statistically relevant pathways (Fig. 3;
Additional file 8: Table S5 and Additional file 9: Table S9).
Genes upregulated by excitotoxic concentrations of glutam-
ate are associated with genes upregulated by the IFN-γ, IL-
6, IL-1β, TNFα and LPS-induced inflammation, involving
chemokine signaling, focal adhesion, actin cytoskeleton,
apoptosis by nutrient deprivation and extracellular matrix
receptor interaction pathways. The glutamate-induced
upregulation of these genes was normalized by cande-
sartan treatment. Conversely, candesartan prevented
the glutamate-induced downregulation of genes associated
with neuronal function (cholinergic, dopamine and gamma-
aminobutyric acid A receptors) (Additional file 8: Table S5).
At the disease level, the GSEA shows a striking associ-

ation with Alzheimer’s and Parkinson’s disease (Additional
file 8: Table S5 and Additional file 9: Table S9). Genes that
are upregulated in a published dataset (GSE36980 [61];
Fig. 1) of hippocampus samples obtained from Alzheimer’s
disease patients strongly correlate with genes upregulated
in neurons exposed to glutamate (p value = 0.0, FDR = 0.09,
enrichment score = 0.75) (Fig. 4; Additional file 8: Table
S5 and Additional file 9: Table S9). Conversely, genes that
are downregulated in this published dataset strongly correl-
ate with genes downregulated in neurons exposed to glu-
tamate (Figs. 1 and 4; Additional file 8: Table S5 and
Additional file 9: Table S9).

Correlation of changes in gene expression in rat CGCs with
those reported in a mouse model of Alzheimer’s disease
Association of candesartan treatment in CGCs and captopril
treatment in APPswe mice
Gene expression affected by glutamate and glutamate–can-
desartan in our model shows perfect correlation with the
alterations in gene expression observed in the APPswe

mouse model of Alzheimer’s disease treated with the ACEI
captopril (GSEA 46871) [64]. Genes that were upregulated
by glutamate in our study (effects prevented by candesar-
tan) have been reported to be downregulated by captopril
(p value = 0.0, FDR = 0.0, enrichment score = 0.60) and, in-
versely, genes downregulated by glutamate (this effect being
prevented by candesartan in our model) were upregulated
by captopril treatment in the APPswe mice (p value = 0.0,
FDR = 0.0, enrichment score = −0.30) (Figs. 1 and 5).

KEGG analysis
Association of differentially expressed genes in rat CGCs
and Alzheimer’s disease hippocampus
We used the KEGG [53] Alzheimer’s disease pathways
gene set to compare to genes differentially expressed in
postmortem hippocampus from Alzheimer’s disease pa-
tients (GSEA 48350) [60] (Fig. 1) and their counterpart in
our rat CGC study (Fig. 1). As seen in Table 3, within the
KEGG Alzheimer’s disease 56 genes network, 23 of them
are down regulated in hippocampus from Alzheimer’s dis-
ease patients (changes observed in GSE48350) and eight of
them are also downregulated by glutamate in our rat neur-
onal study. Changes in seven of these eight genes are pre-
vented by treatment with candesartan in our rat neuronal
study. Moreover, of the 14 genes upregulated in hippocam-
pus from Alzheimer’s patients, 12 were upregulated also by
glutamate in our study, and in turn all these changes were
prevented by candesartan treatment (Fig. 1 and Table 3).

Analysis of gene expression in specific cell populations
Differential alterations in gene expression preferentially
expressed in neurons and cerebrovascular cells
We sought to define the predominant cellular origin of
genes with altered expression in postmortem hippocampus

Table 1 Representative IPA categories associated with glutamate andcandesartan-glutamate comparison

Categories Diseases or functions annotation p value No. of molecules

Cellular movement Cell movement 8.33E-52 170

Cell-to-cell signaling and interaction, cellular movement Recruitment of cells 1.61E-49 72

Hematological system development and function, tissue morphology Quantity of blood cells 4.80E-46 114

Inflammatory response Inflammation of organ 1.61E-45 119

Organismal injury and abnormalities Lesion formation 1.67E-44 73

Cardiovascular disease Vascular disease 1.33E-42 105

Immunological disease Systemic autoimmune syndrome 7.31E-41 108

Endocrine system disorders, gastrointestinal disease, metabolic disease Diabetes mellitus 1.60E-36 102

Cell death and survival Cell death 2.16E-35 191

Metabolic disease Glucose metabolism disorder 1.13E-33 109

Inflammatory disease Chronic inflammatory disorder 1.54E-33 94

Cardiovascular system development and function, organismal development Development of blood vessel 1.07E-27 83

Free radical scavenging Synthesis of reactive oxygen species 5.38E-27 59

The number of molecules represents the number of genes differentially expressed between glutamate and candesartan + glutamate that are part of the pathway
category. The whole ingenuity pathway analysis (IPA) output is provided as Additional file 3: Table S3
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from Alzheimer disease patients and their preferential ex-
pression in neurons or endothelial cells and the possible
differential regulation of these genes by glutamate and glu-
tamate–candesartan in our neuronal study. To this end we
compared gene expression of two datasets generated from
hippocampus of Alzheimer’s disease patients and normal
controls (GSE48350 [60] and GSE36980 [61]) with two
datasets generated from neurons and cerebrovascular endo-
thelial cells from normal human dorsolateral prefrontal cor-
tex, specifically isolated by laser capture microdissection
(GSE12293 and GSE12679) [62, 63]. We then compared
the genes predominantly expressed in neurons and

cerebrovascular cells in the Alzheimer’s samples with genes
regulated in our neuronal cultures by glutamate and by glu-
tamate–candesartan.
Using a 1.2-fold change cutoff and a p value below

0.05, we found 580 genes commonly up regulated in
both Alzheimer patient datasets (Fig. 6). Of these 580
upregulated genes, 166 and 124 were predominantly
expressed in cerebrovascular endothelial cells compared
to 19 and 6 for neurons within GSE12293 [63] and
GSE12679 [62] datasets, respectively. On the other
hand, there are 1430 genes commonly downregulated in
Alzheimer’s disease tissues. Of these, 381 and 329 were

Table 2 Representative top 30 upstream regulators of genes differentially expressed between glutamate and glutamate +
candesartan

Upstream regulator Molecule type p value of overlap

Tumor necrosis factor Cytokine 1.06E-74

Lipopolysaccharide Chemical drug 3.26E-63

Interleukin-1beta Cytokine 1.02E-61

Interferon gamma Cytokine 4.75E-61

Transforming growth factor beta-1 Growth factor 1.99E-49

Nuclear factor kappa B (complex) Complex 1.80E-43

Dexamethasone Chemical drug 2.74E-42

Interleukin-6 Cytokine 2.16E-40

Colony Stimulating Factor 2 (CSF2) Cytokine 1.57E-39

Interleukin-10 Cytokine 6.06E-39

Of Kappa Light Polypeptide Gene Cin B Cells (IKBKB) Kinase 7.92E-39

Interleukin-13 Cytokine 1.46E-38

Poly rI:rC-RNA Chemical reagent 4.53E-38

Signal transducer and activator of transcription 3 (STAT3) Transcription regulator 1.80E-37

Amyloid precursor protein Other 2.86E-37

Nuclear Factor Of Kappa Light Polypeptide Gene
Enhancer in B Cell Inhibitor, Alpha (NFKBIA)

Transcription regulator 4.57E-36

Myeloid differentiation primary response gene 88 (MYD88) Other 4.97E-36

Tretinoin Chemical—endogenous mammalian 6.44E-36

E. coli B4 lipopolysaccharide Chemical toxicant 1.36E-35

PD98059 Chemical—kinase inhibitor 1.85E-35

Beta-estradiol Chemical—endogenous mammalian 9.64E-35

Interleukin-4 Cytokine 1.46E-34

Apolipoprotein E Transporter 2.32E-33

Platelet-derived growth factor BB Complex 2.99E-33

Conserved Helix -Loop Helix Ubiquitous Kinase (CHUK) Kinase 6.05E-33

Toll-like receptor 4 Transmembrane receptor 2.55E-32

Angiotensinogen (AGT) Growth factor 3.51E-32

Phorbol myristate acetate Chemical drug 6.73E-32

SB203580 Chemical—kinase inhibitor 1.17E-31

Tumor necrosis factor superfamily member 11 (TNFSF11) Cytokine 1.79E-31

A full and detailed list is provided as Additional file 7: Table S4
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more expressed in neurons and only 38 and 27 were
expressed in cerebrovascular endothelial cells within
GSE12293 and GSE12679 datasets, respectively (Fig. 6).
We found striking correlations when we considered

the preferential cellular expression, as revealed by the
laser capture detection studies, with the gene expression

in hippocampus from Alzheimer’s disease patients and
with the results of our neuronal study. Most of the genes
upregulated in Alzheimer’s disease hippocampus and by
glutamate in our neuronal study that were normalized
when candesartan was added to glutamate were of endo-
thelial origin (70 versus 4 and 48 versus 2 in GSE12293

Fig. 3 GSEA of ranked list of all genes comparing glutamate versus glutamate + candesartan. The figure includes a list of genes upregulated (left) or
downregulated (right) in several gene sets associated with models of inflammation by interferon gamma (IFNG; p value = 0, FDR = 0,
enrichment score = 0.78), lipopolysaccharide (LPS; p value = 0, FDR = 0, enrichment score = 0.84) and tumor necrosis factor (TNF; p value = 0,
FDR = 0, enrichment score = 0.83). Genes upregulated by IFNG, LPS and TNF are also upregulated by glutamate with the highest
enrichment score, p value and FDR (see Additional file 8: Table S5 and Additional file 9: Table S9 for more detail)

Fig. 4 GSEA comparing the glutamate versus glutamate + candesartan genes with those from Alzheimer’s disease hippocampus. The figure is a
ranked list of all genes comparing the glutamate versus glutamate + candesartan groups in comparison with a list of genes upregulated (left) or
downregulated (right) in Alzheimer’s disease (AD) hippocampus depicted from the GEO dataset GSE36980. Genes upregulated in Alzheimer’s
disease patients are upregulated by glutamate (p value = 0, FDR = 0, enrichment score = 0.75) and genes downregulated in Alzheimer’s disease
patients are also downregulated by glutamate (p value = 0, FDR = 0.31, enrichment score = −0.32)
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[63] and GSE12679 [62], respectively). Conversely, most
of the genes downregulated in hippocampus from
Alzheimer’s disease patients and by glutamate in our rat
CGC study, changes normalized when candesartan was
added to glutamate, were of neuronal origin (122 versus
18 and 74 versus 4 in GSE12293 [63] and GSE12679 [62],
respectively) (Fig. 6).
For the genes upregulated in Alzheimer’s disease and

by glutamate in our study, downregulated by candesartan,
and, predominately expressed in endothelial cells, the
pathway analysis revealed cellular movement/migration,
extracellular matrix proteins, apoptosis, angiogenesis and
vasculogenesis, and their most significant upstream regu-
lators are beta-estradiol and TGFβ1 (Additional file 10:
Figure S4, Additional file 11: Table S6 and Additional file
12: Table S7). On the other hand, genes upregulated in
Alzheimer’s disease and downregulated by candesartan
that are predominately expressed in neurons did not show
any pathway significance, most probably due to the low
number of genes.
Conversely, genes downregulated in Alzheimer’s

disease and by glutamate in our neuronal study,
which are upregulated by candesartan in our cultures,
were predominately expressed in neurons. Pathway ana-
lysis revealed neurological diseases, neurodegeneration,

neuronal apoptosis and disorders of basal ganglia
(Additional file 13: Figure S5), and the most signifi-
cant upstream regulator was the nuclear factor, eryth-
roid 2-like 2 (NFE2L2, Nrf2) gene (Additional file 14:
Table S8).

Discussion
The overall goal of the study was to determine whether
glutamate-induced alterations in gene expression in our
primary neuronal culture were normalized by candesar-
tan, and whether these changes correlated with alter-
ations in gene expression in postmortem hippocampus
of Alzheimer’s disease patients. We hypothesized that, if
present, significant correlations would provide major
preclinical evidence of beneficial therapeutic effects of
candesartan.
There were several major findings in our study. Based

on our results, we propose that candesartan may be neu-
roprotective on neuronal glutamate-induced injury.
There were multiple functionally annotated genes
strongly associated with Alzheimer’s disease and impres-
sively correlated with alterations in gene expression in
autopsy samples from Alzheimer’s disease hippocampus.
We found novel functions differentially associated with

Fig. 5 GSEA comparing the glutamate versus glutamate + candesartan genes with those from the APPswe mouse. The figure is a ranked list of all
genes comparing the glutamate versus glutamate + candesartan groups in comparison with a list of genes upregulated (left) or downregulated
(right) in the hippocampus of the APPswe mouse model of Alzheimer’s disease depicted from the GEO dataset GSE46871. Genes upregulated by
glutamate in our neuronal culture are downregulated by treatment with an angiotensin converting enzyme (ACE) inhibitor in the APPswe mouse
model (p value = 0, FDR = 0.0, enrichment score = −0.60). Inversely, genes downregulated by glutamate in our neuronal culture are upregulated
by treatment with an ACE inhibitor in the APPswe mouse model (p value = 0, FDR = 0, enrichment score = −0.30)
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Table 3 Look-up of Alzheimer’s disease associated genes from KEGG pathways and their expression in hippocampus from
Alzheimer’s patients (GSE48350 dataset) and rat CGC glutamate + candesartan treatment

KEGG gene
symbol

Gene
symbol

GSE48350
hippocampus ctrl
vs AD p value

GSE48350
hippocampus ctrl
vs AD fold change

CGC
glutamate vs
ctrl p value

CGC glutamate
vs ctrl fold
change

CGC glutamate vs
glutamate +
candesartan p value

CGC glutamate vs
glutamate + candesartan
fold change

NMDAR GRIN1 0.000 –2.184 0.037 –1.191 0.733 1.026

Cn PPP3CB 0.000 –2.111 0.002 –1.245 0.001 1.277

CDK5 cdk5 0.000 –2.039 0.357 –1.041 0.436 1.035

p35 Cdk5r1 0.000 –2.031 0.774 1.040 0.391 –1.126

Cn ppp3ca 0.000 –1.749 0.000 –1.221 0.003 1.158

SERCA ATP2A2 0.000 –1.691 0.002 –1.176 0.001 1.183

PLC PLCB1 0.000 –1.653 0.038 –1.060 0.000 1.147

ERK2 MAPK1 0.000 –1.578 0.012 –1.074 0.026 1.063

CxIII uqcrfs1 0.000 –1.535 0.254 1.099 0.002 1.379

NOS NOS1 0.000 –1.529 0.403 –1.060 0.38 1.063

SNCA Snca 0.000 –1.472 0.755 1.044 0.242 1.179

GSK3B GSK3B 0.000 –1.464 0.000 –1.236 0.000 1.167

CxV Atp5a1 0.000 –1.407 0.011 1.143 0.023 1.123

TAU mapt 0.000 –1.358 0.544 –1.051 0.899 1.01

CxI Ndufv1 0.000 –1.348 0.090 1.128 0.002 1.285

VDCC CACNA1C 0.007 –1.25 0.781 1.015 0.004 –1.209

CytC COX4I1 0.000 –1.244 0.002 1.194 0.000 –1.237

Gq GNAQ 0.001 –1.221 0.140 –1.054 0.029 –1.085

Fe65 APBB1 0.002 –1.195 0.376 1.127 0.765 –1.04

BID BID 0.04 –1.192 0.008 1.116 0.561 –1.021

CxII SDHA 0.002 –1.18 0.392 1.071 0.005 1.301

APP–BP1 Nae1 0.024 –1.145 0.021 –1.267 0.006 1.344

BAD Bad 0.05 –1.143 0.396 –1.068 0.151 1.121

BACE BACE1 0.224 –1.113 0.005 –1.302 0.003 1.326

PERK eif2ak3 0.166 –1.108 0.001 –1.198 0.041 1.096

IRE1A ERN1 0.229 –1.068 0.019 1.093 0.000 –1.284

CASP9 Casp9 0.245 –1.058 0.495 1.081 0.228 –1.15

PEN2 psenen 0.413 –1.052 0.006 –1.135 0.086 1.073

NEP MME 0.497 –1.038 0.036 1.371 0.012 –1.485

IDE IDE 0.898 1.006 0.074 –1.112 0.004 1.211

FADD Fadd 0.716 1.015 0.067 1.146 0.001 –1.351

NCSTN NCSTN 0.266 1.042 0.704 1.031 0.318 1.085

APH–1 aph1a 0.239 1.058 0.360 1.052 0.36 1.052

APH–1 APH1B 0.204 1.063 0.032 –1.121 0.336 –1.048

CASP12 CASP12 0.067 1.072 0.000 1.988 0.000 –1.742

ABAD HSD17B10 0.181 1.081 0.000 1.351 0.049 –1.07

PLC plcb3 0.018 1.085 0.000 1.652 0.000 –1.455

CASP3 Casp3 0.032 1.091 0.010 –1.234 0.02 1.204

LRP lrp1 0.107 1.1 0.017 1.293 0.02 –1.283

APAF1 Apaf1 0.018 1.108 0.641 –1.034 0.458 1.055

PSEN Psen1 0.011 1.117 0.096 –1.079 0.935 1.004

ATF6 ATF6B 0.07 1.14 0.001 1.248 0.01 –1.174
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genes predominantly expressed in neurons and in cere-
brovascular endothelial cells.
Candesartan profoundly influenced glutamate-induced

neuronal injury, since candesartan prevented glutamate-
induced alterations in gene expression in about 800 of
the over 1100 transcripts upregulated or downregulated
by glutamate (Additional file 2: Table S2). Candesartan
effects were unrelated to the proposed stimulation of
angiotensin II (AT2) receptors by AT1R blockade, since
AT2 receptors are not expressed in CGCs [25].
Using qPCR, we confirmed glutamate-induced upregu-

lation, normalized by candesartan, of a number of these
genes, including several factors with fundamental roles
in APP metabolism and Alzheimer’s disease, such as
ADAM metallopeptidase domain 17 [65–67] and APOE
[68–72] (Fig. 2; Additional file 3: Figure S1, Additional
file 4: Figure S2 and Additional file 5: Figure S3).
Inflammation plays a significant role in the pathogen-

esis of Alzheimer’s disease [6, 7, 73, 74]. Glutamate
excitotoxicity upregulated many pro-inflammatory
genes associated with Alzheimer’s disease [25, 75–89]
and were normalized by candesartan (Fig. 2; Additional
file 3: Figure S1, Additional file 4: Figure S4 and
Additional file 5: Figure S3). Glutamate also upregu-
lated the expression of some genes involved in anti-
inflammatory processes, and candesartan prevented
these changes (Fig. 2; Additional file 3: Figure S1,
Additional file 4: Figure S2 and Additional file 5: Figure
S3) [31, 90–93]. We hypothesize that while glutamate
increases inflammation, at the same time it sets in mo-
tion a powerful anti-inflammatory response that is not
necessary when the inflammatory response is prevented
by candesartan.

Under the conditions of our experiments, we found
that, when added after glutamate injury, candesartan
does not protect neurons from cell injury [25]. We inter-
preted that candesartan administration, although it may
not reverse glutamate-induced cell injury which has
already occurred, will prevent further glutamate-induced
injury. Since glutamate excitotoxicity is a long-term
process during progression of Alzheimer’s disease [3, 8–
10, 12], we believe our results are translationally rele-
vant. The IPA analysis of the list of functionally
annotated genes with their expression altered by glutam-
ate and normalized when compared with the glutamate
+ candesartan group (over 400 genes) supported the pro-
posed key role of inflammation in the pathogenesis of
Alzheimer’s disease, [6, 7], agreed with the demonstrated
major anti-inflammatory effect of candesartan [22, 27],
and revealed many additional and novel diseases and
functions, such as cell death and lesion formation,
diabetes and glucose metabolism and vascular disease
main risk factors for Alzheimer’s disease [4, 5]
(Table 1; Additional file 6: Table S3).
Furthermore, IPA analysis of upstream regulators of

these genes included APP, APOE and retinoic acid (Tre-
tionin), which play major roles in Alzheimer’s disease
[65–72] (Table 2; Additional file 7: Table S4) and re-
vealed five kinase inhibitors, PD98059, SB203580,
U0126, SP600125 and LY294002 (Table 2), that are part
of the mitogen-activated protein kinase kinase/c-Jun N-
terminal kinase/extracellular regulated kinase/p38-mito-
gen activated kinase/TGFβ-1 (MEK/JNK/ERK1/2/p38/
TGFβ) pathways, reduce inflammation and toxicity, and
have been associated with Alzheimer’s disease [85, 94–98].
We found that the influence of PD98059 and SB203580

Table 3 Look-up of Alzheimer’s disease associated genes from KEGG pathways and their expression in hippocampus from
Alzheimer’s patients (GSE48350 dataset) and rat CGC glutamate + candesartan treatment (Continued)

CALPAIN CAPN1 0.003 1.154 0.000 1.490 0.000 –1.298

ADAM17 Adam17 0.000 1.165 0.000 2.442 0.000 –2.505

APOE APOE 0.033 1.18 0.000 2.023 0.005 –1.325

RYR RYR3 0.001 1.184 0.000 1.480 0.000 –1.707

CASP8 CASP8 0.008 1.242 0.002 1.180 0.01 –1.14

IP3R ITPR1 0.024 1.271 0.002 1.245 0.031 –1.146

CASP7 casp7 0.001 1.28 0.000 1.139 0.000 –1.149

CaM CALM2 0.001 1.305 0.004 1.219 0.006 –1.202

CaM calml4 0.000 1.446 0.000 1.425 0.015 –1.226

LPL Lpl 0.02 1.481 0.000 4.445 0.000 –2.672

FasTNFR1 TNFRSF1A 0.001 1.551 0.000 1.953 0.000 –1.615

APP App NA NA 0.838 1.008 0.118 –1.07

GAPD Gapdh NA NA 0.338 1.040 0.843 1.008

ERK1 Mapk3 NA NA 0.040 1.084 0.006 –1.124

AD Alzheimer’s disease, CGC cerebellar granule cell, ctrl control, KEGG Kyoto encyclopedia of genes and genomes, NA not available
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over inflammatory genes was similar to that revealed by
candesartan in our study [94, 95]. In support of the
present findings, we have earlier reported that AT1R
blockade prevents glutamate-induced ERK1/2, JNK and c-
Jun activation [25, 29], demonstrating that the effect of
candesartan is upstream of ERK1/2-p38MAPK.
GSEA supported the findings revealed by IPA. Inflam-

matory, chemokine signaling, focal adhesion, actin cyto-
skeleton, apoptosis and extracellular matrix receptor
interaction pathways were most relevant, and the ex-
pression of the associated genes, upregulated by glutam-
ate, was normalized by candesartan (Fig. 3; Additional
file 8: Table S5). Conversely, candesartan prevented the
glutamate-induced downregulation of genes associated
with neuronal function (Additional file 8: Table S5).
Many genes (19 out of 53) in the KEGG Alzheimer’s

disease reference pathway were altered in postmortem
Alzheimer’s disease patients and by glutamate and

normalized by candesartan. The pathways included
mitochondrial dysfunction, APP processing, including
β-secretase (BACE1), apoptosis, DNA damage, lipid
peroxidase, Ca2+ signaling pathway and Ca2+ overload
(Table 3).
Most remarkably, GSEA showed a striking association

between changes observed in our neuronal culture and
those observed in published datasets of hippocampal
samples obtained from Alzheimer’s disease patients.
Genes up- or downregulated in Alzheimer’s disease
hippocampus [59–61] strongly correlated with genes up-
or downregulated in neurons exposed to glutamate and
prevented by candesartan (Fig. 4 and Table 3; Additional
file 8: Table S5 and Additional file 9: Table S9).
Our results indicate that although the primary neurons

studied here, CGCs, are not the primary targets for
Alzheimer’s disease [44–46], upon glutamate injury they
exhibited multiple mechanisms closely associated with

Fig. 6 Cellular origin of gene expression in Alzheimer’s disease hippocampus. There are 580 genes upregulated (red) and 1430 downregulated
(blue) differentially expressed transcripts in hippocampus from Alzheimer’s disease patients which are common to both GSE48350 and GSE1297
datasets. On the top side (blue block), the expression of these genes is then looked up in two datasets (GSE12293 and 12679) of normal laser
capture microdissected neurons and cerebrovascular endothelial cells. On the bottom side (green block), the expression of these genes is
compared to those differentially expressed in rat cerebellar granule cells (CGCs) treated with glutamate alone versus glutamate + candesartan and
then looked-up in the two datasets (GSE12293 and 12679) of normal laser capture microdissected neurons and cerebrovascular endothelial cells
(orange block). Note that the majority of the commonly expressed genes downregulated in Alzheimer’s disease hippocampus and upregulated by
candesartan have a predominant expression in neurons. Conversely, the majority of the commonly expressed genes upregulated in Alzheimer’s
disease hippocampus and downregulated by candesartan have a predominant endothelial expression

Elkahloun et al. Alzheimer's Research & Therapy  (2016) 8:5 Page 13 of 18



those revealed in human hippocampal autopsy samples.
Some of the glutamate-induced injury mechanisms ob-
served in CGCs have been replicated in primary cortical
neuronal cultures [25]. While analysis of postmortem
samples has limitations because of the premortem ago-
nal process and postmortem changes in glutamate me-
tabolism, there was a striking correlation in alterations
in gene expression between the two independent pub-
lished datasets evaluated in our study. Furthermore, the
normal controls used for the Alzheimer’s disease
postmortem samples were also postmortem samples
normalized for age and gender. Moreover, there were
impressive correlations between our neuronal culture
findings and those revealed in a mouse model of Alzhei-
mer’s disease (Fig. 5), supporting the validity of our com-
parative analysis.
The predominant cellular expression of the genes

altered in Alzheimer’s disease hippocampus and in
our neuronal culture revealed two different patho-
logical processes (Fig. 6). Multiple genes, upregulated
in Alzheimer’s disease hippocampus and by glutamate
in our neuronal culture, and normalized by candesar-
tan, were predominantly expressed in human cerebro-
vascular endothelial cells when compared to neurons.
IPA analysis of these genes revealed cellular move-
ment/migration, extracellular matrix proteins, apop-
tosis, angiogenesis and vasculogenesis as principal
functions controlled by these genes, and their most
significant upstream regulators were TGFβ1 and beta-
estradiol. TGFβ1 has been strongly associated with
microvascular alterations in Alzheimer’s disease [99].
There is substantial evidence for a role of beta-estradiol,
and in particular hippocampus-synthesized 17β-estradiol
in synaptic plasticity and cognition [100, 101] and for neu-
roprotective effects of nonfeminizing estrogens [102]. The
glutamate-induced upregulation of genes selectively over-
expressed in cerebrovascular endothelial genes strongly
supports the proposed role of alterations in the mi-
crovasculature in Alzheimer’s disease, not only as a
risk factor but also playing a major role in its patho-
genesis [4, 103–108].
Conversely, pathway analysis of genes predominantly

expressed in human neurons when compared to human
cerebrovascular endothelial cells and downregulated in
Alzheimer’s disease hippocampus and by glutamate in
our neuronal cultures, normalized by candesartan
(Fig. 6), revealed neurological diseases, neurodegenera-
tion, neuronal apoptosis and disorders of basal ganglia
as principal related diseases. For these genes, the most
significant upstream regulator was the NFE2L2 or Nrf2
gene that has been associated with the early stages of
Alzheimer’s disease [109]. These results are concordant
with the well-known loss of neural function in Alzheimer’s
disease.

It is tempting to speculate that pathological processes
in Alzheimer’s disease may be based on two sequential
and/or concomitant processes: enhanced inflammation
in microvascular endothelial cells and neuronal injury.
Although candesartan is a drug that was designed to
work on the hypertensive endothelial vascular system,
our data indicates that candesartan may directly protect
neurons from injury, a proposal supported by a previous
observation [27].
Our report adds novel findings to the substantial body

of evidence strongly suggesting that blockade of AT1R is
a new avenue for the treatment of Alzheimer’s disease
[22, 110]. Preclinical experiments indicate that excessive
brain angiotensin II activity through overactivation of
brain AT1R leads to cognitive loss associated with hip-
pocampal long-term potentiation blockade, inhibition of
the cholinergic system and stimulation of Aβ production
and tau phosphorylation [22, 26, 111]. Of note, AT1R
gene expression is upregulated by glutamate, and this
change is normalized by candesartan (Additional file 2:
Table S2).
Conversely, in preclinical models, AT1R blockade

ameliorates hypertension, traumatic brain injury, brain
ischemia and diabetes, the main modifying risk factors
for Alzheimer’s disease, effects that include reduction of
cognitive loss [22]. In addition, AT1R blockade amelio-
rates cognitive loss in most of the rodent models of
Alzheimer’s disease by reducing brain inflammation, ex-
cessive oxidative stress and in some cases decreasing Aβ
production, oligomerization, tau phosphorylation and
reducing blood flow [22, 26, 31, 110–114].
Supporting the role of enhanced AT1R activity in

Alzheimer’s disease, there was a correlation between
alterations in gene expression in the APPswe mouse
model of Alzheimer’s disease treated with captopril, an
ACEI reducing angiotensin II formation, and those
found in our study [64] (Fig. 5). ARBs reduce inflam-
mation in human circulating monocytes exposed to
LPS [28, 115], and prevent glutamate-induced neuronal
apoptosis [25]. Clinical studies demonstrate that AT1R
blockers reduce major risk factors for Alzheimer’s disease,
[22, 110, 116]; observational and cohort studies reported
that AT1R blockade delayed development of Alzheimer’s
disease and protect cognition [22, 117]. There are increas-
ing calls to conduct randomized controlled trials to effect-
ively test the hypothesis that AT1R blockade may be a
novel therapeutic approach for the treatment of Alzheimer’s
disease [22, 117–119], and in particular including patients
at the very early stages of the disease [120].
The mechanism of candesartan neuroprotection from

glutamate excitotoxicity has been associated with block-
ade of the glutamate NMDA receptor [25]. In addition,
candesartan neuroprotection may involve an increase in
glutamate uptake into the cell [121]. Furthermore, AT1R
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blockade may not be the only mechanism responsible
for the neuroprotective effect of candesartan. Some
ARBs, in particular telmisartan and candesartan, are
powerful activators of a major neuroprotective mechan-
ism, the peroxisome proliferator-activated receptor
gamma (PPARγ) [22, 25, 28, 33], and PPARγ activation
plays a significant role in neuroprotection from glutam-
ate excitotoxicity in cultured CGCs [25].
Our gene analysis revealed major associations of the

gene alterations reported here with Parkinson’s disease,
neurological diseases and neurodegeneration. These ob-
servations support the hypothesis that ARB neuroprotec-
tion may not only be effective in Alzheimer’s disease, but
also in other neurodegenerative diseases [22, 23, 110].

Conclusions
Our data may be interpreted as evidence of direct neu-
roprotective effects of candesartan in neurons, and of
common disease processes that may underlie the in vitro
acute gene alterations reported here and long-term
mechanisms of cell injury in the late stages of Alzheimer’s
disease. We provide novel evidence for candesartan neu-
roprotection through early molecular mechanisms of in-
jury in this illness, such as glutamate-induced neuronal
injury. Candesartan not only prevents inflammation but
also novel pathogenic mechanisms such as risk factors for
the disease and alterations in APP processing and mito-
chondrial function. The differential glutamate-induced
alterations in genes preferentially expressed in cere-
brovascular endothelial cells or neurons indicate the
possibility of two different and interrelated pathogenic
mechanisms, revealing multiple targets for candesar-
tan neuroprotection. Our report supports the proposal to
use ARBs as drugs of choice for the treatment of early
cognitive loss.
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pathways are in orange (activated) or blue (inhibited) in the inside circle.
Orange dotted lines are for positive effect and blue dotted lines are for
negative effect of the gene on the pathway. (PDF 892 kb)

Additional file 14: Table S8. IPA of upstream regulators of genes
preferentially expressed in neurons. Table S8 notes the upstream
regulators of genes that are downregulated in Alzheimer’s disease and
upregulated by candesartan in our neuronal cultures, and are
preferentially expressed in human neurons. (XLS 40 kb)

Abbreviations
Aβ: Amyloid beta; ACEI: Angiotensin converting enzyme inhibitor;
ANOVA: Analysis of variance; APOE: Apolipoprotein E; APP: Amyloid precursor
protein; ARB: Angiotensin receptor blocker; AT1R: Angiotensin 1 receptor;
AT2: Angiotensin 2 receptor; cDNA: Complementary DNA; CGC: Cerebellar
granule cell; ERK: Extracellular regulated kinase; GEO: Gene Expression
Omnibus; GSEA: Gene set enrichment analysis; IFN: Interferon; IL: Interleukin;
IPA: Ingenuity pathway analysis; JNK: c-Jun N-terminal kinase; KEGG: Kyoto
encyclopedia of genes and genomes; LPS: Lipopolysaccharide;
MEK: Mitogen-activated protein kinase kinase; MSigDB: Broad Molecular

Elkahloun et al. Alzheimer's Research & Therapy  (2016) 8:5 Page 15 of 18

dx.doi.org/10.1186/s13195-015-0167-5
dx.doi.org/10.1186/s13195-015-0167-5
dx.doi.org/10.1186/s13195-015-0167-5
dx.doi.org/10.1186/s13195-015-0167-5
dx.doi.org/10.1186/s13195-015-0167-5
dx.doi.org/10.1186/s13195-015-0167-5
dx.doi.org/10.1186/s13195-015-0167-5
dx.doi.org/10.1186/s13195-015-0167-5
dx.doi.org/10.1186/s13195-015-0167-5
dx.doi.org/10.1186/s13195-015-0167-5
dx.doi.org/10.1186/s13195-015-0167-5
dx.doi.org/10.1186/s13195-015-0167-5
dx.doi.org/10.1186/s13195-015-0167-5
dx.doi.org/10.1186/s13195-015-0167-5


Signatures Database v5.0; PPARγ: peroxisome proliferator-activated receptor
gamma; qPCR: Quantitative real-time polymerase chain reaction;
RMA: Robust multichip analysis; TGF: Transforming growth factor; TNF: Tumor
necrosis factor.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AGE participated in the design of the study, performed all gene and
statistical analysis, analyzed data and wrote the draft and final manuscript.
RH performed all cell culture and qPCR assays and helped to draft the final
manuscript. JMS participated in the design of the study, supervised cell
culture and qPCR assays, and wrote the draft and final manuscript. All
authors read and approved the final manuscript.

Acknowledgments
We would like to thank Weiwei Wu for her technical assistance with
microarray processing.
AGE was supported by the National Human Genome Research Institute,
National Institutes of Health, Bethesda, MD 20892. RH and JMS were
supported by the Division of Intramural Research Programs, National Institute
of Mental Health, National Institutes of Health, Department of Health and
Human Services, USA (MH 002762–16).

Author details
1Comparative genomics and Cancer Genetics Branch, National Human
Genome Research Institute, National Institutes of Health, Bethesda, MD
20892, USA. 2Section on Pharmacology, National Institute of Mental Health,
National Institutes of Health, Bethesda, MD 20892, USA. 3Department of
Pharmacology and Physiology, Georgetown University Medical Center, SE402
Med/Dent, 3900 Reservoir Road, Washington, DC 20057, USA.

Received: 26 September 2015 Accepted: 8 December 2015

References
1. Alzheimer’s Association. 2013 Alzheimer’s disease facts and figures.

Alzheimers Dement. 2013;9:208–45.
2. Mullane K, Williams M. Alzheimer’s therapeutics: continued clinical failures

question the validity of the amyloid hypothesis—but what lies beyond?
Biochem Pharm. 2013;85:289–305.

3. Pérez-Palma E, Bustos BI, Villamán CF, Alarcón MA, Avila ME, Ugarte GD,
et al., Alzheimer’s Disease Neuroimaging Initiative; NIA- LOAD/NCRAD
Family Study Group. Collaborators (448), Overrepresentation of glutamate
signaling in Alzheimer’s disease: network-based pathway enrichment using
meta-analysis of genome-wide association studies. PLoS One. 2014;9:e95413.
doi:10.1371/journal.pone.0095413. eCollection 2014.

4. Kelleher RJ, Soiza RL. Evidence of endothelial dysfunction in the
development of Alzheimer’s disease: is Alzheimer’s a vascular disorder? Am
J Cardiovasc Dis. 2013;3:197–226.

5. Rincon F, Wright CB. Current pathophysiological concepts in cerebral small
vessel disease. Front Aging Neurosci. 2014;6:24.

6. Takeda S, Sato N, Morishita R. Systemic inflammation, blood–brain barrier
vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease:
relevance to pathogenesis and therapy. Front Aging Neurosci. 2014;6:171.

7. Latta CH, Brothers HM, Wilcock DM. Neuroinflammation in Alzheimer’s
disease; a source of heterogeneity and target for personalized therapy.
Neuroscience 2014 (14)00820-3. doi:10.1016/j.neuroscience.2014.09.061.

8. Esposito Z, Belli L, Toniolo S, Sancesario G, Bianconi C, Martorana A. Amyloid
β, glutamate, excitotoxicity in Alzheimer’s disease: are we on the right track?
CNS Neurosci Ther. 2013;19:549–55.

9. Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S, et al.
Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor
activation, and synaptic loss. Proc Natl Acad Sci U S A. 2013;110:E2518–27.

10. Danysz W, Parsons CG. Alzheimer’s disease, β-amyloid, glutamate, NMDA
receptors and memantine—searching for the connections. Br J Pharmacol.
2012;167:324–52.

11. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative
disorders. Science. 1993;262:689–95.

12. Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration.
Pflugers Arch. 2010;460:525–42.

13. Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, et al.
Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol
Rev. 1993;45:205–51.

14. Saavedra JM. Brain and pituitary angiotensin. Endocr Rev. 1992;13:329–80.
15. Chrysant SG, Chrysant GS, Chrysant C, Shiraz M. The treatment of

cardiovascular disease continuum: focus on prevention and RAS blockade.
Curr Clin Pharmacol. 2010;5:89–95.

16. Konstam MA, Neaton JD, Dickstein K, Drexler H, Komajda M, Martinez FA,
et al. Effects of high-dose versus low-dose losartan on clinical outcomes in
patients with heart failure (HEAAL study): a randomized, double-blind trial.
Lancet. 2009;374:1840–8.

17. Savoia C, Schiffrin EL. Vascular inflammation in hypertension and diabetes:
molecular mechanisms and therapeutic interventions. Clin Sci.
2007;112:375–84.

18. Michel MC, Foster C, Brunner HR, Liu L. A systematic comparison of the
properties of clinically used angiotensin II type 1 receptor antagonists.
Pharmacol Rev. 2013;65:809–48.

19. Fleegal-DeMotta MA, Doghu S, Banks WA. Angiotensin II modulates BBB
permeability via activation of the AT(1) receptor in brain endothelial cells.
J Cereb Blood Flow Metab. 2009;29:640–7.

20. Nishimura Y, Ito T, Saavedra JM. Angiotensin II AT(1) blockade normalizes
cerebrovascular autoregulation and reduces cerebral ischemia in
spontaneously hypertensive rats. Stroke. 2000;31:2478–86.

21. Phillips MI, de Oliveira EM. Brain renin angiotensin in disease. J Mol Med.
2008;86:715–22.

22. Saavedra JM, Angiotensin II. AT(1) receptor blockers as treatments for
inflammatory brain disorders. Clin Sci (Lond). 2012;123:567–90.

23. Saavedra JM, Sánchez-Lemus E, Benicky J. Blockade of brain angiotensin II
AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia:
therapeutic implications. Psychoneuroendocrinology. 2011;36:1–18.

24. Tsukuda K, Mogi M, Iwanami J, Min LJ, Sakata A, Jing F, et al. Cognitive
deficit in amyloid-beta-injected mice was improved by pretreatment with a
low dose of telmisartan partly because of peroxisome proliferator-activated
receptor-gamma activation. Hypertension. 2009;54:782–7.

25. Wang J, Pang T, Hafko R, Benicky J, Sanchez-Lemus E, Saavedra JM. Telmisartan
ameliorates glutamate-induced neurotoxicity: roles of AT(1) receptor blockade
and PPARγ activation. Neuropharmacology. 2014;79:249–61.

26. Zhu D, Shi J, Zhang Y, Wang B, Liu W, Chen Z, et al. Central angiotensin II
stimulation promotes β amyloid production in Sprague Dawley rats. PLoS
One. 2011;6:e16037. doi:10.1371/journal.pone.0016037.

27. Benicky J, Sánchez-Lemus E, Honda M, Pang T, Orecna M, Wang J, et al.
Angiotensin II AT1 receptor blockade ameliorates brain inflammation.
Neuropsychopharmacology. 2011;36:857–70.

28. Pang T, Benicky J, Wang J, Orecna M, Sanchez-Lemus E, Saavedra JM.
Telmisartan ameliorates lipopolysaccharide-induced innate immune
response through peroxisome proliferator-activated receptor-γ activation in
human monocytes. J Hypertens. 2012;30:87–96.

29. Pang T, Wang J, Benicky J, Sánchez-Lemus E, Saavedra JM. Telmisartan
directly ameliorates the neuronal inflammatory response to IL-1β partly
through the JNK/c-Jun and NADPH oxidase pathways. J Neuroinflammation.
2012;9:102.

30. Ando H, Zhou J, Macova M, Imboden H, Saavedra JM. Angiotensin II AT1
receptor blockade reverses pathological remodeling and inflammation in
brain microvessels of spontaneously hypertensive rats. Stroke.
2004;35:1726–31.

31. Danielyan L, Klein R, Hanson L, Buadze M, Schwab M, Gleiter CH, et al.
Protective effects of intranasal losartan in the APP/PS1 transgenic mouse
model of Alzheimer disease. Rejuvenation Res. 2010;13:195–201.

32. Ito T, Yamakawa H, Bregonzio C, Terrón JA, Falcón-Neri A, Saavedra JM.
Protection against ischemia and improvement of cerebral blood flow in
genetically hypertensive rats by chronic pretreatment with an angiotensin II
AT1 antagonist. Stroke. 2002;33:2297–303.

33. Villapol S, Yaszemski AK, Logan TT, Sánchez-Lemus E, Saavedra JM, Symes
AJ. Candesartan, an angiotensin II AT1-receptor blocker and PPAR-γ agonist,
reduces lesion volume and improves motor and memory function after
traumatic brain injury in mice. Neuropsychopharmacology. 2012;37:2817–29.

34. Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X, et al. Valsartan lowers brain
beta-amyloid protein levels and improves spatial learning in a mouse
model of Alzheimer disease. J Clin Investig. 2007;117:3393–402.

Elkahloun et al. Alzheimer's Research & Therapy  (2016) 8:5 Page 16 of 18

http://dx.doi.org/10.1371/journal.pone.0095413
http://dx.doi.org/10.1016/j.neuroscience.2014.09.061
http://dx.doi.org/10.1371/journal.pone.0016037


35. Zhou J, Ando H, Macova M, Dou J, Saavedra JM. Angiotensin II AT(1)
receptor blockade abolishes brain microvascular inflammation and heat
shock protein responses in hypertensive rats. J Cereb Blood Flow Metab.
2005;25:878–86.

36. Dandona P, Kumar V, Aljada A, Ghanim H, Syed T, Hofmayer D, et al.
Angiotensin II receptor blocker valsartan suppresses reactive oxygen species
generation in leukocytes, nuclear factor-kappa B, in mononuclear cells of
normal subjects: evidence of an anti-inflammatory action. J Clin Endocrinol
Metab. 2003;88:4496–501.

37. Miyoshi M, Miyano K, Moriyama N, Taniguchi M, Watanabe T. Angiotensin
type 1 receptor antagonist inhibits lipopolysaccharide-induced stimulation
of rat microglial cells by suppressing nuclear factor kB and activator protein-
1 activation. Eur J Neurosci. 2008;27:343–51.

38. Fogari R, Mugellini A, Zoppi A, Marasi G, Pasotti C, Poletti L, et al. Effects
of valsartan compared with enalapril on blood pressure and cognitive
function in elderly patients with essential hypertension. Eur J Clin
Pharmacol. 2004;59:863–8.

39. Anderson C. More indirect evidence of potential neuroprotective benefits of
angiotensin receptor blockers. J Hypertens. 2010;28:429.

40. Davies NM, Kehoe PG, Ben-Shlomo Y, Martin RM. Associations of
antihypertensive treatments with Alzheimer’s disease, vascular dementia,
and other dementias. J Alzheimer’s Dis. 2011;26:699–708.

41. Li NC, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE, et al. Use of
angiotensin receptor blockers and risk of dementia in a predominantly male
population: prospective cohort analysis. BMJ. 2010;340:b5465.

42. Contestabile A. Cerebellar granule cells as a model to study mechanisms of
neuronal apoptosis or survival in vivo and in vitro. Cerebellum.
2002;1:41–55.

43. Krämer D, Minichiello L. Cell culture of primary cerebellar granule cells.
Methods Mol Biol. 2010;633:233–9.

44. Morkuniene R, Cizas P, Jankeviciute S, Petrolis R, Arandarcikaite O,
Krisciukaitis A, et al. Small Aβ1-42 oligomer-induced membrane
depolarization of neuronal and microglial cells: role of N-methyl-D-aspartate
receptors. J Neurosci Res. 2015;93:475–86.

45. Bobba A, Amadoro G, Azzariti A, Pizzuto R, Atlante A. Extracellular ADP
prevents neuronal apoptosis via activation of cell antioxidant enzymes and
protection of mitochondrial ANT-1. Biochim Biophys Acta.
2014;1837:1338–49.

46. Vázquez de la Torre A, Junyent F, Folch J, Pelegrí C, Vilaplana J, Auladell C,
et al. PI3K/AKT inhibition induces apoptosis through p38 activation in
neurons. Pharmacol Res. 2013;70:116–25.

47. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J,
et al. PGC-1α-responsive genes involved in oxidative phosphorylation are
coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.

48. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A.
2005;102:15545–50.

49. Gao XM, Margolis RL, Leeds P, Hough C, Post RM, Chuang DM.
Carbamazepine induction of apoptosis in cultured cerebellar neurons:
effects of N-methyl-D-aspartate, aurintricarboxylic acid and cycloheximide.
Brain Res. 1995;703:63–71.

50. Lee HY, Greene LA, Mason CA, Manzini MC. Isolation and culture of post-
natal mouse cerebellar granule neuron progenitor cells and neurons. J Vis
Exp. 2009;23. doi:10.3791/990.

51. Delacrétaz E, Nussberger J, Biollaz J, Waeber B, Brunner HR. Characterization
of the angiotensin II receptor antagonist TCV-116 in healthy volunteers.
Hypertension. 1995;25:14–21.

52. Gene Set enrichment analysis (GSEA). http://www.broadinstitute.org/gsea/.
Accessed May 2015

53. Kyoto Encyclopedia of Genes and Genomes (KEGG). http://www.genome.jp/
kegg/. Accessed May 2015

54. Biocarta. http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways. Accessed on
May 2015.

55. Reactome. http://www.reactome.org/pages/documentation/citing-
reactome-publications/. Accessed on May 2015.

56. Broad Molecular Signatures Database v5.0 (MSigDB). http://www.
broadinstitute.org/gsea/. Accessed on May 2015.

57. Gene Omnibus database. http://www.ncbi.nlm.nih.gov/geo/. Accessed on
May 2015.

58. Ingenuity pathway analysis. http://www.ingenuity.com. Accessed on May 2015.

59. Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW.
Alzheimer’s disease: microarray correlation analyses reveal major
transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A.
2004;101:2173–8.

60. Blair LJ, Nordhues BA, Hill SE, Scaglione KM, O’Leary 3rd JC, Fontaine SN,
et al. Accelerated neurodegeneration through chaperone-mediated
oligomerization of tau. J Clin Invest. 2013;123:4158–69.

61. Hokama M, Oka S, Leon J, Ninomiya T, Honda H, Sasaki K, et al. Altered
expression of diabetes-related genes in Alzheimer’s disease brains: the
Hisayama study. Cereb Cortex. 2014;24:2476–688.

62. Harris LW, Wayland M, Lan M, Ryan M, Giger T, Lockstone H, et al. The
cerebral microvasculature in schizophrenia: a laser capture microdissection
study. PLoS One. 2008;3:e3964.

63. Giger T, Khaitovich P, Somel M, Lorenc A, Lizano E, Harris LW, et al.
Evolution of neuronal and endothelial transcriptomes in primates. Genome
Biol Evol. 2010;12:284–92.

64. AbdAlla S, Langer A, Fu X, Quitterer U. ACE inhibition with captopril retards
the development of signs of neurodegeneration in an animal model of
Alzheimer’s disease. Int J Mol Sci. 2013;14:16917–42.

65. Deuss M, Reiss K, Hartmann D. Part-time alpha-secretases: the functional
biology of ADAM 9, 10 and 17. Curr Alzheimer Res. 2008;5:187–201.

66. Asai M, Hattori C, Szabó B, Sasagawa N, Maruyama K, Tanuma S, et al.
Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase.
Biochem Biophys Res Commun. 2003;301:231–5.

67. Meng P, Yoshida H, Matsumiya T, Imaizumi T, Tanji K, Xing F, et al. Carnosic
acid suppresses the production of amyloid-β1–42 by inducing the
metalloprotease gene TACE/ADAM17 in SH-SY5Y human neuroblastoma
cells. Neurosci Res. 2013;75:94–102.

68. Lane RM, Farlow MR. Lipid homeostasis and apolipoprotein E in the
development and progression of Alzheimer’s disease. J Lipid Res.
2005;46:949–68.

69. Zhou S, Wu H, Zeng C, Xiong X, Tang S, Tang Z, et al. Apolipoprotein E
protects astrocytes from hypoxia and glutamate-induced apoptosis. FEBS
Lett. 2013;587:254–8.

70. Lee Y, Aono M, Laskowitz D, Warner DS, Pearlstein RD. Apolipoprotein E
protects against oxidative stress in mixed neuronal-glial cell cultures by
reducing glutamate toxicity. Neurochem Int. 2004;44:107–18.

71. Liu L, Aboud O, Jones RA, Mrak RE, Griffin WS, Barger SW. Apolipoprotein E
expression is elevated by interleukin 1 and other interleukin 1-induced
factors. J Neuroinflammation. 2011;8:175. doi:10.1186/1742-2094-8-175.

72. Hoe HS, Harris DC, Rebeck GW. Multiple pathways of apolipoprotein E
signaling in primary neurons. J Neurochem. 2005;93:145–55.

73. Nelson L, Gard P, Tabet N. Hypertension and inflammation in Alzheimer’s
disease: close partners in disease development and progression.
J Alzheimers Dis. 2014;41:331–43.

74. Perry VH, Holmes C. Microglial priming in neurodegenerative disease. Nat
Rev Neurol. 2014;10:217–24.

75. Medeiros R, Figueiredo CP, Pandolfo P, Duarte FS, Prediger RD, Passos GF,
et al. The role of TNF-alpha signaling pathway on COX-2 upregulation and
cognitive decline induced by beta-amyloid peptide. Behav Brain Res.
2010;209:165–73.

76. Yu X, Wang LN, Du QM, Ma L, Chen L, You R, et al. Akebia Saponin D
attenuates amyloid β-induced cognitive deficits and inflammatory response
in rats: involvement of Akt/NF-κB pathway. Behav Brain Res. 2012;235:200–9.

77. Ewers M, Mielke MM, Hampel H. Blood-based biomarkers of microvascular
pathology in Alzheimer’s disease. Exp Gerontol. 2010;45:75–9.

78. Sintes J, Romero X, de Salort J, Terhorst C, Engel P. Mouse CD84 is a
pan-leukocyte cell-surface molecule that modulates LPS-induced cytokine
secretion by macrophages. J Leukoc Biol. 2010;88:687–97.

79. Israelsson C, Bengtsson H, Lobell A, Nilsson LN, Kylberg A, Isaksson M, et al.
Appearance of Cxcl10-expressing cell clusters is common for traumatic
brain injury and neurodegenerative disorders. Eur J Neurosci.
2010;31:852–63.

80. Wang F, Liu H, Shen X, Ao H, Moore N, Gao L, et al. The combined
treatment of amyloid-β1-42-stimulated bone marrow-derived dendritic cells
plus splenocytes from young mice prevents the development of
Alzheimer’s disease in APPswe/PSENldE9 mice. Neurobiol Aging.
2015;36:111–22.

81. Skeie JM, Fingert JH, Russell SR, Stone EM, Mullins RF. Complement
component C5a activates ICAM-1 expression on human choroidal
endothelial cells. Invest Ophthalmol Vis Sci. 2010;51:5336–42.

Elkahloun et al. Alzheimer's Research & Therapy  (2016) 8:5 Page 17 of 18

http://dx.doi.org/10.3791/990
http://www.broadinstitute.org/gsea/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways
http://www.reactome.org/pages/documentation/citing-reactome-publications/
http://www.reactome.org/pages/documentation/citing-reactome-publications/
http://www.broadinstitute.org/gsea/
http://www.broadinstitute.org/gsea/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ingenuity.com
http://dx.doi.org/10.1186/1742-2094-8-175


82. Abel S, Hundhausen C, Mentlein R, Schulte A, Berkhout T, Broadway N, et al.
The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma
and TNF-alpha and shed by the activity of the disintegrin-like
metalloproteinase ADAM10. J Immunol. 2004;172:6362–72.

83. Chang MS, McNinch J, Basu R, Simonet S. Cloning and characterization of
the human neutrophil-activating peptide (ENA-78) gene. J Biol Chem.
1994;269:25277–82.

84. Goruppi S, Iovanna JL. Stress-inducible protein p8 is involved in several
physiological and pathological processes. J Biol Chem. 2010;285:1577–81.

85. Jin P, Choi DY, Hong JT. Inhibition of extracellular signal-regulated kinase
activity improves cognitive function in Tg2576 mice. Clin Exp Pharmacol
Physiol. 2012;39:852–7.

86. Chen CC, Liu HP, Chao M, Liang Y, Tsang NM, Huang HY, et al. NF-κB-
mediated transcriptional upregulation of TNFAIP2 by the Epstein-Barr virus
oncoprotein, LMP1, promotes cell motility in nasopharyngeal carcinoma.
Oncogene. 2014;33:3648–59.

87. Palmer JC, Barker R, Kehoe PG, Love S. Endothelin-1 is elevated in
Alzheimer’s disease and upregulated by amyloid-β. J Alzheimers Dis.
2012;29:853–61.

88. Oh J, Lee HJ, Song JH, Park SI, Kim H. Plasminogen activator inhibitor-1 as
an early potential diagnostic marker for Alzheimer’s disease. Exp Gerontol.
2014;60:87–91.

89. Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J, et al.
An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and
causes neurodegeneration. Nat Neurosci. 2012;15:827–35.

90. Ben-Menachem-Zidon O, Ben-Menahem Y, Ben-Hur T, Yirmiya R. Intra-
hippocampal transplantation of neural precursor cells with transgenic over-
expression of IL-1 receptor antagonist rescues memory and neurogenesis
impairments in an Alzheimer’s disease model. Neuropsychopharmacology.
2014;39:401–14.

91. Piantadosi CA, Withers CM, Bartz RR, MacGarvey NC, Fu P, Sweeney TE, et al.
Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-
inflammatory cytokine expression. J Biol Chem. 2011;286:16374–85.

92. McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE, et al.
Annexin A1: a central player in the anti-inflammatory and neuroprotective
role of microglia. J Immunol. 2010;185:6317–28.

93. Lee HP, Pancholi N, Esposito L, Previll LA, Wang X, Zhu X, et al. Early
induction of oxidative stress in mouse model of Alzheimer disease with
reduced mitochondrial superoxide dismutase activity. PLoS One.
2012;7:e28033. doi:10.1371/journal.pone.0028033.

94. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and
role in human diseases. Biochim Biophys Acta. 2007;1773:1358–75.

95. Quintanilla RA, Orellana DI, González-Billault C, Maccioni RB. Interleukin-6
induces Alzheimer-type phosphorylation of tau protein by deregulating the
cdk5/p35 pathway. Exp Cell Res. 2004;295:245–57.

96. Ashabi G, Alamdary SZ, Ramin M, Khodagholi F. Reduction of hippocampal
apoptosis by intracerebroventricular administration of extracellular signal-
regulated protein kinase and/or p38 inhibitors in amyloid beta rat model of
Alzheimer’s disease: involvement of nuclear-related factor-2 and nuclear
factor-κB. Basic Clin Pharmacol Toxicol. 2013;112:145–55.

97. Zhou Q, Wang M, Du Y, Zhang W, Bai M, Zhang Z, et al. Inhibition of c- Jun
N-terminal kinase activation reverses Alzheimer disease phenotypes in
APPswe/PS1dE9 mice. Ann Neurol. 2015;77:637–54.

98. Ha JS, Sung HY, Lim HM, Kwon KS, Park SS. PI3K-ERK1/2 activation
contributes to extracellular H2O2 generation in amyloid β toxicity. Neurosci
Lett. 2012;526:112–7.

99. Wyss-Coray T, Lin C, Sanan DA, Mucke L, Masliah E. Chronic overproduction
of transforming growth factor-β1 by astrocytes promotes Alzheimer’s
disease-like microvascular degeneration in transgenic mice. Amer J Pathol.
2000;156:139–50.

100. Frankfurt M, Luine V. The evolving role of dendritic spines and memory:
interaction(s) with estradiol. Horm Behav. 2015. doi:10.1016/j.yhbeh.2015.05.
004.

101. Bian C, Zhu H, Zhao Y, Cai W, Zhang J. Intriguing roles of hippocampus-
synthesized 17β-estradiol in the modulation of hippocampal synaptic
plasticity. J Mol Neurosci. 2014;54:271–81.

102. Petrone AB, Gatson JW, Simpkins JW, Reed MN. Non-feminizing estrogens: a
novel neuroprotective therapy. Mol Cell Endocrinol. 2014;389:40–7.

103. Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80:844–66.

104. Klohs J, Rudin M, Shimshek DR, Beckmann N. Imaging of cerebrovascular
pathology in animal models of Alzheimer’s disease. Front Aging Neurosci.
2014;6:32. doi:10.3389/fnagi.2014.00032.

105. Lee CW, Shih YH, Kuo YM. Cerebrovascular pathology and amyloid plaque
formation in Alzheimer’s disease. Curr Alzheimer Res. 2014;11:4–10.

106. Lyros E, Bakogiannis C, Liu Y, Fassbender K. Molecular links between
endothelial dysfunction and neurodegeneration in Alzheimer’s disease.
Curr Alzheimer Res. 2014;11:18–26.

107. Muresanu DF, Popa-Wagner A, Stan A, Buga AM, Popescu BO. The vascular
component of Alzheimer’s disease. Curr Neurovasc Res. 2014;11:168–76.

108. Wiesmann M, Kiliaan AJ, Claassen JA. Vascular aspects of cognitive
impairment and dementia. J Cereb Blood Flow Metab. 2013;33:1696–706.

109. Mota SI, Costa RO, Ferreira IL, Santana I, Caldeira GL, Padovano C, et al.
Oxidative stress involving changes in Nrf2 and ER stress in early stages of
Alzheimer’s disease. Biochim Biophys Acta. 2015;1852:1428–41.

110. Villapol S, Saavedra JM. Neuroprotective effects of angiotensin receptor
blockers. Am J Hypertens. 2015;28:289–99.

111. Tian M, Zhu D, Xie W, Shi J. Central angiotensin II-induced Alzheimer-like
tau phosphorylation in normal rat brains. FEBS Lett. 2012;586:3737–45.
Erratum in FEBS Lett. 2013;587:818.

112. Shindo T, Takasaki K, Uchida K, Onimura R, Kubota K, Uchida N, et al.
Ameliorative effects of telmisartan on the inflammatory response and
impaired spatial memory in a rat model of Alzheimer’s disease
incorporating additional cerebrovascular disease factors. Biol Pharm Bull.
2012;35:2141–7.

113. Zhao W, Wang J, Ho L, Ono K, Teplow DB, Pasinetti GM. Identification of
antihypertensive drugs which inhibit amyloid-beta protein oligomerization.
J Alzheimers Dis. 2009;16:49–57.

114. Miners JS, Palmer JC, Tayler H, Palmer LE, Ashby E, Kehoe PG, et al. Aβ
degradation or cerebral perfusion? Divergent effects of multifunctional
enzymes. Front Aging Neurosci. 2014;6:238. doi:10.3389/fnagi.2014.00238.
eCollection2014.

115. Trenkwalder P. Potential for antihypertensive treatment with an AT(1)-
receptor blocker to reduce dementia in the elderly. J Hum Hypertens.
2002;16:S71–5.

116. Larrayoz IM, Pang T, Benicky J, Pavel J, Sánchez-Lemus E, Saavedra JM.
Candesartan reduces the innate immune response to lipopolysaccharide in
human monocytes. J Hypertens. 2009;27:2365–76.

117. Rouch L, Cestac P, Hanon O, Cool C, Helmer C, Bouhanick B, et al.
Antihypertensive drugs, prevention of cognitive decline and dementia: a
systematic review of observational studies, randomized controlled trials and
meta-analyses, with discussion of potential mechanisms. CNS Drugs. 2015.
[Epub ahead of print] doi:10.1007/s 40263-015-0230-6.

118. Igase M, Kohara K, Miki T. The association between hypertension and
dementia in the elderly. Int J Hypertens. 2012;320648. doi:10.1155/2012/
320648.

119. Ashby EL, Kehoe PG. Current status of renin-aldosterone angiotensin
system-targeting anti-hypertensive drugs as therapeutic options for
Alzheimer’s disease. Expert Opin Investig Drugs. 2013;22:1229–42.

120. Hajjar I, Hart M, Milberg W, Novak V, Lipsitz L. The rationale and design of
the antihypertensives and vascular, endothelial, and cognitive function
(AVEC) trial in elderly hypertensives with early cognitive impairment: role of
the renin angiotensin system inhibition. BMC Geriatr. 2009;9:48.

121. Wu X, Kihara T, Hongo H, Akaike A, Niidome T, Sugimoto H. Angiotensin
receptor type 1 antagonists protect against neuronal injury induced by
oxygen-glucose depletion. Br J Pharmacol. 2010;161:33–50.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Elkahloun et al. Alzheimer's Research & Therapy  (2016) 8:5 Page 18 of 18

http://dx.doi.org/10.1371/journal.pone.0028033
http://dx.doi.org/10.1016/j.yhbeh.2015.05.004
http://dx.doi.org/10.1016/j.yhbeh.2015.05.004
http://dx.doi.org/10.3389/fnagi.2014.00032
http://dx.doi.org/10.3389/fnagi.2014.00238
http://dx.doi.org/10.1007/s 40263-015-0230-6
http://dx.doi.org/10.1155/2012/320648
http://dx.doi.org/10.1155/2012/320648

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Culture of primary neurons
	Cell culture treatments
	Gene expression analysis
	Quantitative real-time polymerase chain reaction
	Datasets description and microarray data mining

	Results
	Global gene expression analysis
	Candesartan prevents glutamate-induced upregulation or downregulation of multiple genes in primary neurons

	Confirmation of microarray results by qPCR
	Candesartan prevents glutamate-induced gene upregulation

	Pathway analysis
	Specific diseases and functions, and upstream regulators associated with glutamate exposure and candesartan treatment

	Gene set enrichment analysis
	Association with Alzheimer’s disease

	Correlation of changes in gene expression in rat CGCs with those reported in a mouse model of Alzheimer’s disease
	Association of candesartan treatment in CGCs and captopril treatment in APPswe mice

	KEGG analysis
	Association of differentially expressed genes in rat CGCs and Alzheimer’s disease hippocampus

	Analysis of gene expression in specific cell populations
	Differential alterations in gene expression preferentially expressed in neurons and cerebrovascular cells


	Discussion
	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References



