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Abstract

Background: Query refinement is an interactive process of query modification used to increase or decrease the
scope of search results in databases or ontologies.

Methods: We present a method to obtain optimized query refinements of assertion axioms in the paraconsistent
rough description logic PRALC , a four-valued paraconsistent version of the roughALC , which is grounded on
Belnap’s Logic. This method is based on the notion of the discernibility matrix commonly used in the process of
attribute reduction in the rough set theory. It consists of finding sets of concepts which satisfy the rough set
approximation operations in assertion axioms. Consequently, these sets of concepts can be used to restrict or relax
queries in this logic.

Results: We propose two algorithms to settle this problem of query refinement in PRALC and show their
complexity results.

Conclusions: The problem of query restrictions using contextual approximation is proved to have exponential time
complexity, while the problem of query relaxations has polynomial space complexity.

Keywords: Description logics; Rough sets; Query refinement

Background
In large databases as hypertext document collections, it is
often possible to find too many results available for spe-
cific queries, and it is not always that all these answers
are important. In an opposite situation (but potentially
undesirable), too few results can be available for queries
with keywords rarely used. Some approaches based on
query refinements can, then, be employed to settle these
problems. As we know, query refinement is an interactive
process of querymodification used to increase or decrease
the scope of search results.
One of these approaches is the rough set theory intro-

duced by Z. Pawlak [1] to represent and reason about
uncertainty through two operations of set approximation:
the lower and the upper approximations. For a set S, its
lower approximation gives the set of elements that cer-
tainly belong to S, while its upper approximation gives the
set of elements that possibly belong to S.
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Because of such approximations, the rough set theory
may be applied to produce two forms of query refinement:
query restriction and query relaxation. A query can be
restricted in order to obtain only the necessary results, or
it can be relaxed, aiming at increasing the number of its
results. In this paper, we propose a new method settled
on the rough set theory and description logics (DLs) for
automatically generating refinements or related terms to
queries.
Some works can be found in the literature with respect

to query refinement in DLs as in [2, 3]. Most of them
focus on syntactical manipulations of knowledge bases to
increase or decrease the number of results of a query.
Unfortunately, these syntactical manipulations may gen-
erate results without connections with the initial query. In
[4], by resorting to rough sets as a tool of query refine-
ment in DLs, it is ensured that the obtained results always
have some kind of relationship with the initial query,
because of the role played by the approximation operator
[5]. In addition, the representation of rough sets in DLs
brings no growth in the complexity of the corresponding
satisfiability problem.
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Still, in [4], in order to generate query refinements
of assertion axioms, the authors employed the notion
of contexts in rough set approximations [6]. However,
these contexts are given in the query. This problem is
solved in [7], where a method is proposed to obtain opti-
mized query refinements of assertion axioms in rough
ALC [6]. We will now extend this result to work with
paraconsistent rough description logic (PRALC) [4]. It
is a four-valued extension of the rough ALC, and its
semantics follows the well-known Belnap’s paraconsis-
tent logic [8]. With that, we increase the expressivity of
uncertainty representation, allowing the expression and
approximation of unknown and contradictory knowledge
bases. It will be achieved by resorting to two algorithms to
search for contexts which will be applied in the approxi-
mation operations. These algorithms generate optimized
solutions when they exist. Depending on the consid-
ered refinement, minimal or maximal cardinality sets
which satisfy approximations are chosen (minimal sets for
query restrictions andmaximal sets for query relaxations).
Furthermore, we present complexity results of both
algorithms.
The paper is structured as follows. In the “Back-

ground” section, we present the basic notions of rough
ALC, an extension of ALC with the approximations of
the rough set theory, and we introduce the paracon-
sistent extension of the rough ALC, called PRALC . In
the “Methods” and “Results and discussion” sections, we
will find the main contributions of this work, where
we define a method to obtain optimized refined queries
in this logic and we present the corresponding algo-
rithms (as well as their complexity analysis), respectively.
Finally, in the “Conclusions” section, we conclude the
paper.

Rough description logicALC
Rough description logics (RDLs) [6, 7, 9–12] introduced
a mechanism to model uncertain reasoning by means
of concept approximation. They extend DLs with two
operations: the lower and upper approximations. Both
approximations are conceived to capture uncertainty
from an indiscernibility relation (an equivalence rela-
tion). We can define the upper approximation of a
concept C in ALC as the set of individuals in C that
are indiscernible from at least an individual known
to belong to C [6]. Similarly, we can define the lower
approximation of a concept C as the set of all indis-
cernible individuals in C. In the sequel, we will introduce
some basic characteristics of the rough ALC, begin-
ning with the syntax, semantics, and, lastly, alternative
approaches to represent approximations, which will
be used later in the query refinements. For a detailed
explanation about DLs and rough sets, see [13] and [14],
respectively.

Syntax
As mentioned above, the basic idea behind RDLs
is straightforward: we can approximate an uncertain
concept C through lower and upper bounds.

Definition 1. (Concepts) Concepts in rough ALC are
defined by the following rules, where C and D are concepts,
A is an atomic concept, and R is an atomic role:

C,D −→ A | ⊥ | ¬C | C � D | ∃R.C | C | C.
The rough ALC is based on ALC with the addition of

the upper and lower approximation as unary constructors
of concepts, i.e., ifC is a concept thenC (possiblyC) andC
(necessarily C) are also concepts. Others concepts can be
defined by the following equivalences:� ≡ ¬⊥, (C�D) ≡
¬(¬C � ¬D),∀R.C ≡ ¬(∃R.¬C).
The notions of TBox and ABox, as well the knowledge

base in roughALC, extend the original notion ofALC.

Definition 2. (TBox) A TBox T is a finite set of termi-
nological axioms of the form C 
 D or C ≡ D.

The first axiom C 
 D (inclusion axiom) means that
each individual of C is also an instance of D, while the
axiom C ≡ D (equivalence axiom) means that each indi-
vidual of C is also an instance of D and each individual of
D is also an instance of C.

Definition 3. (ABox) An ABox A consists of the finite
set of assertion axioms of the form C(a) or R(a, b).

The concept assertion C(a) denotes that the individual
a belongs to the concept C, and the role assertion R(a, b)
denotes that the individual a is related to individual b by
the role R.

Definition 4. (Knowledge base)A knowledge baseK =
〈T ,A〉 in roughALC consists of a TBox T and an ABoxA.

Semantics
The semantics of roughALC is given by an interpretation
I = (�I , ·I ,R∼), where�I is a domain set, ·I is an interpre-
tation function, and R∼ is an equivalence relation on �I ,
which will be used in concept approximations. The func-
tion ·I maps atomic concepts to subsets of �I and role
names to binary relations on the domain �I . The inter-
pretation for complex concepts remains the same as in
ALC:

• For an individual a, aI ∈ �I ;
• For atomic concepts A, AI ⊆ �I ;
• For atomic roles R, RI ⊆ �I × �I ;
• �I = �I ;
• ⊥I = ∅;
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• (¬A)I = �I\AI ;
• (C � D)I = CI ∩ DI ;
• (C � D)I = CI ∪ DI ;
• (∃R.C)I = {

a ∈ �I | ∃b ∈ �I , (a, b) ∈ RI ∧ b ∈ CI};
• (∀R.C)I ={

a ∈ �I | ∀b ∈ �I , (a, b) ∈ RI → b ∈ CI}.
For the approximation of concepts, we will have:

• (C)I = {
a ∈ �I | ∃b (

(a, b) ∈ R∼ ∧ b ∈ CI)},
• (C)I = {

a ∈ �I | ∀b (
(a, b) ∈ R∼ → b ∈ CI)}.

One of the advantages of this method of modeling
uncertainties in concepts is that it does not increase the
complexity of inference with respect to the original logic
without upper and lower approximations. In fact, reason-
ing with RDLs can be reduced to reasoning with DLs,
by translating rough concepts in usual DL concepts with
a new relation which is reflexive, symmetric, and transi-
tive. On the other hand, this method does not increase its
expressivity with respect to DLs, i.e., by resorting only to
DL, it is possible to simulate the approximations. A trans-
lation function of concepts ·t : RDL → DL can be defined
to show this equivalence of expressivity (introducing a
new role name R∼ for the equivalence relation):

• At = A, for all atomic concepts A in RDL,
• (C)t = ∃R∼.Ct e (C)t = ∀R∼.Ct .

For all others complex concepts, the translation func-
tion is applied recursively in their subconcepts. The same
definition is extended to inclusion and assertion axioms
[11, 12].
A different way of representing equivalence between

individuals was also proposed in [6], in which an alterna-
tive approach to approximation in DL was introduced. In
this work, an approximation depends on a specific set of
concepts to determine the indiscernibility of the individu-
als (and not anymore an explicit indiscernibility relation).
We will detail this idea in the sequel.

Contextual approximation
In [6], the notion of contextual indiscernibility relation in
RDLs was introduced as a manner to define an equiva-
lence relation based on indiscernibility criteria. In partic-
ular, the notion of context is introduced, allowing the def-
inition of specific equivalence relationships to be applied
on approximations. The great advantage of this approach
is that the reasoning with equivalence classes is optimized,
because the equivalence relation is discovered in the pro-
cess of inference, differently from the traditional RDL,
where the equivalence relation must be explicitly defined.
We will show the definition of contexts of a collection

of concepts and successively the definitions of lower and
upper approximations through a context. First, we will
present the notion of a projection function in DL [6]:

Definition 5. (Projection) Let K be a knowledge base
and A an atomic concept. The projection function πK

A :
NI → {0, ∗, 1} is defined as

∀a ∈ NI : πK
A (a) =

⎧⎨
⎩
1, K |= A(a);
0, K |= ¬A(a);
*, otherwise.

where NI is the set of individuals in the knowledge base K.

A context can be defined as a finite set of relevant
features in the form of DL concepts, which may encode
a kind of context information for the similarity to be
measured [6].

Definition 6. (Context) A context is a nonempty finite
set of atomic concepts � = {A1, . . . ,An}.

Two individuals a and b are indiscernible with respect
to the context � = {A1, . . . ,An} and a knowledge base K
if and only if for all Ai in which i ∈ {1, . . . , n},πK

Ai
(a) =

πK
Ai

(b). This easily induces an equivalence relation:

Definition 7. (Contextual indiscernibility relation)
Let � = {A1, . . . ,An} be a context and K a knowledge
base. The indiscernibility relation R� induced by � is
defined as: R� = {(a, b) ∈ NI × NI | for all Ai in which
i ∈ {1, . . . , n},πK

Ai
(a) = πK

Ai
(b)}.

As DLs induce the representation of uncertain informa-
tion when it is the case that K �|= A(a) and K �|= ¬A(a),
a similarity relation (instead of an equivalence relation)
may be more adequate to model relationships between
individuals, because it permits grouping of individuals
that are close, but not necessarily indiscernible. Formally,
a binary relation is a similarity relation if it is at least
reflexive (an equivalence relation is reflexive, symmetric,
and transitive). We introduce the following similarity rela-
tion based in [15], which loosens the original condition of
indiscernibility:

Definition 8. (Contextual similarity relation) Let
� = {A1, . . . ,An} be a context and K a knowledge base.
The similarity relation S� induced by � is defined as

S� = {(a, b) ∈ NI × NI | for all Ai in which i ∈ {1, . . . , n},
πK
Ai (a)= πK

Ai (b) or πK
Ai (a)= ∗ or πK

Ai (b)= ∗}.

The contextual approximations are defined below.

Definition 9. (Contextual upper/lower approxima-
tion) Let � be a context, C a concept, I an interpretation,
and Sim ∈ {R, S}. The contextual upper and lower approx-
imations of C w.r.t. �, are defined as
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•
(
CSim�

)I = {
a ∈ �I | ∃b((a, b) ∈ SimI

� ∧ b ∈ CI)
}
,

• (
CSim�

)I = {
a ∈ �I | ∀b((a, b) ∈ SimI

� → b ∈ CI)
}
.

We can generalize the definitions of contextual approx-
imations by using the notion of k-step relation [16].

Definition 10. (k-step relation) Let �I be the
nonempty universe set, S a binary relation in �I , and k a
natural number. The k-step relation of S is defined as:

• S1 = S;
• Sk+1 = Sk ∪ {(x, y) ∈ �I × �I | exists

y1, y2, . . . , yk ∈ �I , such that xSy1, y1Sy2, . . . , ykSy},
for k ≥ 1.

The idea behind the k-step relation is that when we are
using a similarity relation, e.g., S� , it may happen that
S�1 ⊆ S�2 ⊆ · · · ⊆ S�n. As a consequence, the succes-
sive application of approximation operations may imply in
different results.

Definition 11. (Loose and tight approximations) For
the loose upper approximation and the tight lower approx-
imation of a concept C w.r.t., the similarity relation Sim in
n steps is denoted by C(Sim,n) and C(Sim,n), respectively, and
defined as

•
(
C(Sim�,n)

)I = {
a | ∃b (

(a, b) ∈ SimI
�n ∧ b ∈ CI)},

•
(
C(Sim�,n)

)I = {
a | ∀b (

(a, b) ∈ SimI
�n → b ∈ CI)}.

The contextual approximations will play a central role
in the process of query refinement. In this paper, refining
a concept means to apply a lower (restriction of a con-
cept) or an upper (relaxation of a concept) approximation.
Hence, it is needed to identify first a context that can be
used in approximations. This process of finding contexts
and some more relevant questions will be tackled and
exemplified in the next sections.

Paraconsistent rough description logicPRALC
We begin this section by presenting a brief explanation
about Belnap’s logic. Subsequently, we will show a para-
consistent extension of rough ALC, based on Belnap’s
semantics, called PRALC .

Belnap’s logic
Belnap’s logic [8] has four truth values instead of the two
classic truth values true and false. These values are t (true),
f (false), u (unknown), and i (inconsistent). The truth value
i represents a contradictory information, while u means
neither true nor false, i.e., the absence of any information
about veracity or falsity.

Syntactically, Belnap’s logic is very similar to classical
logic. However, it introduces different notions of implica-
tion. In fact, we will show three of these notions brought
from literature. The connectives that will be used here
are negation (¬), disjunction (∨), conjunction (∧), mate-
rial implication ( �→), internal implication (⊃), and strong
implication (→) [17].
The interpretations of the formulas are mappings of

the set formulas to one of the possible four truth values,
respecting the truth table of the connectives as detailed in
the Tables 1 and 2. The semantics of the truth tables of the
implications are:

• x �→ y is defined as ¬x ∨ y;
• x ⊃ y is evaluated to y if x ∈ {t, i}; t if x ∈ {f,u};
• x → y is defined as (x ⊃ y) ∧ (¬y ⊃ ¬x).

Models are defined as follows, in which {t, i} are the des-
ignated values (i.e., the truth values considered satisfiable
with respect to the consequence relation defined below).

Definition 12. (Model) Let I be a four-valued interpre-
tation, � a set of formulas, and ϕ a formula in Belnap’s
logic. We say that I is a four-valued model of ϕ if and only
if ϕI ∈ {t, i}. I is a four-valued model of � if and only if I is
a four-valued model of each formula in �. We say � entails
ϕ, written � |= ϕ, if and only if every four-valued model of
� is also a four-valued model of ϕ.

DefiningPRALC
Now, we will describe the syntax and the semantics of the
paraconsistent rough description logic ALC (PRALC).
Such a logic is an extension of the description logicALC4
[17], with the addition of the lower and upper approxima-
tion operators.
Syntactically,PRALC almost does not differ from rough

ALC. Complex concepts and the assertion axioms are
defined in the same way:

C,D −→ A | ⊥ | ¬C | C � D | ∃R.C | C | C.

For concept inclusion axioms, we have three types
of inclusions, relative to the three implications showed
before:

Table 1 Truth tables for ∧,∨, and ¬
∧ f u i t ∨ f u i t ¬
f f f f f f f u i t f t

u f u f u u u u t t u u

i f f i i i i t i t i i

t f u i t t t t t t t f
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Table 2 Truth tables for �→,⊃, and →
�→ f u i t ⊃ f u i t → f u i t

f t t t t f t t t t f t t t t

u u u t t u t t t t u u t u t

i i t i t i f u i t i f u i t

t f u i t t f u i t t f u f t

C �→ D(material inclusion axiom),
C � D(internal inclusion axiom),
C → D(strong inclusion axiom).

As usual, semantically, interpretations map individuals
to elements of the domain of interpretation. For concepts
and atomic roles, however, some changes in the notion of
interpretation need to be made in order to reason with
inconsistencies.
Intuitively, in a four-valued logic, we need to consider

four situations that can occur in terms of membership of
an individual in a concept: (1) we know that it belongs to
the set, (2) we know that it does not belong to the set, (3)
we do not have any knowledge if it belongs or if it does
not belong, and (4) we have a contradictory information,
stating that the individual belongs and does not belong to
the concept. There are many equivalent ways to formalize
this notion; one of them will be described in the sequel.
For a given domain �I and a concept C, an interpre-

tation on �I maps to C a pair 〈P,N〉 of subsets (not
necessarily disjoints) of �I , in which P is the set of the ele-
ments that we know belong to C (positive information),
while N is the set of the elements that we know do not
belong to C (negative information). Consider the func-
tions proj+() and proj−(), the projections of the positive
and negative part, respectively, which are defined as

proj+ 〈P,N〉 = P and proj− 〈P,N〉 = N .

In more formal terms, we can define a four-valued inter-
pretation as displayed below:

Definition 13. (Four-valued interpretation) A four-
valued interpretation is a triple I = (�I , ·I ,R∼) with �Ias
domain, R∼ is an equivalence relation on �I , and ·I is a
mapping function from elements of �I to individuals and
subsets of �I × �I to concepts such that the conditions
showed below are satisfied:

• For atomic concepts A, AI = 〈P,N〉, such that
P,N ⊆ �I ;

• For atomic roles R, RI = 〈P1 × P2,N1 × N2〉, such
that P1 × P2,N1 × N2 ⊆ �I × �I ;

• �I = 〈
�I ,∅〉

;
• ⊥I = 〈∅,�I 〉;
• (¬C)I = 〈N ,P〉 if CI = 〈P,N〉;

• (C � D)I = 〈P1 ∩ P2,N1 ∪ N2〉, if CI = 〈P1,N1〉 and
DI = 〈P2,N2〉;

• (C � D)I = 〈P1 ∪ P2,N1 ∩ N2〉, if CI = 〈P1,N1〉 and
DI = 〈P2,N2〉;

• (∃R.C)I =〈{x | ∃y, (x, y) ∈ proj+(RI) ∧ y ∈ proj+(CI)},
{x | ∀y, (x, y) ∈ proj+(RI) → y ∈ proj−(CI)}〉;

• (∀R.C)I =〈{x | ∀y, (x, y) ∈ proj+(RI) → y ∈ proj+(CI)},
{x | ∃y, (x, y) ∈ proj+(RI) ∧ y ∈ proj−(CI)}〉;

• (C)I = 〈{x | ∃y, (x, y) ∈ R∼ ∧ y ∈ proj+(CI)},
{x | ∀y, (x, y) ∈ R∼ → y ∈ proj−(CI)}〉;

• (C)I = 〈{x | ∀y, (x, y) ∈ R∼ → y ∈ proj+(CI)},
{x | ∃y, (x, y) ∈ R∼ ∧ y ∈ proj−(CI)}〉.

Note that the conditions above for the role restric-
tions are described in a way that the logical equivalences
¬(∀R.C) = ∃R.(¬C) and ¬(∃R.C) = ∀R.(¬C) are pre-
served. This was the convenient manner found in [17] to
deal with role restrictions and that allows a direct transla-
tion to ALC. Note that in this language, only the positive
part of the interpretation of the role is required, because it
involves only atomic roles.
Obviously, under the restrictions that P ∩ N = ∅ and

P ∪ N = �I , the four-valued interpretations collapse into
the usual two-valued case. The correspondence between
the truth values and themembership of concepts and roles
is described in the following way: let a, b ∈ �I , C be a
concept name and R a role name. We have that:

• CI(a) = t, iff aI ∈ proj+(CI) and aI �∈ proj−(CI);
• CI(a) = f, iff aI �∈ proj+(CI) and aI ∈ proj−(CI);
• CI(a) = i, iff aI ∈ proj+(CI) and aI ∈ proj−(CI);
• CI(a) = u, iff aI �∈ proj+(CI) and aI �∈ proj−(CI);
• RI(a, b) = t, iff (aI , bI) ∈ proj+(RI) and

(aI , bI) �∈ proj−(RI);
• RI(a, b) = f, iff (aI , bI) �∈ proj+(RI) and

(aI , bI) ∈ proj−(RI);
• RI(a, b) = i, iff (aI , bI) ∈ proj+(RI) and

(aI , bI) ∈ proj−(RI);
• RI(a, b) = u, iff (aI , bI) �∈ proj+(RI) and

(aI , bI) �∈ proj−(RI).

Lastly, it follows the semantics of the different kinds of
axioms.

• I |= C �→ D iff �I\proj−(CI) ⊆ proj+(DI);
• I |= C � D iff proj+(CI) ⊆ proj+(DI);
• I |= C → D iff proj+(CI) ⊆ proj+(DI) and

proj−(DI) ⊆ proj−(CI);
• I |= C(a) iff aI ∈ proj+(CI);
• I |= R(a, b) iff (aI , bI) ∈ proj+(RI).

We say that a four-valued interpretation I satisfies a
knowledge base K (i.e., I is a model of K) if and only
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if it satisfies each inclusion and assertion axiom in K.
A knowledge base K is satisfiable (respectively, unsatisfi-
able) if and only if there exists (respectively, there does not
exist) a model for K.
Considering the complexity of satisfiability of PRALC ,

it was proved in [17] that the complexity of the satisfia-
bility decision problem for the paraconsistent version of
ALC is equivalent to the complexity of the same prob-
lem for ALC. This result shows that the paraconsistent
reasoning is not more expressive than the classical two-
valued reasoning and it can be simulated in a two-valued
ALC without an increasing of complexity. To show such a
result, a polynomial translation of a paraconsistent knowl-
edge base to a knowledge base of ALC was described,
which preserves all of its inference properties. According
to this result, we can easily show that the satisfiability deci-
sion problem for PRALC has the same complexity of this
problem forALC through the same translations presented
in [11, 12, 17]
As in rough ALC, we can also define the contextual

approximation related to PRALC .

Definition 14. (Four-valued contextual approxima-
tions) Let� be a context, C be a concept, I be a four-valued
interpretation, and Sim be a similarity relation. The con-
textual upper and lower approximations of C with respect
to � are defined as:

• (CSim�
)I = 〈{x | ∃y, (x, y) ∈ SimI

� ∧ y ∈ proj+(CI)},
{x | ∀y, (x, y) ∈ SimI

� → y ∈ proj−(CI)}〉,
• (CSim�

)I =〈{x | ∀y, (x, y) ∈ SimI
� → y ∈ proj+(CI)},

{x | ∃y, (x, y) ∈ SimI
� ∧ y ∈ proj−(CI)}〉.

Furthermore, due to the possibility of representation of
a different notion of uncertainty (contradictory informa-
tion), we can also develop different similarity relations
between individuals. In particular, we will work here with
a specific similarity relation described in [15]. But first,
we need to make a little change in the definition of the
projection function described before to adapt it to the
four-valued interpretation.

Definition 15. (Four-valued projection) Let K be a
knowledge base and A an atomic concept. The projection
function πK

A : NI → {t, f,u, i} is defined as

∀a ∈ NI : πK
A (a) =

⎧⎪⎪⎨
⎪⎪⎩

t, K |= A(a) and K �|= ¬A(a);
f, K |= ¬A(a) and K �|= A(a);
u, K �|= A(a) and K �|= ¬A(a);
i, K |= ¬A(a) and K |= ¬A(a).

where NI is the set of individuals contained in the knowl-
edge base K.

Now the uncertainty of a concept can bemodeled in two
ways: as a contradiction or as an unknown information.
We can define then the similarity relation P� :

Definition 16. (Similarity relation—unknown and
inconsistent concepts) Let � = {A1, . . . ,An} be a con-
text. The similarity relation P� induced by � is defined as
follows:

P� = {(a, b) ∈ NI × NI | for all Ai in whichi ∈ {1, . . . , n},πK
Ai (a)

= πK
Ai (b) or

πK
Ai (a) = u or πK

Ai (b) = u

or if πK
Ai (a) = t then πK

Ai (b) = i

or if πK
Ai (a) = f then πK

Ai (b) = i}.

In P� , it is assumed that an information can be partially
described because of our incomplete or contradictory
knowledge [18]. From this point of view, an element a can
be considered similar to the element b if the information
contained in a is also contained in b. Thus, for a concept
A, such that πK

A (a) = t and πK
A (b) = i, the individual a is

similar to b because the truth value t is contained in i. Note
that the reverse is not true: b is not similar to a according
to P� , because not every information in b is contained in
a. We highlight that these similarity relations introduced
in this work are two-valued, but nothing prevents one to
create four-valued similarity relations.

Example. [4] (Query relaxation/restriction) Let {x1, x2,
x3, x4, x5, x6, x7} be a set of individuals representing
houses; GL = GoodLocation, B = Basement, F = Fireplace,
E = Expensive, C = Cheap, andM =Medium be concepts;
and � = {GL,B, F} be a context and A be a ABox such
that

GL(x1);¬GL(x2);GL(x3);¬GL(x4);GL(x6);¬GL(x7);
B(x1);B(x2);¬B(x2);¬B(x3);B(x4);B(x6);¬B(x6);B(x7);

F(x1);¬F(x2);¬F(x4); F(x5); F(x6); F(x7);
¬M(x1);¬M(x2);M(x3);M(x4);M(x5);¬M(x6);M(x7);
E(x1);¬E(x2);¬E(x3);¬E(x4);¬E(x5);E(x6);¬E(x7);
¬C(x1);C(x2);¬C(x3);¬C(x4);¬C(x5);¬C(x6);¬C(x7).

First, we will consider an example using query relax-
ation. Suppose that we want to know which houses are
expensive. We have that

A |= E(x1),A �|= E(x2),A �|= E(x3),A �|= E(x4),
A �|= E(x5) andA |= E(x6).

This means that x1 and x6 are the only expensive houses.
But suppose that we want to know which houses are
possibly expensive (houses that are not expensive but
share some features of expensive houses) according to the
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context �. Relaxing this query (we will use the similarity
relation S� in this example), we shall have

A |= ES�
(x1),A |= ES�

(x5) andA |= ES�
(x6).

Thus, x1, x5, and x6 are possibly expensive houses.
Observe that x5 is possibly expensive because it is similar
to x1, which is evaluated as expensive. By employing again
the query relaxation in this ABox, we shall have

A |= ES�
S�

(x1),A |= ES�
S�

(x3),A |= ES�
S�

(x5) and

A |= ES�
S�

(x6).

We have now that x3 is possibly a possible expensive
house, because x3 is similar to x5 according to the relation
S� , i.e., x3 has less features of expensive houses than x5.
We will show in the sequel another example related with
query refinement but now using query restriction: sup-
pose that we want to know which houses in the ABox have
medium value. We shall have then
A �|= M(x1),A �|= M(x2),A |= M(x3),A |= M(x4) and
A |= M(x5).

That is, x3, x4, and x5 are houses of medium value. Using
the query restriction with the context �, we will conclude
that

A |= MS�
(x3), butA �|= MS�

(x4) andA �|= MS�
(x5).

The individuals x4 and x5 do not have necessarily a
medium value. If we apply the query restriction again, we
will observe that

A �|= MS� S�

(x3).

Therefore, x3 does not have necessarily a necessary
medium value, i.e., x3 is similar to some house that nec-
essarily does not have medium value. Focusing a little
in the similarity relation for unknown and inconsistent
information, we can show that

A �|= C(x4) andA �|= CS�
(x4), butA |= CP�

(x4).

This means that P� can be used to discover which indi-
viduals share connections with contradictory information
in the context �. Knowing that A �|= CS�

(x4) and A |=
CP�

(x4), we can infer that by accepting the presence of
similarities with contradictions in�, x4 can be viewed as a
possibly cheap object. A resembling intuition may be used
for the lower approximation after searching those individ-
uals that certainly have a specific property when pointed
relations with contradictions. For example, with

A |= MS�
(x3) andA �|= MP�

(x3),

we can conclude if we permit similarity relations with con-
tradictions that x3 will not be considered as a medium

value house. In regarding the individual x7, the result will
be

A |= MS�
(x7) and A |= MP�

(x7).

This shows that independently of analyzing the similar-
ities with contradictions or not, the result will be the
same. In other words, the presence of similarities with
contradictory information for x7 does not exist.

Methods
Contextual approximations were designed to optimize the
automation of approximate reasoning, since the relations
between individuals are discovered during the reasoning
process. However, if we think about an automated query
refinement process, the possibilities of generating all con-
texts are 2|NC | −1, whereNC is the set of atomic concepts.
Moreover, most of these contexts can be redundant or
cannot satisfy a query refinement. In order to avoid this
problem, in this section, we present amethod based on the
notions of discernibility and indiscernibility matrices [19]
to compute contexts for lower and upper approximations.

Using approximations
Themain problem found in query refinements with rough
sets is to determine a set of concepts which satisfy a
restriction (lower approximation) or a relaxation (upper
approximation) of a concept. The following results will
help us to discover these appropriated sets.

Lemma 1. (Generalizedmonotonicity) [20] Given two
contexts �1 and �2, such that �1 ⊆ �2, the following
equations hold for all concept expressions C, an interpre-
tation I, and a similarity relation Sim ∈ {R, S, P}:(

CSim�1

)I ⊆
(
CSim�2

)I
and

(
CSim�2

)I ⊆
(
CSim�1

)I
.

Intuitively, Lemma 1 states that by increasing the size
of the context, the size of the interpretation of the con-
cepts increases for the lower approximation and decreases
for the upper approximation. Therefore, in order to find a
context to satisfy the lower approximation of a concept C,
only those minimal satisfying C are needed, since all their
supersets will also satisfy C. Analogously, in order to find
contexts satisfying the upper approximation of C, only the
maximal ones satisfying C will suffice. Finally, for loose
and tight approximations, the following statements hold:

Proposition 1. [20] Given a context �, a concept C, an
interpretation I, and a natural number n, it holds that

(
C(R� ,n)

)I =
(
C(R� ,n+1))I and

(
C(R� ,n)

)I = (
C(R� ,n+1)

)I ;
(
C(S� ,n)

)I ⊆
(
C(S� ,n+1))I and

(
C(S� ,n+1)

)I ⊆ (
C(S� ,n)

)I ;
(
C(P� ,n)

)I ⊆
(
C(P� ,n+1))I and

(
C(P� ,n+1)

)I ⊆ (
C(P� ,n)

)I .
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Loose upper approximations can be applied when there
are no contexts which satisfy the upper approximation of
a concept. In other words, a similarity relation of a higher
step can be used to find a possible context. Similarly, a
tight lower approximation can be applied to discover a
set of concepts reinforcing the lower approximation, i.e.,
contexts which preserve the lower approximation in a
similarity relation of a higher step. Note that the result
for loose upper approximation does not change for the
indiscernibility relation, since it is transitive and does not
increase the size of the interpretation when it is applied
successively (or does not decrease when the tight lower
approximation is considered).

Contexts for lower approximations
First, we consider the problem of searching for an ade-
quate context for query restriction. This problem can be
formulated as follows:

• Input : The set of concept names NC , an ABoxA, a
similarity relation Sim, a conceptC, and an individual a.

• Output : A nonempty context� ⊆ NC −atom(C) and
a natural number n ≥ 1 such thatA |= C(Sim� ,n)(a).

The function atom(C) returns the set of atomic concept
names contained in the concept C. We emphasize that in
this paper the problem of query refinement is restricted
only to ABoxes and atomic concept assertions (i.e., we
consider that empty TBox and complex concepts are not
allowed in the ABox). One of the problems related to
applications of rough set methods is whether the whole
set of attributes (concepts) is necessary and, if not, how
to determine the simplified and still sufficient subset of
attributes that preserves the distinguishability informa-
tion of the original one, called reduct. For a knowledge
base in ALC, the reducts are determined by the minimal
sets of concepts that preserve discernibility of all individ-
uals from one another. A resulting reduct is, therefore,
a minimal set of concepts enabling one to introduce the
same indiscernibility on the universe as the whole set of
concepts does.
In the rough set theory, the computation of all types

of reducts is based on discernibility matrices [19]. Such
matrices are constructed from the discernibility rela-
tion. In this paper, we consider dissimilarity instead [21],
because we are working with the notion of similarity. We
highlight that a dissimilarity relation can be viewed as the
complement of a similarity relation.

Definition 17. (Dissimilarity matrix) Let NI be the set
of individuals, x, y ∈ NI, � be a context, and Sim be a
similarity relation. A dissimilarity matrix is defined as

DIS(�, x, y, Sim) = {Ai ∈ � | y /∈ Sim{Ai}(x)}, such that
Sim{Ai}(x) = {y ∈ NI | (x, y) ∈ Sim{Ai}}.

Intuitively, DIS(�, x, y, Sim) describes the set of all con-
cepts in � in which the individual x is not similar
to y with respect to Sim. To evaluate this set of con-
cepts, we will define a Boolean function f (�, x, y, Sim),
called dissimilarity function, that will return the set of
reducts.

Definition 18. (Dissimilarity function) The dissimi-
larity function of an individual x with respect to a context
�, a concept C, and a similarity relation Sim is defined by

f (�,C, x, Sim) =
∧

y∈NI ,A|=C(x)⇔A �|=C(y)

∨
DIS(�, x, y, Sim).

By Lemma 1, the intersection of all dissimilarities of
the individual x is calculated, since we are interested only
in minimal contexts. In order to find a context for an
assertion axiom of the form A(x), the function f (NC −
{A},A, x, Sim) can be used. From the point of view of
rough sets, A is not considered in the context because it
is treated as the decision attribute and NC − {A} as the
conditional attributes.

Example. [4] Consider the ABox A below representing
houses in which {x1, x2, x3, x4, x5, x6, x7} are individuals,
GL = GoodLocation, B = Basement, F = FirePlace, and
M =Medium.

GL(x1);¬GL(x2);GL(x3);¬GL(x4);GL(x6);¬GL(x7);
B(x1);B(x2);¬B(x2);¬B(x3);B(x4);B(x6);¬B(x6);B(x7);

F(x1);¬F(x2);¬F(x4); F(x5); F(x6); F(x7);
¬M(x1);¬M(x2);M(x3);M(x4);M(x5);¬M(x6);M(x7).

A result obtained here is that A |= M(x3). In order to
know if x3 necessarily has the property of medium value,
we can apply f (�,M, x3, S), in which � = {GL, B, F}:

f (�,M, x3, S) =
∧

y∈NI ,A|=M(x3)⇔A �|=M(y)

(∨
DIS(�, x3, y, S)

)
.

=
(∨

DIS(�, x3, x1, S)
)
∧

(∨
DIS(�, x3, x2, S)

)
∧

(∨
DIS(�, x3, x6, S)

)
.

= B ∧ (GL ∨ B) ∧ B.
= B.

It follows that A |= M(S�1 ,1)
(x3), where �1 = {B}. This

result shows that the context {B} is already enough to be
used in the lower approximation of Medium. In fact, we
have that A |= M(S� ,1)(x3) is also satisfied, since, as it
was mentioned in Lemma 1, �1 ⊆ � impliesMS�1

(x3) ⊆
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MS�
(x3). If we consult the dissimilarity function with

relation to R, we will obtain

f (�,M, x3, R) =
∧

y∈NI ,A|=M(x3)⇔A �|=M(y)

(∨
DIS(�, x3, y, R)

)
.

=
(∨

DIS(�, x3, x1, R)
)
∧

(∨
DIS(�, x3, x2, R)

)
∧

(∨
DIS(�, x3, x6, R)

)
.

= (B ∨ F) ∧ (GL ∨ B ∨ F) ∧ (B ∨ F).
= (B ∨ F).

The context �2 = {B, F} satisfies A |= M(R�2 ,1)
(x3).

Comparing with the similarity relation S, we can note that
the context �2 exhibits similarities with unknown infor-
mation, since it does not appear in f (�,M, x3, S), but it
is found in f (�,M, x3, R). By applying the dissimilarity
function with the relation P we will obtain

f (�,M, x3, P) =
∧

y∈NI ,A|=M(x3)⇔A �|=M(y)

(∨
DIS(�, x3, y, P)

)
.

=
(∨

DIS(�, x3, x1, P)
)
∧

(∨
DIS(�, x3, x2, P)

)
∧

quad
(∨

DIS(�, x3, x6, P)
)
.

= B ∧ GL ∧ ∅
= ∅.

This empty result shows that context satisfying the
lower approximation of Medium to x3 and the similar-
ity P does not exist. Intuitively, we can say that when
we permit similarities of the values of x3, with contradic-
tory information, there will be an individual similar to x3
that will not satisfy the conceptMedium—in this case, the
individual x6.

Contexts for upper approximations
The second problem can be formulated as follows:

• Input : The set of concept names NC , an ABoxA,
a similarity relation Sim, a concept C, and an
individual a.

• Output : A nonempty context� ⊆ NC −atom(C) and
a natural number n ≥ 1 such thatA |= C(Sim� ,n)

(a).

Unlike the lower approximation, we will consider now
the notion of similarity matrix instead of dissimilarity
matrix. The motivation behind the search for contexts to
an upper approximation comes from the following idea:
when an assertion axiom is not satisfied by a knowledge
base, we need to find individuals satisfying the assertion
of the consulted concept that share some similarities with
the individual of the original query. These similarities will
characterize the context. Thus, we can calculate the set of
maximal concepts preserving similarity.

Definition 19. (Similarity matrix) Let NI be the set of
individuals, x, y ∈ NI, � a context, and Sim a similarity
relation. A similarity matrix is defined as

SIM(�, x, y, Sim) = {Ai ∈ � | y ∈ Sim{Ai}(x)}, such that
Sim{Ai}(x) = {y ∈ NI | (x, y) ∈ Sim{Ai}}.

The matrix SIM(�, x, y, Sim) describes the set of all
concepts in � in which an individual x is similar to y
with respect to Sim. To evaluate this set of concepts, we
define the Boolean function g(�, x, y, Sim), called similar-
ity function.

Definition 20. (Similarity function) The similarity
function of an individual x with respect to a context �, a
concept C, and a similarity relation Sim is defined by

g(�,C, x, Sim) =
∨

y∈NI ,A �|=C(x)⇔A|=C(y)

∧
SIM(�, x, y, Sim).

Now, we are not interested in finding the minimal set
of concepts (reduct). By Lemma 1, we are searching for
the maximal set of concepts, so the disjunction of all
similarities of the individual x is performed.

Example. [4] Consider now the ABox A′ below, where
{x1, x2, x3, x4, x5, x6, x7} are individuals, GL = GoodLoca-
tion, B = Basement, F = FirePlace, and E = Expensive.

GL(x1);¬GL(x2);GL(x3);¬GL(x4);GL(x6);¬GL(x7);
B(x1);B(x2);¬B(x2);¬B(x3);B(x4);B(x6);¬B(x6);B(x7);

F(x1);¬F(x2);¬F(x4); F(x5); F(x6); F(x7);
¬E(x1);¬E(x2);¬E(x3);¬E(x4);¬E(x5);E(x6);¬E(x7).

Consequently, A′ �|= E(x7). We can apply the func-
tion g(�,E, x7, S), in which � = NC − {E}, to discover if
there exists a context satisfying the upper approximation
of Expensive according to x7:

g(�,E, x7, S) =
∨

y∈NI ,A′ �|=E(x7)⇔A′|=E(y)

(∧
SIM(�, x7, y, S)

)
.

=
(∧

SIM(�, x7, x1, S)
)
∨

(∧
SIM(�, x7, x6, S)

)
.

= (B ∧ F) ∨ F.
= (B ∧ F).

Therefore, we have A′ |= E(S�1 ,1)(x7), where �1 =
{B, F}. We have chosen (B ∧ F) as the simplification of
((B∧F)∨F), because, as stated in Lemma 1, all nonempty
subsets of {B, F} also satisfy the upper approximation of
E(x7). We consider �1 an optimized context as it covers a
greater number of concepts for the upper approximation.
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Regarding the similarity relation R, we have the following
outcome:

g(�,E, x7, R) =
∨

y∈NI ,A′ �|=E(x7)⇔A′ |=E(y)

(∧
SIM(�, x7, y, R)

)
.

=
(∧

SIM(�, x7, x1, R)
)
∨

(∧
SIM(�, x7, x6, R)

)
.

= (B ∧ F) ∨ F.
= (B ∧ F).

In this example, we obtained the same results to the rela-
tions R and S. In this case, we can conclude that unknown
information related to the individual x7 does not exist. For
the similarity function with the relation P, we will have

g(�,E, x7, P) =
∨

y∈NI ,A′ �|=E(x7)⇔A′ |=Caro(y)

(∧
SIM(�, x7, y, P)

)
.

=
(∧

SIM(�, x7, x1, P)
)
∨

(∧
SIM(�, x7, x6, P)

)
.

= (B ∧ F) ∨ (B ∧ F).
= (B ∧ F).

The outcome is the same obtained with the rela-
tions R and S. However, differently from them,
(
∧

SIM(�, x7, x6, P)) = (B ∧ F). This implies that there
are some evidence of similarities with contradictions in P,
but in this case, this evidence is redundant, because they
do not change the final result.

Results and discussion
Now, we present the algorithms to find contexts for query
refinements. They consist of searching for minimal sets of
concepts (for query restrictions) or maximal sets of con-
cepts (for query relaxations). If no result is found, then
the process is repeated taking into account a similarity
relation of a higher step. The algorithms finish when any
context is found (which will be the answer of the prob-
lem) or when they search in all possible k-step relations
and no result is returned (in this case, an empty set will be
the answer of the problem). In the sequel, we explain the
algorithms and show their complexities.
We assume in the problem that a formula is repre-

sented in conjunctive normal form (CNF) (if it is the
input of Algorithms 1–2) or in disjunctive normal form
(DNF) (if it is the input of Algorithm 3). For instance,
S = {{A1,A2}, {A2,A3}} can be treated as S = (A1 ∧
A2) ∨ (A2 ∧ A3) (if it is the input of Algorithms 1–2) or
S = (A1∨A2)∧(A2∨A3) (if it is the input of Algorithm 3).
Algorithm 1 simplifies a formula in DNF by removing
redundant clauses. This procedure is done by employing
absorption law, i.e., (a ∧ b) ∨ a ≡ a, which is performed
in the function Extract (lines 6 and 10). Only this law is
needed to simplify, since the input of the algorithm con-
tains only atomic concepts. The function Extract consists
simply in removing a clause from a set of clauses.

Algorithm 1 SimplifyDNF(S, n)

1: i ← 1
2: while i ≤ n do
3: j ← i + 1
4: while j ≤ n do
5: if Si ⊆ Sj then
6: S ← Extract(S, Sj)
7: j ← j + 1
8: else
9: if Sj ⊆ Si then

10: S ← Extract(S, Si)
11: i ← i + 1
12: j ← i + 1
13: else
14: j ← j + 1
15: end if
16: end if
17: end while
18: i ← i + 1
19: end while
20: return S

The function SimplifyDNF2(S, n) (Algorithm 2) follows
the idea of Algorithm 1, but instead of the absorption
law, the rule (a ∧ b) ∨ a ≡ (a ∧ b) to represent max-
imal contexts is applied to it. Then, SimplifyDNF2(S, n)

is obtained by exchanging the lines 5 and 9 of
nAlgorithm 1.

Algorithm 2 SimplifyDNF2(S, n)

1: i ← 1
2: while i ≤ n do
3: j ← i + 1
4: while j ≤ n do
5: if Sj ⊆ Si then
6: S ← Extract(S, Sj)
7: j ← j + 1
8: else
9: if Si ⊆ Sj then

10: S ← Extract(S, Si)
11: i ← i + 1
12: j ← i + 1
13: else
14: j ← j + 1
15: end if
16: end if
17: end while
18: i ← i + 1
19: end while
20: return S
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Theorem 1. The time complexities of SimplifyDNF
(S, n) and SimplifyDNF2(S, n) are O(|NC |.n2), where n
is the number of clauses of the disjunctive normal form
formula received as input and NC is the set of atomic
concepts.

Proof. The Algorithms have two nested loops of the
type while, which are limited by n (thus, O(n2)), where
n is the number of clauses in the DNF formula of the
input. The complexity of Extract has a linear upper
bound in the size of the formula, i.e., O(|NC |). Therefore,
the complexity of the algorithms SimplifyDNF(S, n) and
SimplifyDNF2(S, n) are O(|NC |.n2).

Theorem 2. The time complexity of SimplifyCNF(S, n)

is O(2|NC |).

Proof. Algorithm 3 simplifies a formula S in CNF by
removing redundant clauses, similarly to Algorithm 1.
This is achieved by translating a CNF formula into a
DNF formula via distribution rules (Distribute) and then
applying the function SimplifyDNF. The complexity of the
algorithm which translates a CNF to a DNF formula is
O(2n) [22], where n is the number of different variables of
the CNF formula. The complexity of line 1 is O(2|NC |), in
which |NC | is the number of atomic concepts and the limit
of variables that can occur in the CNF formula. The com-
plexity of line 2 isO(|NC |.n2), as showed above. Therefore,
the complexity of Algorithm 3 is O(2|NC |).

Algorithm 3 SimplifyCNF(S, n)

1: A ← Distribute(S)
2: return SimplifyDNF(S, n)

Algorithm 4 searches sets of contexts for lower approx-
imations. In other words, it implements the dissimilarity
function f (�,C, x, Sim). First, the dissimilarity matrix of
a specific individual with respect to the similarity rela-
tion Sim (lines 8–18) is computed. After, the dissimilarity
function through SimplifyCNF (line 19) is calculated.
If the result is nonempty, then it will be the solution of

the problem. Otherwise, the procedure is restarted with
a similarity relation of a higher step. The result of the
problem is found by finding a k-step relation returning
a nonempty set. If all k-step relations return empty sets,
then the solution will be empty (i.e., there are no contexts
to solve the problem).
For instance, taking an example of the previous subsec-

tion, f ({GL, B, F},M, x3, S) will find the contexts B, (GL ∨
B), and B in the first iteration through the dissimilar-
ity matrix. Then, the context B is concluded after a

simplification. As the result is nonempty, this will be the
result of the problem.

Theorem 3. Determining if there exist contexts
for lower approximations of an ABox assertion in
paraconsistent roughALC is EXPTIME .

Proof. By Algorithm 4, the complexity of the loop for
all (lines 8–18) takes into account the complexity of
logical consequence of an assertion axiom in PRALC
and the computation of the dissimilarity matrix DIS. By
definition, DIS also depends on the problem of logical
consequence in PRALC , i.e., its complexity is PSPACE.
Thus, the complexity of the lines 8–18 takes polynomial
space. As pointed in Proposition 1, tight and loose approx-
imations are monotonic, and since we are leading with
finite sets of individuals, there is a finite number of k-step
relations, which are bounded by |NI |. Therefore, the max-
imum number of tests done through the while (line 5) is
O(|NI |). Lastly, we have that SimplifyCNF(S, n) has a time
complexity of O(2|NC |).

Algorithm 5 follows the rationale of Algorithm 4,
but it constructs the similarity matrix SIM. After
that, the algorithm computes the similarity func-
tion through SimplifyDNF2. Considering the example
g({GL, B, F},E, x7, R) from the previous subsection, the
algorithm will discover the contexts (B ∧ F) and F in the
first iteration. Then, the simplification will result in (B∧F)
that will be the result of the query relaxation.

Algorithm 4 f (NC ,C, x, Sim)

1: j ← 1
2: �1 ← ∅
3: � ← NC − {C}
4: Sim0� ← ∅
5: while �1 = ∅ e Simj−1�

�= Simj� do
6: S ← ∅
7: i ← 1
8: for all y ∈ NI do
9: ifA |= C(x) ⇔ A �|= C(y) then

10: Si ← DIS(NC − {C}, x, y, Simj)
11: if Si = ∅ then
12: return ∅
13: else
14: S ← S ∪ {Si}
15: i ← i + 1
16: end if
17: end if
18: end for
19: �1 ← SimplifyCNF(S, i − 1)
20: j ← j + 1
21: end while
22: return �1, j − 1
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Algorithm 5 g(NC ,C, x, Sim)

1: j ← 1
2: �1 ← ∅
3: � ← NC − {C}
4: Sim0� ← ∅
5: while �1 = ∅ e Simj−1�

�= Simj� do
6: S ← ∅
7: i ← 1
8: for all y ∈ NI do
9: ifA �|= C(x) ⇔ A |= C(y) then

10: Si ← SIM(NC − {C}, x, y, Simj)
11: if Si �= ∅ then
12: S ← S ∪ {Si}
13: i ← i + 1
14: end if
15: end if
16: end for
17: �1 ← SimplifyDNF2(S, i − 1)
18: j ← j + 1
19: end while
20: return �1, j − 1

Theorem 4. Determining if there exist contexts
for upper approximations of an ABox assertion in
paraconsistent roughALC is PSPACE.

Proof. As in Algorithm 4, the construction of the sim-
ilarity matrix SIM takes into account the logical conse-
quence problem in PRALC (lines 8–14) and has poly-
nomial space complexity. In the same way, the number
of k-step relations is bounded by O(|NI |) (line 5). The
time complexity of SimplifyDNF2(S, n) is polynomial, but
the overall complexity of the algorithm is PSPACE for
PRALC .

Conclusions
In this paper, we defined techniques for handling query
refinements of assertion axioms in PRALC , by employ-
ing the notion of contextual approximation and similarity
relations, which exploited the presence of unknown and
inconsistent information. We also showed a method to
compute optimized contexts for these queries based on
the notion of reducts presented in the rough set the-
ory. The problem of query restrictions using contextual
approximation was proved to have exponential time com-
plexity, while the problem of query relaxations has poly-
nomial space complexity.
As future work, we will investigate some ways of

choosing the most representative contexts, as approaches
involving measures of inconsistency or information, since
the method presented in this paper concerns only about
minimal or maximal contexts. Some approaches to deal

with this problem can be found in [21, 23]. Another
possible line of research is to extend the application of
query refinement in complex assertion axioms (any con-
cept C(a)) as well to terminological axioms, i.e., axioms of
the form C 
 D.
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