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Abstract

achieved promising results in English.

Background: Part-of-speech tagging is an important preprocessing step in many natural language processing
applications. Despite much work already carried out in this field, there is still room for improvement, especially in
Portuguese. We experiment here with an architecture based on neural networks and word embeddings, and that has

Methods: We tested our classifier in different corpora: a new revision of the Mac-Morpho corpus, in which we
merged some tags and performed corrections and two previous versions of it. We evaluate the impact of using
different types of word embeddings and explicit features as input.

Results: We compare our tagger’s performance with other systems and achieve state-of-the-art results in the new
corpus. We show how different methods for generating word embeddings and additional features differ in accuracy.

Conclusions: The work reported here contributes with a new revision of the Mac-Morpho corpus and a
state-of-the-art new tagger available for use out-of-the-box.

Keywords: Natural language processing; Part-of-speech tagging; Neural networks; Word embeddings

Background

Part-of-speech (POS) tagging is an important natural lan-
guage processing (NLP) task, used as a preprocessing
step in many applications. Its objective is to tag each
token in a sentence with the corresponding part-of-speech
tag.

While POS tagging has a simple definition and is widely
employed, the way it is implemented varies a lot in prac-
tice. First, there is no single best algorithm to perform the
task, and second, there is the question of which tagset to
use.

Tagsets may differ in their granularity, e.g., having dif-
ferent tags for plural and singular nouns or grouping
them under a single tag. In English, for example, the most
widespread ones are the Penn Treebank tagset [1], with 45
tags including punctuation; the CLAWS5 and CLAWS?7
ones, used in the British National Corpus, with 62 and
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137 tags, respectively. The tagset a system uses is usually
determined by the annotated corpus it is trained on, which
brings the issue of the corpus itself.

In order to be useful in practice, a corpus with POS
annotation should contain sentences that reflect the kind
of text one expects to apply a POS tagger on. Also,
given the nature of POS tagging methods in current NLP
research, the tags should be deductible without having to
analyze syntactic structure. In previous research [2], we
revised the Mac-Morpho corpus [3] in order to provide a
more reliable resource. Here, we present further revisions
in the corpus, combining tags that were difficult for a POS
tagger to discriminate correctly. Our goal was to evaluate
if these revisions would result on further improvements
on POS tagger accuracy.

As for methods, while rule-based systems exist [4],
machine learning-based techniques have been dominant
for years, as in most NLP research. Many algorithms
have been proposed and successfully applied in this task,
usually capable of achieving good results in different
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languages. Still, POS tagging continues to be explored in
search of better algorithms and improvements over exist-
ing ones, since better tagging performance usually helps
other NLP applications. Also, POS tagged data are a rel-
atively big test bed for machine learning methods dealing
with sequence classification.

In Portuguese, recent experiments reported in the lit-
erature include transformation-based learning [5], hidden
Markov models (HMM) and variable length Markov chain
(VLMC) [6], HMM with a character language model [7],
and neural networks with word embeddings [2,8].

Word embeddings are representations of words as
real-valued vectors in a multidimensional space. They
can be generated by many different techniques, rang-
ing from classical approaches based on word frequen-
cies and co-occurrences [9] to neural language models
[10]. Embeddings are usually obtained from huge unan-
notated corpora and can encode syntactic and semantic
information about words.

In contrast, the traditional way to represent words in
NLP systems is to treat each token as a completely inde-
pendent feature. A classifier thus views each word as
a sparse vector with the size of the known vocabulary
having the value 1 in a given dimension and zeros else-
where. Word embeddings, in comparison, have two evi-
dent advantages: they map words to a relatively small
space (a few hundred dimensions or even less) and cap-
ture similarities between words (the type of similarity
varies according to the method used to generate the
embeddings).

In the last few years, their advantages have attracted
the interest of the NLP community in both using them
as input to automatic classifiers [11-13] and in developing
new ways of inducing embeddings [11,14,15].

As in our aforementioned paper [2], we explored the
neural network-based tagger. In this paper, we tested
it under different conditions, experimenting with varied
word embedding models and additional explicit features
such as the presence of capital letters and word end-
ings. We carried out comparisons with other taggers and
found that ours achieves state-of-the-art performance
with 97.57% overall accuracy on the original Mac-Morpho
corpus, 97.48% on our first revised version, and 97.33% on
the second revision presented here.

The remainder of this paper is organized as follows.
The section ‘The corpus and its tagset’ presents the
Mac-Morpho corpus, its tagset, and the changes we
applied to them. In the section ‘Methods’, we described
the model we used to train the tagger. In the section
‘Experimental setup’, we describe in detail the data
used in the experiments and parameters evaluated.
Results and comparison with other systems is found in
‘Results and discussion’, and we present our final words in
the section ‘Conclusions’.
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The corpus and its tagset

The most widespread corpora annotated with POS tags in
Portuguese are Tycho Brahe [16], Mac-Morpho [3], and
Bosque [17]. The first two are larger, with around one mil-
lion tokens. Bosque has around 200,000 tokens in its most
recent version (8.0) and is composed by both Brazilian
and European Portuguese texts. Unfortunately, the three
corpora have incompatible tagsets and are tokenized dif-
ferently, which prevents them from being combined into
one larger resource without losing the richness of each
particular annotation.

Tycho Brahe is a corpus of historical texts, whose
authors were born from the fourteenth to the nineteenth
century. It exhibits a very different writing style and
vocabulary than those of modern Portuguese, and thus,
training a POS tagger on it is only of practical interest to
people dealing with texts from that time span.

Here, we focus on Mac-Morpho because it is the largest
manually POS-tagged corpus of modern Portuguese, col-
lected from Brazilian newspaper articles. Its tagset is
displayed in Table 1 (there are also 19 punctuation tags,
not displayed in the table). We took the revised version
presented in [2], in which many errors from the original

Table 1 Original Mac-Morpho tagset with 22 tags, without
including punctuation tags

Tag Meaning

ADJ Adjective

ADV Adverb

ADV-KS Subordinating connective adverb
ADV-KS-REL Subordinating relative adverb
ART Article

CUR Currency

IN Interjection

KC Coordinating conjunction

KS Subordinating conjunction

N Noun

NPROP Proper noun

NUM Number

PCP Participle

PDEN Denotative word

PREP Preposition

PROADJ Adjective pronoun

PRO-KS Subordinating connective pronoun
PRO-KS-REL Subordinating connective relative pronoun
PROPESS Personal pronoun

PROSUB Nominal pronoun

\% Verb

VAUX Auxiliary verb
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version were corrected, such as sentences with missing
words, repeated sentences, tag mistypes, and a few others.

Missing words were checked following a few heuristic
rules, based on impossible (or near-impossible) combi-
nations like an article being followed by a verb or two
contiguous commas. By reading these sentences, it was
clear that a word was supposed to be there, but for some
reason, it was not.

Such sentences were discarded, since there was no way
to recover the missing word. Repeated sentences were also
removed. Tag mistypes were easily found checking for
any tag not in the corpus tagset and could be manually
corrected.

Besides error correction, the revised version properly
delimits sentence boundaries and does not separate word
contractions (like do for de + o, meaning ‘of the’), which
reflects a real-world scenario. The original corpus pre-
sented such tokens separately but indicated where there
were contractions. Thus, it was easy to redo them when
they occurred. Contracted tokens had as their POS tag the
concatenation of both tags with a plus sign between them;
so, the preposition and article contraction do is tagged as
PREP+ART. Finally, all punctuation tokens were mapped
to a single tag PU.

In this work, we performed more corrections on the cor-
pus. We found a few sentences where empty strings were
assigned a tag, as if they were tokens. This was mainly due
to the problems with punctuation tokens from the original
corpus, and we discarded such sentences.

Also, we introduced another change in the tagset, com-
bining some related tags. This new changes were based on
the Penn Treebank tagset [1], the most widespread POS
tagset in English. These are the tags we merged:

1. Vand VAUX, namely, for non-auxiliary and auxiliary
verbs. Both were merged into V. The motivation for
combining them is that this distinction is actually
related to the syntactic analysis level, where sentence
structure is examined. A POS tagger should not be
expected to do this level of analysis. In fact, it has
been pointed out that at least 30 verbs in Brazilian
Portuguese can work as auxiliaries [18], usually only
needing to precede an infinite verb form (infinitive,
gerund, or participle), and most of them can also be
main verbs on their own. In the Penn Treebank,
there is a tag for modals, which refers to a closed set
of 11 verbs, but other ones working as auxiliaries are
tagged the same way as main verbs. Examples:

Mas se o Brasil comecar a vender café (...) (But if
Brazil starts to sell coffee) Comecar (start) was
originally tagged as VAUX and retagged as V.

Os leilbes de caté comegaram no més passado.
(Coffe auctions started last month) Here, comecaram
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(a different inflection of the same verb above) is the
main verb and therefore has the tag V. However, a
possible sentence in Portuguese is ‘Os leiloes de café
comegaram no més passado a dar lucro’ (Coffe
auction started to make profit last month). In this
case, comecaram works as an auxiliary and is not
close to the main verb (dar), which would make it
very hard for the tagger to get the right answer. For
comparison, the verb start in the English translation
would have the same tag in both cases.

2. PRO-KS and PRO-KS-REL merged into PRO-KS
(and also their variants including preposition
contraction). Both tags refer to relative pronouns
introducing subordinate clauses, but PRO-KS-REL
must have a referent in the sentence. Both usages are
exemplified below:

Pode exigir apenas o que havia deixado de cobrar.
(One can demand only what he had not charged
before). Here, o que (what) does not have an
explicit referent, and thus, both tokens are tagged as
PRO-KS.

O cliente terd acesso a 70% da remuneragdo que
exceder a da poupanga. (The client will have
access to 70% of the remuneration that exceeds the
saving funds). In this case, que (that) refers to
something mentioned before and was tagged as
PRO-KS-REL.

The motivation here is that detecting correferences is
a difficult NLP problem itself, so we can’t expect a
POS tagger to perform it as a subtask. The Penn
Treebank makes no such distinction.

3. ADV-KS and ADV-KS-REL merged into ADV-KS.
Analogous to the last item but related to adverbs
instead of pronouns. The Penn Treebank also does
not make this distinction. Examples:

A descoberta pode ajudar médicos a decidirem
quando aplicar um tratamento (...) (The discovery
may help doctors decide when to apply a treatment).
Here, quando (when) is tagged as ADV-KS because
there is no referred time.

Em comparagéo a outubro, quando a alta havia sido
de 5,7% (...) (In comparison with October, when

the increase had been of 5.7%). Here, quando refers
to an explicit moment and thus is tagged as
ADV-KS-REL.

Lastly, we changed the way clitic pronouns are split from
verbs. The original version presented verbs and pronouns
separately, with an indication in the verb tag that it was
followed by a clitic. For example:

Sente se frustrado por ndo ter jogado o mundial de os
EUA? (Do you feel frustrated for not playing the USA
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World Cup?). In actual running text, the first two tokens
would be written sente-se but here were split into two. The
verb itself, sente, receives the tag V| +, while the clitic has
the usual pronoun tag PROPESS.

The revised version, instead, presented verbs with a
trailing hyphen, and no distinction in its tag. This was
done in order to conform to the Bosque corpus. The
example sentence above became Sente- se frustrado por
(..), with the tags V and PROPESS for the first two tokens.

However, leaving the hyphen with the verb increases
data sparsity, and so we decided to leave it with the pro-
noun. Thus, in the latest Mac-Morpho version, we have
Sente -se frutrado (...), with the same tags as in the first
revision.

Figure 1 illustrates the tag frequency distribution after
our changes in the corpus. As usual, nouns are by far
the most common part of speech, followed by punctua-
tion signs, verbs, proper names, and prepositions. Some
preposition contractions are very rare, as are interjections.

It is interesting to note that two points make the con-
text of each token very important in order to determine
its correct tag. In short adverbial or prepositional multi-
word expressions, tokens are tagged as adverbs or prepo-
sitions. For example, in the phrase por antecipacdo (by
anticipation), both tokens are tagged as adverbs instead
of preposition and noun, since they are equivalent to
antecipadamente (anticipatedly).

Additionally, the proper name category covers not
only person and place names (such as Jodo or Brasil)
but also entity names composed of existing words. For
example, whereas ministério and agricultura are com-
mon nouns when used on their own, the phrase Min-
istério da Agricultura (Ministry of Agriculture), referring
to the actual entity, is a proper name, and the three
tokens are tagged as such. Without text understanding,
the only hint of their actual POS is the presence of capital
letters.
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Methods

We implemented the model introduced in [19] for train-
ing a POS tagger. It is based on a multilayer perceptron
neural network that receives word representations in the
form of numeric vectors and learns to predict their part-
of-speech from a set of predefined tags U. These word
representations, also known as word embeddings, have
a fixed number d of dimensions and are generated by
unsupervised methods, explained later in this section.

In order to tag the tokens in a sentence, the tagger takes
a window of tokens at a time and maps them to their
vectors, which are concatenated and fed to the neural net-
work. In the case of tokens in the beginning or the end of
a sentence, the window is filled with pseudo-tokens serv-
ing as padding. These pseudo-tokens also have their own
vectors.

The concatenated vectors go through a standard hidden
layer, which performs a weighted sum followed by a non-
linear function. We follow [19] and use an approximate
and faster version of the hyperbolic tangent, shown in
Equation 1. The output layer performs another weighted
sum on the resulting values.

0, ifx<0
hardtanh(x) = { 1, ifx>1 (1)

x, otherwise.

The network outputs a score f,,(¢) for assigning each tag
u € U to the token ¢ in the middle of the input window.
Figure 2 exemplifies a window of three tokens mapped
into vectors, and Figure 3 shows the outline of the network
that processes it.

The output of the network is combined with a tag tran-
sition score, also learned during training, which encodes
knowledge such as ‘an article is very likely to be followed
by a noun’. A matrix A has in each cell A, the score for

9.70% 9.66%

2.62%2.47%

25k 2.07%1 719, 1 630,

1.28%1.22% 1.15%
0.67% 0.60%
0.26% 0.18% 0.11% 0.08% 0.06% 0.03% 0.02% 0.01%

Figure 1 Tag frequency distribution in Mac-Morpho after changes performed in this work.
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| Dados | serdo | apurados | — l 0.82]0.45] ... ‘ | -0.65]0.18 ... | ‘ 0.13-0.77] ... ‘

Figure 2 Example of a window of three tokens being converted into feature vectors.

a token tagged with u being followed by a token tagged
with v. Additionally, the row Ao, contains the scores for
starting a sentence with each tag u.

Thus, after network scores have been produced for all
tokens in the sentence x of length T, the final score for a
tag sequence y is the following:

T
s(x,y) = Z (e () + Ay, _1,) - 2)
=1

The final system answer is the tag sequence y* with the
highest score. It can be determined in polynomial time
using the Viterbi algorithm [21].

Training

Training the system consists in adjusting three sets of
parameters: the neural network connection weights, the
values of the input vectors, and the tag transition scores.
Our training procedure follows [22]: all adjustments are

made in order to maximize the likelihood over the training
data. Formally, we want to maximize the following sum:

Y pOlx6). (3)

) eT

Where 7 symbolizes our set of (sentence, POS tags)
pairs, and 6 represents the system parameters. The proba-
bility p(y|x, 6) for a given tag sequence y can be computed
from the model output using a softmax operation:

e&5®)

Z}, esS@)) ()

p(y|x! 9) =

Where j iterates over all possible tag sequences. The log-
likelihood, more suited to work with low probabilities, is
determined as:

logp(ylx, 6) = s(x,y) — logadd;s(x, )). (5)

Token 1

Token 2

Token 3

simplicity, biases and some connections were omitted.

Figure 3 Neural network outline. In the input layer, there is one neuron for each dimension in the combined vectors of the token window (each
vector having length d). The hidden and output layers are as in conventional MLP networks [20]. They have np, and |U| neurons, respectively. For
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With logadd; being shorthand for

logadd,z; = log (Z e ) (6)
i

The logadd term includes every possible tag sequence,
and its size grows exponentially with the sentence size.
However, it can be computed in linear time using dynamic
programming techniques. The computation starts with
the first token x;, whose score for each tag u is sim-
ply the sum of the tag transition score from the sentence
beginning to # and the neural network output for .

s(x1,u) = fu(x1) + Aou. (7)

The logadd in the first token is then trivially resolved to
the score itself:

1
logadd;s (x1, ) = log Z &S (et

t=1 (8)
= log &1

=S(9C1,).

Then, considering partial tag sequences j; from the first
to the ¢th token and ending with tag «, we have:

8¢(u) = IOgadd(jgvz:u)S (x'i,ji)

= logadd, logadd(ji r—1=vji=u)S (xi_l,jg_l)

+ Ava + fu (50) ®)
= logadd,, 8;—1(v) + Avu + fu(xe)
= fu(x) + logadd, (8;—1(v) + Ayu) .

With v iterating over all tags at the token in position £—1.
At the last token, we have:
logaddjlfs (x{,;{) = logadd, 8, (v). (10)
Recalling Equation 5, we want to maximize the score for
the correct tag sequence at the expense of the scores for
all others. We call the opposite of that equation the cost
function, which we want to minimize. It is a function of all
the system parameters, which include the neural network
and the transition score matrix:
C(6) = logadd; s(x,)) — s(x, ). (11)
We adjust all the parameters doing a gradient descent
over the cost function. In other words, it means finding
the negative gradient of the error function with respect to
each of the system parameters in all instances of the train-
ing set. Then, for each parameter, its respective gradient is
multiplied by the learning rate and added to it.
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During training, after the system has produced an
answer for a given sentence, we initialize two gradient
matrices. One has the gradients with respect to the neu-
ral network score for each token/tag combination, and the
other has the gradients with respect to the score of each
tag transition. Both matrices are initialized with the value
0 in all cells:

aC
=0,1<t<T,Vueland

=0Vu,vel.
fu(t) 0Ayy

(12)

First, we accumulate the negative gradients over the
logadd part of (11), which we want to minimize. Applying
the chain rule, we have:

T (W)
— Yu.

S ST

Then, we compute the gradient at each token, from the
last to first:

aClogadd _
057(u)

(13)

elst—l (”)+Au,v

aC 0C
logadd _ Z logadd ' (14)
08,1 (u) 05,(v) 3, 100wy
At each token ¢, we update the matrices with gradients
for the neural network and the transition scores:

9C _— 8C1°gadd 98¢ (u) . aClogacld
u®) — 38:(w) fu(t)  38,(w)

dC  3Ciogadd 38;(v)  3Ciogada €10 FAur
Ay, 38 0Au,  38:(v) Y, 10+

(15)

Finally, we deal with the other term from (11), which we
want to maximize. We add 1 to the gradient matrices at
each point corresponding to a correct token/tag assign-
ment or a tag/tag transition in the training tag sequence y.

oC oC
+=1 and ———
afy, (@) 0Ay, 1y

+=1 V& (16)

We use the well-established backpropagation algorithm
to adjust the network weights. When performing it, we
backpropagate error gradients until the input layer, which
allows us to adjust the word representations as if they were
neural network weights.

Word representations

The first level of this architecture is based on word embed-
dings, i.e., a vector space where each word has a corre-
sponding real-valued vector®. The only desideratum in the
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representations is that similar words have similar vectors,
according to euclidian distance or cosine similarity. By
similar, we mean words that tend to be used in the same
contexts and usually belong to the same part-of-speech
category.

Word embeddings allow the automatic classifier to
detect words that should be treated similarly. Also, words
not seen in the training data for a tagging task are not
completely unknown, as long as they have a feature vector.
Thus, out-of-vocabulary (OOV) impact is expected to be
smaller.

Collobert et al. [22] used a neural language model to
initialize their word representations. This model is based
on a neural network that assigns scores to windows of 11
tokens and learns to output values for positive examples
(token windows extracted from a corpus) higher than for
negatives ones (random perturbations of positive exam-
ples). The corrections in the network parameters were
backpropagated to the word representations, which were
adjusted similarly to network weights. After training the
model, words with similar meaning and usage had vectors
with a small euclidian distance.

These kinds of word representations have been suc-
cessfully used in a myriad of NLP tasks. Collobert
et al. [22] also used their architecture to deal with named
entity recognition, syntactic chunking, and semantic role
labeling. In [11], this model was extended to perform
constituency parsing. A new version of the semantic role
labeling system was successfully applied to Portuguese in
[23]. Luong et al. [24] employed a recursive model to learn
vector representations for phrases and used them to per-
form syntactic parsing. In [12], a similar model is used in
the task of sentiment analysis.

The number of dimensions in the vectors may vary.
In general, the more dimensions they have, the better
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representations can be achieved. However, if vectors are
too big, processing them will be slower. The embeddings
used in systems like the ones cited above have 50 to 100
dimensions.

Feature vectors can also represent discrete attributes
such as the presence of capitalization. To this end, each
possible value of the attribute must have a correspond-
ing vector; in the case of capitalization, values could be:
all lowercase letters, initial uppercase letter, other combi-
nations, and a N/A value for punctuation and numbers.
Thus, in order to create the full representation of a token,
its word vector is concatenated with the vectors for all
attributes. Figure 4 exemplifies this process.

Word representations, however, may be obtained by
other means. Huang et al. [14] present a variation of the
neural language model, where the network score is based
not only on a small window of text but also on a vector
obtained by averaging all words in a document. By doing
this, the similarity between their resulting vectors also
reflects words that appear in the same documents - and
which tend to describe similar concepts. However, since
we are dealing with POS tagging, we are more interested
in a finer grained similarity, not concept similarity.

Turian et al. [25] report that different kinds of repre-
sentations can be successfully used by a classifier in NLP
tasks. They tested the impact of word representations
when used as additional features for a classifier in the
tasks of named entity recognition and syntactic chunk-
ing. While some representations were better than others
in some situations, all of them improved performance.

Due to the fact that training a neural language model
is very time consuming, Fonseca and Rosa [2] employed
methods based on distributional semantics [9] for their
POS tagger, which are much faster. They used the hyper-
space analogue to language (HAL) [26], a method based

nautico — | -0,81 0,09 | -0,21
Feature vectors for word nao — 0,97 | -0,34 | 0,16
types in vocabulary nés — | 049 | 0,82 | 0,63
All lowercase — 0,04 0,72
Uppercase initial — | -0,59 0,18
Feature vectors for
capitalization Other combinations — | -0,12 | -0,65
N/A — | 0,94 | 051
nés — 1049 | 0,82 | 0,63 | 0,04 | 0,72
. . nio —» 1097 | -0,34 | 0,16 | 0,04 | 0,72
Tokens in running text
Nao — [ 097 | -0,34 | 0,16 | -0,59 | 0,18
NAO — | 097 | -0,34 | 0,16 | -0,12 | -0,65
Figure 4 Examples of five-dimensional feature vectors representing tokens. They are obtained by combining a three-dimensional word-type
vector with a two-dimensional capitalization vector.
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Table 2 Corpora size
Corpus Train Development Test Total Tagset

Sentences 42,022 2,211 9,141 53,374

Mac-Morpho v1 41
Tokens 957,439 50,232 213,794 1,221,465
Sentences 42,742 2,249 4,999 49,990

Mac-Morpho v2 30
Tokens 807,818 43,145 94,995 945,958
Sentences 37,948 1,997 9,987 49,932

Mac-Morpho v3 26
Tokens 728497 38,881 178,373 945,751
Sentences 29,163 1,535 10,234 40,932

Tycho Brahe 265
Tokens 734,922 40,679 259,991 1,035,592

on counting occurrences of words next to each other, thus
obtaining a large count matrix, and then reducing the
matrix dimensionality by selecting the dimensions with
the highest variance (50 in their experiments). In [27],
word representations generated with similar methods are
also employed for POS tagging in English; however, the
system architecture in that work is very different from the
one explored here.

Another interesting strategy for generating vectors is the
skip-gram modeling from [15], in which a log-linear clas-
sifier tries to predict words surrounding a given word. The
prediction is based on the neural language model intro-
duced in [10], which assigns a score to each word in the
vocabulary. In order to overcome the huge quantity of
possible answers, the output is organized in a binary tree.
Therefore, instead of expensive operations involving the
vocabulary size V, the system output follows a path of
size logo V. Since the log-linear classifier has no hidden
layer, the algorithm is substantially faster than the origi-
nal neural language model. The authors show that vectors

Table 3 Attributes represented by vectors

Attributes Vector length

Word-type pessoa itself 50
All lowercase
Ending ina
Ending in oa
Ending in soa
Ending in ssoa
Ending in essoa
Beginning with p
Beginning with pe
Beginning with pes

Beginning with pess

NN N NN NN NN N U

Beginning with pesso

Total

~
wu

induced with skip-gram capture syntactic and semantic
similarity between words.

In this work, we experimented with word embeddings
generated by different methods, aiming at comparing their
usefulness in POS tagging. We used HAL implementa-
tion from semantic vectors [28,29], like Fonseca and Rosa.
In addition, we tried a neural language model (the same
algorithm used by Collobert et al. in [22]) with the imple-
mentation from word2embeddings [30] and the skip-gram
implementation from gensim [31,32].

Besides trying new embeddings, we significantly
increased our data: we combined a January 2014
Wikipedia dump with the PLN-BR corpus [33] and a
new corpus we compiled collecting articles from the G1
news website (http://www.gl.com.br). In total, this yielded
around 240 million tokens, roughly 100 million more than
the data used in [2].

In the preprocessing step, we converted any digit in
the corpus to nine, in order to reduce data sparsity. Our
tokenizer, based on regular expressions, also splits clitic
pronouns from verbs in the same way they appear in our
new version of Mac-Morpho (the hyphen is left with the
pronoun). We generated vectors for all word types appear-
ing at least 20 times in the combined corpus (ignoring
differences in uppercase or lowercase), which resulted in a
vocabulary of 160,270 items. All words not in this list were

Table 4 Tagger parameters used in the experiments

Parameter Value
Word window size 5
Hidden layer size 100
Word embedding dimensions 50
Capitalization embedding dimensions 5
Prefix embedding dimensions 2
Suffix embedding dimensions 2

001

Learning rate (at epoch i) =

Training epochs 20
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Table 5 Tagging accuracy on Mac-Morpho v1
Input features Only words Capitalization Prefix + suffix All three

All (%) 00V (%) All (%) OO0V (%) All (%) OO0V (%) All (%) OO0V (%)
Random 95.10 70.75 96.65 84.58 96.12 83.64 9733 9237
HAL 95.84 78.14 97.04 86.87 96.36 86.35 97.41 9234
NLM 96.34 85.68 97.44 91.71 96.56 88.62 97.57 93.38
SG 96.10 82.83 97.24 89.99 96.47 87.70 97.44 9332

mapped to a single vector that was generated randomly.
Our representations had 50 dimensions.

The running time needed to obtain the representations
is also a factor to be considered. The neural language
model vectors were obtained after around 10 days run-
ning on a 2.7 GHz Intel Xeon processor in a Linux server.
There is no exact time after which the vectors are ready,
so we verified the quality of the representations empiri-
cally by querying the model for the most similar words to
a given one. When we saw no further improvement, we
finished the process. Skip-gram and HAL vectors, on the
other hand, were generated in a few hours in the same
computer architecture.

Experimental setup

Corpora

We trained our tagger on three versions of the Mac-
Morpho corpus: the original one, using the same train/test
split from [34] (referred to as Mac-Morpho v1); the revi-
sion presented in [2] (Mac-Morpho v2); and the new
version described here (Mac-Morpho v3). Additionally,
we experimented on the Tycho Brahe corpus [16], also
using the same split from [34].

We split Mac-Morpho v3 into 80% of the sentences for
training and the remaining 20% for testing (In the work
presented in [2], the split was 90% and 10%). We also
set aside 5% of all training portions for parameter valida-
tion, following [34]. Table 2 shows the size in numbers of
sentences and tokens for all corpora we used.

The Tycho Brahe tagset is much larger than the others
because it includes morphological information in its tags,
such as gender, number, verb tense, etc. It also has a
separate tag for common verbs like ser, estar (both can
translate into to be), and ter (to have).

Table 6 Tagging accuracy on Mac-Morpho v2

Word embeddings

We tried different word representations as input to our
neural networks in order to evaluate their impact, if any.
As already mentioned, we generated representations with
HAL, a neural language model (NLM) and skip-grams
(SG). As a baseline, we also tried randomly initialized vec-
tors, which were generated for all word types appearing
at least twice in the training data. All other tokens were
mapped to a single vector. In all models, vectors represent-
ing the padding to the left and to the right of the sentence
were generated randomly.

One of the additional attributes we evaluated was cap-
italization, which is very important to correctly detect
proper names. The possible values for capitalization were
five: all lowercase, initial uppercase, other case combina-
tions, non-alphabetic tokens, and padding. Vectors with
five dimensions were randomly generated for these and
adjusted during training.

We also experimented training models without any
information about capitalization. The purpose of this
was not only measuring the performance gain of observ-
ing capital letters but also obtaining a tagger insensitive
to case variation. This is particularly interesting when
dealing with user-generated texts from the Web, which
often display inconsistent capitalization usage, a potential
problem for POS taggers [35].

Moreover, we measured the impact of adding two other
attributes: prefixes and suffixes, also used in the ESL tag-
ger from [36] (for simplicity, we call the first and the last
few characters of a word, respectively, a prefix and a suf-
fix, even if it is not linguistically accurate). For each length
from one to five, we collected all prefixes and suffixes
appearing in at least five word types in the training data
and initialized a random vector with two dimensions for

Input features Only words Capitalization Prefix + suffix All three

All (%) 00V (%) All (%) OO0V (%) All (%) OO0V (%) All (%) 00V (%)
Random 94.99 74.46 96.50 83.72 96.04 86.37 97.25 93.40
HAL 95.61 77.81 96.94 85.95 96.25 87.35 97.29 9291
NLM 96.31 85.64 97.32 91.16 96.46 90.04 97.48 94.34
SG 95.89 82.56 97.14 88.64 96.41 89.17 97.35 93.61
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Table 7 Tagging accuracy on Mac-Morpho v3

Page 10 of 14

Input features Only words Capitalization Prefix + suffix All three

All (%) OO0V (%) All (%) 00V (%) All (%) 00V (%) All (%) 00V (%)
Random 94.27 69.18 96.06 81.55 95.49 84.02 96.93 91.62
HAL 95.12 74.97 96.61 84.61 95.79 85.49 97.10 91.60
NLM 95.95 85.04 97.21 91.21 96.14 89.01 9733 93.66
SG 95.55 81.58 96.92 8820 96.01 88.13 97.19 93.01

it. Rare prefixes and suffixes of each size share a single
vector.

This means that, in effect, prefixes and suffixes are
implemented as five separate features each. For example,
the vector representation of the word pessoa (person),
using all attributes described above, would be the concate-
nation of vectors as shown in Table 3. If any of the suffixes
or prefixes does not have a feature vector of its own, then
it is mapped to the ‘rare’ suffix or prefix vector.

In all tagger setups, we employed an input word win-
dow of size 5 and 100 neurons in the hidden layer. When
capitalization, prefixes, and suffixes features are used, our
resulting input layer has 375 neurons. The implementa-
tion we used to train our networks has been improved
since its previous publication in [2], allowing for much
faster convergence. We trained our neural networks for 20
epochs using learning rate decay, such that the rate at the
ith epoch was 0‘—?1. Table 4 summarizes the parameters.
Results and discussion
Here, we present results obtained in our experiments for
each corpus. Results for all our configurations are shown
in Tables 5, 6, 7 and 8. For each type of embeddings used
as input, we evaluate accuracy for all tokens and for OOV
ones.

The NLM representations achieved the best results
overall, with the performance difference being more evi-
dent in OOV tokens. This indicates that this vector space
model captures very well the morphosyntactic similarities
between words before any supervised training. SG vectors
deliver a slightly lower accuracy, but the surprising fact is
that HAL vectors can be worse than random initialization
for OOV words in some situations.

Table 8 Tagging accuracy on Tycho Brahe

The only exception to this tendency is the Tycho Brahe
corpus, in which random vectors and NLM are tied with
the best performance considering all tokens. Therefore,
we decided to evaluate if the accuracy differences in
this corpus were statistically significant using the method
described below.

The base rationale was to shuffle the outputs of the
two models being evaluated and estimate how likely it
would be for two random partitions (both containing all
sentences in the test data) to have an accuracy differ-
ence greater than or equal to the one we observed in
the actual results. More specifically, we consider the null
hypothesis that both tagger results came from the same
distribution and estimate the probability p (or signifi-
cance level) that it would generate the actual accuracy
difference.

For each sentence in the test corpus, we pick its cor-
responding tag sequences y] and yj, produced by both
taggers. We assign y] to either a set S; or Sy with the
same probability and y; to the other. We repeat this pro-
cess R times and count the number r of times in which
the accuracy difference between S; and Sy was greater
than or equal to the difference in the actual results. We
then interpret 1%_11 as p. In our experiments, we used
R =1,000.

Using this method, we found that the difference
between NLM and random vectors is not statistically
significant in any of the four configurations (we found
p > 0.3 in all of them). However, in the first two configu-
rations (no extra attributes and using only capitalization),
the results using random vectors are significantly better
than HAL and SG with p < 0.01 and also better than SG
in the fourth configuration with the same value.

Input features Only words Capitalization Prefix + suffix All three

All (%) OO0V (%) All (%) 00V (%) All (%) 00V (%) All (%) 00V (%)
Random 93.59 37.98 94.65 42.73 95.89 7841 96.93 82.61
HAL 93.25 44.95 94.39 49.28 95.83 78.97 96.89 83.02
NLM 93.58 5221 94.67 55.67 95.86 80.91 96.91 84.14
SG 93.46 50.57 94.51 53.82 95.87 80.10 96.83 83.10
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Table 9 Comparison values for Mac-Morpho v1
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Table 11 Comparison values for Mac-Morpho v3

Model All (%) OO0V (%)  Model All (%) 00V (%)
OpenNLP MaxEnt 96.11 89.04 OpenNLP MaxEnt 95.59 88.19
OpenNLP Perceptron 95.31 88.79 OpenNLP Perceptron 94.24 86.16
ESL 97.12 — ESL 96.96 91.50
CharWNN [34] 97.47 92.49 Best values shown in bold.

WNN, caps + suffixes [34] 9742 92.64

Best values shown in bold.

We do not have any conclusive explanation for the better
performance of random vectors in this corpus. A pos-
sibility is that the word embedding models are biased
towards the modern usage of the Portuguese language and
it affects negatively their performance on historical texts,
but this is very hard to measure. Still, all of them had better
performance on OOV tokens than random vectors.

Considering all corpora, results indicate that the more
explicit information that is supplied to the tagger, the
lower is the performance gap between different mod-
els. This makes sense, since having more input data,
the importance of word vectors themselves is relatively
smaller.

Apparently, the addition of all three attributes reaches
a threshold where there is no advantage in using HAL
vectors over random ones for OOV words. This does not
mean that HAL vectors are useless for this task: overall
accuracy using them is always higher than with random
vectors in Mac-Morpho and so is OOV accuracy without
all three attributes.

Capitalization, prefix, and suffix are beneficial to all
models. This is on par with most works in POS tagging for
European languages. We note that their benefit is much
more evident in OOV tokens, as they help the tagger gen-
eralizes beyond the vector space (or, in the case of random
vectors, to have any generalization at all).

For comparison, we present results obtained by other
tagging systems. For Mac-Morpho vl and v2, and the
Tycho Brahe corpus, we present results available in the
literature. We also add comparisons on Mac-Morpho v3
with the ESL-based tagger described in [36]°. In all cor-
pora, we also trained models from the Apache OpenNLP
toolkit [37], which implement maximum entropy- and
perceptron-based classifiers.

Table 10 Comparison values for Mac-Morpho v2

The comparisons include results reported in [34] with
a neural network system similar to ours. Apart from
minor parameter differences, they only used word vectors
obtained with the skip-gram model over a corpus smaller
than ours. Their WNN model is essentially the same as
the one used here, and the CharWNN uses a deep archi-
tecture to analyze all characters in a word instead of fixed
length suffixes.

Tables 9, 10, 11 and 12 show comparison values
obtained with each model. The maximum entropy algo-
rithm consistently achieves the best performance among
the ones in OpenNLP, although it still falls with a consid-
erable gap behind all our models that use the three extra
attributes. The ESL-based tagger achieves a high accuracy
but still lower than ours.

The CharWNN overall performance is very close to
our best model: the difference is 0.1% absolute in Mac-
Morpho vl and 0.17% in v2. In OOV performance, the gap
is slightly larger: 0.74% compared to their best perform-
ing WNN model in v1 and 0.91% in v2. Even comparing
with our skip-gram model, there is still an advantage. This
is probably due to the fact that we use a bigger corpus for
word vector induction.

In the Tycho Brahe corpus, the CharWNN has the best
performance. The finer granularity of the tagset plays an
important role, and the convolutional model seems to
adapt better to it. The WNN network, on the other hand,
performs worse than our best models. This is probably
because we employ larger suffixes and also prefixes. In
general, all models (including ours) perform visibly worse
on OOV tokens from the Tycho Brahe in comparison with
other corpora.

We see a little performance drop in all taggers from v1
to v2 and from v2 to v3, indicating that later versions are
harder to work with (even more so because the ESL tag-
ger version used with Mac-Morpho v2 is an improvement

Table 12 Comparison values for Tycho Brahe

Model All (%) OO0V (%)  Model All (%) OO0V (%)
OpenNLP MaxEnt 95.92 90.17 OpenNLP MaxEnt 95.89 7549
OpenNLP Perceptron 95.44 90.03 OpenNLP Perceptron 94.45 76.80
CharWNN [34] 97.31 93.43 CharWNN [34] 97.17 86.58
WNN, Caps + suffixes [34] 97.24 92.64 WNN, caps + suffixes [34] 96.79 8061

Best values shown in bold.

Best values shown in bold.
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Table 13 Per-tag F' score on versions 2 and 3 of Mac-Morpho
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Tag V2 F' (%) V3 F' (%) Tag V2 F' (%) V3 F' (%)
ADJ 94.93 94.40 PREP+ADV 9231 91.80
ADV 91.97 9139 PREP+ART 99.25 99.15
ADV-KS 60.71 (77.09) 7842 PREP+PROAD) 99.10 98.72
ADV-KS-REL 8444 — PREP+PRO-KS 0(8261) 9244
ART 98.76 9876 PREP+PRO-KS-REL 100.00 —
CUR 9958 99.83 PREP+PROPESS 99.07 9383
IN 7143 55.11 PREP+PROSUB 80.29 82.81
KC 97.83 97.92 PROADJ 96.62 96.05
KS 89.86 88.19 PRO-KS 74.27 (8845) 89.76
N 97.54 97.33 PRO-KS-REL 91.16 —
NPROP 97.00 9.68 PROPESS 9837 98.36
NUM 9.76 95.85 PROSUB 88.69 86.07
PCP 96.80 96.29 PU 99.98 99.98
PDEN 88.71 89.24 v 98.31(97.77) 99.11
PREP 98.08 97.83 VAUX 94.83 —

Values between parentheses are averaged over merged pairs, weighted by frequency.

Merged pairs are shown in bold.

of the one used in v1). The increased difficulty in Mac-
Morpho v2 might be attributed to the new tags created for
preposition contractions, which increased the size of the
tagset.

Concerning v2 and v3, it is more difficult to answer.
Table 13 shows F; scores per tag obtained by our best
models (NLM vectors with capitalization, suffix, and pre-
fix features) in Mac-Morpho v2 and v3. While there is a
performance increase for all tag pairs we merged, con-
firming that they were difficult distinctions for the tagger,
for most others performance is actually worse. A possible
explanation is that learning to distinguish those pairs also
helped to distinguish other neighboring tags.

Table 14 shows the tokens which our best model tagged
wrongly most often, together with the tags they have in
the Mac-Morpho v3 test set and the number of times they
appear. Previous work [38] has also pointed out that gue
and a are the two main sources of errors for POS tag-
gers in Portuguese, since they are frequent words and can
be used in different ways: que may be a pronoun, rela-
tive or not, and a subordinating conjunction; @ may be
an article, preposition, or pronoun. Additionally, in the
Mac-Morpho annotation, they may be considered part of
a proper name or multiword expressions tagged as adverb
or conjunction.

Having all these results in mind, we see that the tag-
ger explored here achieves competitive performance and
sets the state-of-the-art for POS tagging with the new
version of Mac-Morpho. The benefit of distributed word
representations obtained with a neural language model

(or even with a skip-gram model) is more evident when
it comes to tagging words that did not appear in the
supervised training data, but that are part of the model’s
vocabulary.

Conclusions

In this work, we presented a new version of the Mac-
Morpho corpus, with error corrections, a new train/test
split and some tag merges. We used this new resource
to evaluate the performance of a neural network-based

Table 14 Most common wrongly tagged tokens and the
tags they have in Mac-Morpho v3 test data

Token Tags Times

que ADV, PDEN, PROSUB, NPROP, ADV-KS, PRO-KS, 383
KS, PROADJ, ADJ

a ADV, KC, PROSUB, NPROP, PROPESS, KS, PROAD), 161
IN, ART, PREP

o) ADV, PROSUB, NPROP, PROPESS, PRO-KS, N, KS, ART 137

como ADV-KS, ADV, NPROP, KC, KS, IN, PREP 127

de ADV, PDEN, NPROP, N, KS, PREP 103

um ADV, PROSUB, ART, N, PROADJ, NUM, NPROP 68

até ADV, PDEN, KS, PREP 60

uma ADV, PROSUB, NPROP, N, NUM, IN, ART 59

ao ADV, PDEN, PREP+PRO-KS, NPROP, PREP+PROSUB, 59
PREP+ART, PREP

mais ADV, KC, PROSUB, NPROP, KS, PROADJ, PREP 52
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POS tagger and the impact of different kinds of word
embeddings and attributes used as input.

We compared the effect of using word vectors gener-
ated with the hyperspace analogue to language, a neural
language model, and the skip-gram model. The neural lan-
guage model is clearly the best suited for the task, being
especially useful for providing knowledge about out-of-
vocabulary words. SG vectors come a little behind, while
HAL vectors do not perform as well as the others.

The impact of observing capitalization, prefixes, and
suffixes was also measured. While they were always ben-
eficial in our experiments, a tagger trained with the neu-
ral language model has most substantial performance
improvements in OOV words.

Our new version of Mac-Morpho is available at http://
nilc.icmc.usp.br/macmorpho/, along with previous ver-
sions of the corpus. Our tagger is at http://nilc.icmc.sc.
usp.br/nlpnet/. We provide two versions of trained model
files to be used with our tagger, both obtained with the
neural language model and prefix/suffix features, but one
with capitalization features and the other without. The lat-
ter is expected to be more useful when tagging texts with
little consistency in capital letter usage. Our tagger can
also be trained in new corpora or in other languages.

Endnotes

2 Actually, not only words, but rather all tokens,
including punctuation, numbers, etc. can have a feature
vector. We use the term word here because it is
commonly found in the literature.
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