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Abstract 

Objective:  Single cell methodology enables detection and quantification of transcriptional changes and unravel-
ling dynamic aspects of the transcriptional heterogeneity not accessible using bulk sequencing approaches. We have 
applied single-cell RNA-sequencing (scRNA-seq) to fresh human bone marrow CD34+ cells and profiled 391 single 
hematopoietic stem/progenitor cells (HSPCs) from healthy donors to characterize lineage- and stage-specific tran-
scription during hematopoiesis.

Results:  Cells clustered into six distinct groups, which could be assigned to known HSPC subpopulations based on 
lineage specific genes. Reconstruction of differentiation trajectories in single cells revealed four committed lineages 
derived from HSCs, as well as dynamic expression changes underlying cell fate during early erythroid-megakaryocytic, 
lymphoid, and granulocyte-monocyte differentiation. A similar non-hierarchical pattern of hematopoiesis could be 
derived from analysis of published single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), 
consistent with a sequential relationship between chromatin dynamics and regulation of gene expression during 
lineage commitment (first, altered chromatin conformation, then mRNA transcription). Computationally, we have 
reconstructed molecular trajectories connecting HSCs directly to four hematopoietic lineages. Integration of long 
noncoding RNA (lncRNA) expression from the same cells demonstrated mRNA transcriptome, lncRNA, and the 
epigenome were highly homologous in their pattern of gene activation and suppression during hematopoietic cell 
differentiation.
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Introduction
Hematopoiesis has been modeled as a stepwise process 
of sequential binary decisions, associated functionally 
with loss of self-renewal, upregulation of transcription 
factors, and downstream gene expression characteristics 
of progenitor cells and their mature progenies [1–4]. Self-
renewing HSCs and MPPs are infrequent; oligopotent 

and unipotent progenitors have briefer life spans, 
increase numerically, and ultimately, differentiate into 
mature blood cell types. From MPPs, the common lin-
eages for myelopoiesis (common myeloid progenitor, 
CMP) and lymphopoiesis (common lymphoid progeni-
tor, CLP) are segregated. In myeloid differentiation, oli-
gopotent CMPs undergo further restriction into bivalent 
granulocyte-monocyte progenitors (GMPs) of granu-
locytes and monocytes, and megakaryocyte-erythroid 
progenitors (MEPs) provide platelets and red blood cells. 
Hematopoiesis is also highly responsive to environmen-
tal alteration, such as blood loss or in confrontation of 

Open Access

BMC Research Notes

*Correspondence:  shouguo.gao@nih.gov
†Xin Zhao and Shouguo Gao contributed equally to this work
1 Hematology Branch, National Heart, Lung and Blood Institute, National 
Institutes of Health, Bethesda, MD 20892, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-8275-0598
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-020-05357-y&domain=pdf


Page 2 of 8Zhao et al. BMC Res Notes          (2020) 13:514 

infectious agents. Under stress, regulation of hemat-
opoiesis involves HSCs to exit from quiescence and entry 
into differentiation pathways.

Methods utilized for decades to define events in blood 
production depend on considerable manipulation of 
cells in the laboratory [physical stresses of temperature 
changes, altered gravity during centrifugation, and ambi-
ent oxygen concentrations much higher than in bone 
marrow (BM)]. These methods are convenient, but their 
experimental conditions often predicate on existing 
models. Novel methods, which are able to interrogate 
single cells, to generate vast amounts of data from each 
cell, and to minimally manipulate specimens have chal-
lenged established models of hematopoiesis. Progenitor 
populations have been revealed as highly heterogeneous 
in both developmental stages and fate potentials [5–13]. 
The marrow hematopoietic hierarchy of adults appears 
dominated by two progenitor classes (multipotent and 
unipotent progenitors) over scarce oligopotent progeni-
tors [8].

Previously we used single cell RNA sequencing 
(scRNA-seq) of fresh BM from healthy donors as a ref-
erence to identify aneuploidy cells [14]. In the current 
analysis, we had a comprehensive analysis to examine the 
presence of dynamic aspects of the transcriptional het-
erogeneity. Our data revealed a continuum of transition 
states among the progenitor groups. Further integrative 
analysis with lncRNA and scATAC-seq data proved the 
collaboration of transcriptome and epigenome during 
hematopoietic differentiation.

Main text
Methods
Subjects, samples, scRNA‑seq, and quantitative RT‑PCR
Sample collection and scRNA-sequencing were described 
in previous study [14]. BM was collected from healthy 
donors, and Lin(CD3CD14CD19)−CD34+CD38− and 
Lin(CD3CD14CD19)− CD34+CD38+ populations were 
sorted. SMARTer RNA amplification was performed with 
C1 Fluidigm, and libraries were sequenced with HiSeq-
2500. Lineage-specific mRNAs and two housekeeping 
genes were pre-amplified and analyzed using quantitative 
RT-PCR.

Data analysis
The detailed workflow is presented in Fig.  1a. In brief, 
Subread was used to align reads to the human hg19 
genome and featureCounts to assign reads to genes using 
ENSEMBL annotation. Quiescence of CD38− cells were 
characterized with GSEA. Highly variable genes (HVGs) 
across single cells that identified by the Seurat were 
applied to PCA and tSNE, and cells were clustered with 
DBSCAN. HSPC type was assigned to each cluster based 

on the overlapping significance between HSPC- and 
cluster-specific genes. Dimensionality reduction was also 
performed using diffusion map [15], implemented in the 
destiny R package.

Gene set co-expression analysis (GSCA) [16] allowed 
calculation of pairwise correlations within a gene set, in 
three branches, which formed three distinct correlation 
vectors. The Euclidean distance of the three correla-
tion vectors was calculated to determine differential co-
expression of a predefined gene set.

We downloaded raw data for GSE75478 [11] from the 
GEO repository, in which RNA sequencing was applied 
to ~ 1000 sorted HSPCs. Expression of lncRNAs anno-
tated in Gencode was calculated. We checked expres-
sion lineage specificity of lncRNA neighboring mRNAs 
(< 50,000 bases) to identify their co-operation in differ-
entiation. The single-cell assay for transposase-accessi-
ble chromatin by sequencing (scATAC-seq) profiles of 
~ 2000 cells with different hematopoietic cell types [17] 
were downloaded.

Results
We enriched cells in the more primitive Lin(CD3CD14C
D19)−CD34+CD38− compartment and more differenti-
ated Lin(CD3CD14CD19)−CD34+CD38+ compartment 
for scRNA-seq with an average depth of 5–20 million 
read pairs [18]. Overall, 391 cells across four donors were 
retained for further analyses.

Cellular diversity and differentiation trajectories in HSPCs
As our results of this part were comparable to previ-
ous studies, including cell populations and differen-
tiation trajectories [7, 14, 15, 17], the results were only 
briefed here and the details were shown in supplemen-
tal results (Additional file 1). Note that our analysis was 
more comprehensive and adopted more approaches 
(Seurat, SEPA, destiny, PAGA, and in-house programs) 
than previous studies, thus provided a complete view of 
hematopoiesis from different angles. Firstly, our analy-
sis provided important confirmation and extension of 
scRNA-seq work for understanding hematopoietic hier-
archy. Secondly, instead of examining the expression of 
a few known hematopoietic genes, our study character-
ized expression patterns of around 30 membrane marker 
genes, transcription factors, and lineage-specific mRNAs. 
Statistical analysis with SEPA further extended the gene 
list involved in hematopoiesis. Thirdly, in this study, 
expressions of some genes in the same cells were vali-
dated with RT-PCR. Our analysis provided a relatively 
complete view to hematologists.

Single cells within Lin−CD34+CD38− and 
Lin−CD34+CD38+ compartments showed fundamen-
tally different gene expression profiles (Fig. 1b, Additional 
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Fig. 1  Heterogeneity of hematopoietic stem and progenitor cells quantified by scRNA-seq. a Schematic of bioinformatics analysis workflow to 
analyze scRNA-seq data. b A t-distributed Stochastic Neighbor Embedding (tSNE) plot of single-cell gene expression data. Each dot represents 
one cell. Cells were labelled based on expression of a surface marker CD38. c Unsupervised hierarchical clustering of gene expression data for all 
cells. Clustering was performed by using all 2093 variable genes across all cells. Top 10 genes (row) enriched in each cluster (column) are displayed 
in a heatmap, showing gene expression on a log2 scale from black to yellow (low to high). d A GSEA plot shows decreased expression of a gene 
set involved in cell quiescence in Lin−CD34+CD38+ cells vs Lin−CD34+CD38− cells. e A GSEA plot represents increased expression of a gene set 
involved in cell cycling in Lin−CD34+CD38+ cells relative to Lin−CD34+CD38− cells
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file 2: Figure S1A). Clustering analysis allowed us to cre-
ate a detailed map that included six transcriptionally 
homogeneous subpopulations (Fig.  1c). Trajectory anal-
ysis revealed an early split of fate decisions from HSCs 
towards erythroid/megakaryocytes and myelo/lymphoid 
cells, which separated further into lymphoid and neu-
tro/monocyte progenitors (Additional file  3: Table  S1). 
Several well-characterized transcriptional factors essen-
tial for lineage commitment displayed strong dynamics 
in one or more of the lineages, distinct among lineage 
trajectories (Additional file  2: Figure S5A). A list of top 
genes that were dynamically expressed along with dif-
ferentiation from stem cells to different progenitors was 
shown in Additional file 4: Table S2.

Quiescence of hematopoietic stem cells
A key component and important driver of transcriptional 
heterogeneity and cell decision processes is the cell cycle 
[19, 20]. Quiescence is a fundamental characteristic of 
hematopoietic stem cells, as most of them reside in G0; 
quiescence is believed to protect HSCs from functional 
exhaustion and biochemical insults [21]. We anticipated 
that genes related to quiescence should be active in the 
stem cell population and genes related to cell cycle to 
be inactive. We first sought to dissect cell cycle states 
between the two major populations of Lin−CD34+CD38− 
and Lin−CD34+CD38+ cells. When the complete dif-
ferential gene expression dataset was submitted to Gene 
Set Enrichment Analysis, Lin−CD34+CD38+ cells dis-
played decreased expression of quiescence-related genes 
(Fig.  1d, FDR = 0) and enhancement of cell cycle genes 
(Fig. 1e, FDR = 0), compared to Lin−CD34+CD38− cells. 
We next took advantage of a recently reported predictive 
algorithm for allocating individual cells to G0/G1, S, and 
G2/M cell cycle categories based on single-cell transcrip-
tomes [22]. Distribution of single cells across these three 
cell cycle categories was in agreement with enrichment of 
cell cycle terms in genes upregulated in CD38+ subpopu-
lations (Additional file 2: Figure S1C). Such a large-scale 
transition of cells to S and G2/M phases with differentia-
tion was consistent with other reports [23–25], and sup-
ported the validity of our single-cell results.

Identification of differentially co‑expressed pathways 
with differentiation
Genes do not function independently but rather interact 
in concert through a complex regulatory network. We 
sought to identify differences in co-expression patterns at 
different hematopoietic cell stages. We employed GSCA, 
which systematically identifies differentially co-expressed 
modules between stem cells and lineage differentiation 
populations. Application of GSCA on the KEGG pathway 

sets revealed that certain pathways were differentially co-
expressed at different hematopoiesis stages (Additional 
file 5: Table S3).

The top differentially expressed pathways mostly 
related to hematopoiesis. The most differentially co-regu-
lated pathway among the three branches was the hemat-
opoietic cell lineage (p < 0.001, DI = 0.146); in detail, 
co-expression relationships in the network displayed 
specific regulatory alteration or conservation (Fig.  2a). 
For example, co-expression between HLA-DRB5 and 
HLA-DRB1 was conserved during differentiation. Co-
expression between MME and DNTT was strong in 
MEP, consistent with downregulation of both genes dur-
ing erythroid differentiation; decreased co-expression 
of MME and DNTT in myelo/lymphoid could be attrib-
uted to diverse expression levels in myeloid cells and 
lymphoid cells. Co-expression between CD36 and other 
genes including DNTT and MME was apparent along 
the erythroid developmental pathway. DNA-replication 
related genes exhibited decreasing co-expressed pat-
terns in both erythroid and myeloid populations (Fig. 2b), 
indicating decreased DNA replication activity with cell 
differentiation and these genes were correlated with this 
process.

lncRNAs are correlated with differentiation
lncRNAs are defined as a subclass of noncoding RNAs 
that are longer than 200 nucleotides lacking protein cod-
ing capacity [26]. They have emerged as novel regulators 
of gene expression, transcriptionally and post-transcrip-
tionally. lncRNAs are expressed in a cell type-specific 
manner and control the development of several line-
ages in the hematopoietic system and immune response 
[26]. We applied principal component analysis (PCA) 
using highly variable lncRNAs in our dataset (Fig.  3a) 
and expression patterns of lncRNAs in single CD34+ 
cells were highly stage- and lineage-specific. Principal 
component 1 showed two different branches from HSCs 
towards erythroid/megakaryocyte and myeloid/lym-
phoid, respectively; principal component 2 reflected the 
difference between HSCs and their progenies.

We further projected lncRNAs to their neighboring 
genes to check consistency of results from mRNA and 
those from lncRNA (Fig. 3b). Principal component is the 
weighted linear combination of the initial variables, thus 
the contribution of each lncRNA on principal compo-
nent can be represented by the weight. We used lncRNAs 
located adjacent to cluster-specific genes (neighbors on 
a chromosome) for analysis. These cluster-specific genes 
neighboring lncRNAs were clearly characterized by their 
contributions to the first two principal components. For 
example, MEP specific genes’ neighboring lncRNAs con-
tribute to negative side of principal component 1 and 
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HSC/MLP specific genes’ neighboring lncRNAs contrib-
ute to negative side of principal component 2. Analysis 
of published data [11] (Additional file 2: Figures S7A and 
S7B) yielded similar results, demonstrating the data qual-
ity and the robustness of our integrative approach. Thus 
lncRNAs and their neighboring mRNAs are co-expressed 
directionally along lineage differentiation pathways.

Epigenetic changes during molecular transitions
Epigenetic changes, particularly chromatin remodeling, 
are primary determinants of cellular potential. Integra-
tive analysis of single-cell transcriptomics and chroma-
tin accessibility should provide insights into regulatory 

features and the dynamics of human hematopoiesis [17]. 
We examined a recently published scATAC-seq data-
set, which identifies regions of open or active chromatin 
regions of human BM hematopoiesis [17], in order to 
integrate chromatin dynamics and our transcriptional 
model.

To investigate whether the hematopoietic hierarchy 
calculated from our transcriptomic data was reflected in 
chromatin accessibility, we downloaded the transcrip-
tional factor motifs accessibility score, as inputs for PCA 
across progenitor types. PC analysis and pseudotemporal 
ordering of the scATAC-seq data showed distinct differ-
entiating patterns of hematopoiesis (Fig.  3c; Additional 

a

b

Fig. 2  Transcriptional regulatory network models for differentiation from HSCs to MEPs or myelo/lymphoids. Transcriptional networks demonstrate 
biological relevance of genes involved in the hematopoietic cell lineage pathway (a) and the DNA replication pathway (b). Correlation and 
anti-correlation are indicated with red and blue lines, respectively
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file 2: Figure S7C). PC1 and PC2 showed the structure of 
our predicted hematopoietic hierarchy, indicating mainly 
two branches of differentiation from the stem cell, one 
towards erythroid cells/megakaryocytes and the other to 
myeloid/lymphoid cells (Fig. 3c). With the same approach 
as lncRNAs, when we projected scATAC-seq transcrip-
tional factors to genes from our transcriptomic clusters 
on to this PCA, MEP-dependent genes and myeloid/

lymphoid-dependent genes were located on oppos-
ing sides of the PC1 axis with same direction (Fig.  3d). 
scATAC-seq transcriptional factors for “primed” genes 
exhibited high levels of accessibility in early progenitors, 
with HSCs and MLPs exhibiting multilineage epigenetic 
priming for these loci as well. In a previous study, pro-
jection of hematopoietic lineage specific genes on PCA 
plot with bulk ATAC-seq data showed MEP and myeloid/

a b

c d

Fig. 3  Early fate transitions in human BM CD34+ progenitors. a PCA plot of lncRNA expression from our scRNA-seq data. Highly variable lncRNAs 
were used for analysis. Each dot indicates one cell. b Projection of transcriptomic lncRNA gene modules onto scRNA-seq data in a. LncRNAs that 
neighbor the cluster-specific genes (generated from Fig. 1b) on a chromosome were used for analysis. Each dot represents a neighboring lncRNA. 
Vertical lines (low to high): first, median, and third quartiles. c PCA plot of scATAC-seq data from Buenrostro et al. [17]. Each dot indicates one cell. d 
Projections of five transcriptomic gene modules onto scATAC-seq PCA in c. ATAC-seq transcriptional factor scores of the cluster-specific genes on 
chromosome were used for analysis. Each dot represents a transcriptional factor. Modules were segregated into two groups, with either significantly 
positive scores on PC1 or PC2 that were consistent with transcriptional dynamics in Fig. 2
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lymphoid genes were located on opposing sides of one 
principal component [12]. Though using the same ana-
lytical procedures, our analysis is more comprehensive 
because we used scATAC-seq data and included the 
same cell lncRNA data. Therefore, intermediate stages 
exhibited evidence for multilineage priming at both tran-
scriptomic and epigenetic levels. Thus, we confirmed that 
scATAC-seq data allowed identification of cell types, and 
further that signature genes and their associated promot-
ers’ chromatin accessibility, as well as neighboring lncR-
NAs [26], aligned well with cell differentiation (Fig. 3).

Limitations
One analysis is limited with small number of cells and 
some drop-seq platforms can profile tens of thousands 
of cells. However Smart-seq2 C1 platform is valuable 
for detection of more genes per cell (~ 9000 genes) than 
10× platform (~ 2000 genes, high dropout rate) [27]. Our 
dataset is suitable for co-expression analysis because 
dropout events dramatically affect correlation calculation 
[28].

We integrated scRNA-seq and scATAC-seq datasets 
from different studies. Profiling expression and chroma-
tin accessibility in same cells is more powerful to examine 
the relationship between genome structure and patterns 
of gene expression [29].
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org/10.1186/s1310​4-020-05357​-y.

Additional file 1. Supplemental methods and results.

Additional file 2: Figure S1. (A) t-distributed Stochastic Neighbor 
Embedding (tSNE) plot of single-cell gene expression data. Cells were 
labeled according to assigned cell types. (B) Assignment of a HSPC type to 
each cluster based on the significance of overlapping between HSPC- and 
cluster-specific genes (Fisher’s exact test). (C) Proportions of HSCs, MLPs, 
GMPs, ProBs, ETPs, and MEPs in each of the cell cycle categories. Cell types 
displayed were based on the tSNE results. Figure S2. (A, B) Visualization 
of the HSPC continuum. Cells were colored based on FACS sorting surface 
marker CD38 in (A). Clusters 2 and 6, and undefined cells were hidden to 
show Cluster 3 clearly in (B). (C) Expression levels of immunophenotypic 
populations based on surface markers were overlaid on the cellular 
hierarchy. (D) Enriched GO terms of differentially expressed genes in ETPs. 
Figure S3. Visualization of the HSPC continuum. Ordering of individual 
cells into a three-dimensional independent component space of hemat-
opoietic lineages using a diffusion map. Each ball represents one cell. Cells 
were colored based on different clusters defined from Fig. 1c in Panel A. 
(B) PCA of single-cell gene expression data. Cells were labeled according 
to assigned cell types. (C) Partition-based graph abstraction generated 
a topology-preserving map of single cells. Nodes correspond to cell 
groups and edge weights quantifies the connectivity between groups. 
Figure S4. Large-scale shifts in gene expression during development of 
hematopoietic cells. (A) Global analysis of gene expression kinetics along 
the trajectory identified genes that varied significantly over pseudotime 
development. Bars on top indicate locations of individual cells, colored by 
stages of development, along this developmental trajectory. (B) Enriched 
GO terms of differentially expressed genes in each population. Figure 
S5. Reconstructing the topology of early fate decisions. (A) Expression 

levels of hematopoietic transcriptional factors were overlaid on the cel-
lular hierarchy. (B) Kinetic diagrams show expression of known markers 
of different developmental stages over the developmental progression. 
Dots indicate individual cells colored according to developmental stages. 
Figure S6. Quantitative RT-PCR analysis of expression of signature mRNAs. 
(A) Expression of lineage specific genes measured using single-cell qPCR. 
(B) Correlation of the expression of lineage specific genes measured by 
different methods. X and Y axes represent expression levels measured 
using scRNA-seq and single-cell qPCR, respectively. Each dot indicates a 
cell. Figure S7. The raw data for GSE75478 [11] were downloaded from 
the GEO repository, in which ~ 1000 sorted HSPCs were subjected to 
RNA sequencing. Using the data, lncRNAs annotated in Gencode was 
calculated with subreads and featureCounts. PCA analysis was subjected 
to assess whether lncRNA could identify hematopoietic populations and 
contribution of each lncRNA. Subsequently, lncRNA neighboring mRNAs 
(< 50,000 bases) were examined to elucidate their co-operation in differ-
entiation. (A) PCA of lncRNA from Velten’s scRNA-seq data. Each dot indi-
cates one cell. (B) Projection of transcriptomic lncRNA gene modules onto 
scRNA-seq data in (A). Each dot represents a lncRNA. Vertical lines (low 
to high): first, median, and third quartiles. (C) Ordering of individual cells 
from Buenrostro et al. [17] using a diffusion map. scATAC-seq profiles of 
~ 2000 cells with different hematopoietic cell types (HSC, MPP, CMP, MEP, 
LMPP, CLP, GMP, mono, and pDC) were downloaded. The downloaded 
transcription factor motif accessibility scores were subjected to PCA and 
diffusion map to investigate whether chromatin accessibility landscape 
could characterize differentiation trajectories of human hematopoiesis. 
Further, cell type expression specificity of transcriptional factors was 
examined to identify consistency between epigenetic and transcriptomic 
data, by assuming that lineage specific transcriptional factors are activated 
through having their promoter regions accessible in certain differentiation 
lineages.

Additional file 3: Table S1. GO terms of genes dynamically changed 
along hematopoietic lineage differentiation.

Additional file 4: Table S2. Top 50 genes dynamically expressed along 
pseudotime ordering.

Additional file 5: Table S3. KEGG overlap pathways in co-expression 
analysis.
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