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Abstract 

Objective: Electronic data collection (EDC) has become a suitable alternative to paper based data collection (PBDC) 
in biomedical research even in resource poor settings. During a survey in Nepal, data were collected using both sys-
tems and data entry errors compared between both methods. Collected data were checked for completeness, values 
outside of realistic ranges, internal logic and date variables for reasonable time frames. Variables were grouped into 
5 categories and the number of discordant entries were compared between both systems, overall and per variable 
category.

Results: Data from 52 variables collected from 358 participants were available. Discrepancies between both data sets 
were found in 12.6% of all entries (2352/18,616). Differences between data points were identified in 18.0% (643/3580) 
of continuous variables, 15.8% of time variables (113/716), 13.0% of date variables (140/1074), 12.0% of text variables 
(86/716), and 10.9% of categorical variables (1370/12,530). Overall 64% (1499/2352) of all discrepancies were due to 
data omissions, 76.6% (1148/1499) of missing entries were among categorical data. Omissions in PBDC (n = 1002) 
were twice as frequent as in EDC (n = 497, p < 0.001). Data omissions, specifically among categorical variables were 
identified as the greatest source of error. If designed accordingly, EDC can address this short fall effectively.
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Introduction
Paper-based case report forms (CRF) are the most widely 
used form of data collection in field-based research stud-
ies. In this approach data collected are recorded on paper 
and subsequently digitalized. While straight forward to 
implement, paper-based data systems risks introduc-
ing errors both at the time of data collection and during 
digitalization.

Electronic data collection (EDC) has become a well-
accepted alternative to paper-based data collection 
(PBDC), reducing the risk of errors and allowing real 
time checks for completeness and logical consistency 
[1–3].

Both PBDC and EDC are prone to inaccuracy through 
erroneous data entry and data omissions [4]. Data 

collected during a hospital-based survey in Nepal were 
recorded on paper and in electronic form. This article 
analyses the patterns in data entry errors among both 
systems.

Main text
Procedures
The study was conducted at a hospital in Danghadi, in 
the East of the country. Patients were screened and eli-
gible patients invited to participate. Following writ-
ten informed consent, each participant was assigned a 
study identification number (CODE). A questionnaire 
was completed and a brief physical examination made, 
the results of which were recorded in the presence of 
the patient. Venous blood was collected and shipped to 
a collaborating laboratory for subsequent analysis. Data 
were generated and recorded at two time-points, in the 
presence of the patient and in the laboratory. For EDC, 
two distinct databases were created one for data collected 
with the patient, one for the corresponding laboratory 
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data; for the PBDC, all data were recorded on the same 
CRF and later entered into a single database. The same 
staff performed PBDC and EDC, all had at minimum a 
high-school degree, none had previous experience in 
electronic data collection.

The EDC system was designed using open-source soft-
ware from AKVO (NL; https ://akvo.org/, last accessed on 
11.07.2019). Data were entered on tablets (Galaxy Tab a 
7.0 SM T285, Samsung, Seoul, South Korea). Each study 
participant was assigned with two identifiers: a database 
specific unique identifier provided automatically through 
the system, and another assigned by the data collector 
(CODE). The system did not check for the uniqueness of 
the assigned CODE. During data entry, the custom-made 
data entry mask performed completeness and range 
checks, erroneous results were indicated to the data entry 
clerk at time point of entry, however, data entry could 
proceed even in case of unresolved errors. The system 
could not detect logic errors nor calendar related errors, 
such as enrolment before date of birth. All entered data 
were uploaded immediately upon data entry via Wi-Fi 
into a cloud based database and could be monitored by a 
third person in real time.

For the PBDC data entry, CRFs were completed and 
digitalized within 7 days using EpiData version 3.1 (Epi-
Data Association, Odense, Denmark) [5]. This version is 
no longer supported, however offers the possibility for 
logic, range, and date checks. The data entry system was 
designed so that CODE could not be assigned more than 
once. In all other cases, the system highlighted detected 
errors during data entry by prompting the data entry 
clerk through a pop-up window and an acoustic signal. 
Like the EDC, data entry could proceed despite the erro-
neous entry. While technically possible, the system was 
not designed to prompt the data entry clerk in case a var-
iable was not entered.

Data analysis
Once data entry was completed, digitalized data were 
exported to Excel (Microsoft, Redmond, USA) and the 
hospital and lab database from EDC were merged using 
the patients’ identifier (CODE). The following errors were 
checked: completeness of variable entry, values outside 
of realistic ranges, internal logic violations in a subset 
of variables, and dates outside a reasonable time frames. 
In the absence of a reference method, results were com-
pared from both databases using CODE as the match-
ing variable. The database was rebuilt coding concordant 
variable entries as “0” and discordant entries as “1”. Each 
variable was categorized as text, continuous, categorical, 
date, or time variables.

Statistical analysis was done using Stata version 14 
(Stata Corp, USA). Differences in proportions were 

assessed using Chi square test and the McNemar’s test 
for correlated proportions as appropriate.

The number of discordant entries were compared 
between both systems, overall and per variable category, 
and whether the proportion of discordant results dif-
fered between lab and field data entry. Among discord-
ant results, missing entries and out of range results were 
quantified and compared between both systems. Missing 
data were assessed for missing data mechanisms, the only 
patient specific variable included was sex [6]. Among 
non-missing discordant continuous variables, the abso-
lute difference was calculated between both entries and 
expressed as a fraction of the higher entry in percent (%). 
As a proxy for logical errors among discordant results, we 
determined whether date of birth was after date of enrol-
ment and calculated the body mass index (BMI) from 
body weight and height for all participants [7]. A BMI 
above 40 or below 12 was defined as unrealistic irrespec-
tive of the participants age.

Results
Data were collected from 362 patients. The EDC database 
contained a duplication of the unique identifier (CODE) 
in two cases, accordingly four participants were excluded 
from both databases, resulting in 358 (98.9%) participants 
with paired data collected by both systems. Each data set 
contained 56 variables (Additional file  1: Table  S1). A 
total of 4 (7.1%) variables were excluded from this analy-
sis: the variable “CODE” as this was the linking variable 
between datasets, “Study Name” (STUDY) since this was 
autocompleted among both systems, “Patient Initials” 
(INI) and “Place of Birth” (POB) as these were entered 
as free text and had to be translated from Devanagari to 
Roman letters. From the 52 (92.9%) included variables, a 
total of 3 (5.8%) variables contained dates, 2 (3.8%) vari-
ables recorded a specific time (in 24-h format), 10 (19.2%) 
variables contained continuous data, 35 (67.3%) vari-
ables contained categorical data and 2 (3.8%) variables 
contained text where it was assumed that data collectors 
would know the correct spelling of all possible answers 
in Roman letters (“Diagnosis-DIAG” and “Main Place of 
Residence-MPR”, Additional file 1: Table S1).

Discrepancies between both data sets were found 
in 12.6% (2352/18,616) of all entries, with differences 
between databases detected in 18.0% (643/3580) of con-
tinuous variables, 15.8% (113/716) of time variables, 
13.0% (140/1074) of date variables, 12.0% (86/716) text 
variables, and 10.9% (1370/12,530) of categorical vari-
ables (Table 1 and Fig. 1).

A total of 64% (1499/2352) of all discordant entries 
were due to data being entered in one system, but 
not the other. The largest proportion of omissions 
was among categorical variables (76.6%, 1148/1499), 
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followed by continuous variables (17.9%, 269/1499), 
dates (4.9%, 74/1499, all in the EDC) and text vari-
ables (0.5%, 8/1499). Overall 66.8% (1002/1499) of data 
were omitted from PBDC/Epidata method compared to 
33.2% (497/1499) of data entered in the EDC database 
(p < 0.001). Significantly higher proportions of omis-
sions were found in the PBDC database among categor-
ical and continuous variables, date and text variables 
had significantly higher proportions of missing entries 
in the EDC database (all p < 0.05) (Table 1). When con-
sidering data omissions that were found in both sys-
tems, the proportion of missing data was slightly higher 
among females (n = 1949/5695, 25.5%) compared to 
males (n = 2521/8451, 23.0%), p < 0.001.

While designed to tolerate data omissions, this was 
not desirable. Depending on variable format, entries 
“0”, “9” and “99” should have been entered in case data 
was not available, a question was not relevant or a test 
result was negative. In 42% (624/1499) of all discordant 
blanks found in the PBDC database only, a respective 
entry was found in the EDC database, while the oppo-
site was the case in 3% (44/1499) of records (p < 0.01). 
Among discordant entries, one date entry in the EDC 
database and one continuous variable in the PBDC 
database were found to be out of range, one logical 
error among discordant date variables and one among 
discordant continuous variables was found within the 
EDC database (Table 1).

Among the 10 continuous variables, the median rela-
tive difference between entries ranged from 1.0% (inter-
quartile range (IQR): 0.39–1.00, range 0.20–1.94) for 
measured body temperature (TEMP) to 55.1% (IQR: 
34.09–76.46, range 2.44–95.33) for malaria parasite 
count per white blood cells (APC).

A total of 33 variables were collected with the 
patient present, with discordant entries present in 5.8% 
(685/11,814), significantly fewer (p < 0.001) than among 
the 19 variables collected in the laboratory where 24.5% 
(1667/6802) of all entries differed between both systems 
(Fig.  2). The observed difference was applicable to all 
relevant categories (all p < 0.05), with 3.2% (374/11,814) 
blanks generated for the patient data and 16.6% 
(1130/6802) for the laboratory data; p < 0.001.

Discussion and conclusion
When comparing both data entry methods, discrep-
ant results were present in more than 12% of all entries, 
with almost two-thirds (64%) of these errors due to data 
omissions. The distribution of data omissions varied sig-
nificantly across different categories. Data not entered in 
either system suggest that these had not been collected 
in the first place, and the proportion of these was slightly 
but significantly higher among female participants. Con-
sidering the differences in data omissions per variable 
category and the overall difference in data not being col-
lected by gender suggest that data collection suffered 

Fig. 1 Proportion of discrepant results per variable and variable category. Red highlighted variables are excluded from analysis
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from a “missing not at random” (MNAR) pattern [6]. 
Both systems provided the possibility to enter a nega-
tive response reflecting that data had not been collected 
rather than leaving variables blank, however this was 
frequently not applied and at significantly greater pro-
portion in the PBDC system. Data omissions were found 
most frequently among categorical data, which were 
entered by ticking a box on the paper form and then dur-
ing digitalization by entering a single digit from a drop-
down menu in Epidata or by ticking a box in the AKVO 
system. Accordingly, categorical data are easy and fast 
to enter, but result in an increased risk of data omission, 
especially when data are entered in bulk, as was the case 
for the PBDC method.

Whilst continuous data showed the greatest overall rate 
of discrepant results, this was much more likely to be due 
to erroneous data entry than omission. Discrepant results 
varied substantially between variables. For instance, body 
temperature showed a median variation of 1% between 
both entries, whereas for the parasite count the differ-
ence rose to more than 50%. Since both systems only 
allow data entry within predefined ranges, the number 
of unrealistic results was very low. We found that range 
checks for continuous data were counterproductive as 
they masked erroneous data entry: while an erroneous 
date entry outside a reasonable range is detected quite 
easily, range checks would not permit extreme entries, 
masking errors. Double data entry could address this 

problem; however, this is neither practical nor realistic 
for EDC.

Epidata allowed for internal logic checks at the time of 
data entry, not possible in the AKVO system. The BMI 
was calculated and used as a proxy for logical errors, 
however there were very few unrealistic entries in 
either data systems. Dates were also checked for unlogic 
sequences, but this was not a major source of error. Inter-
estingly all date omissions were found in the EDC.

An inherent problem of any EDC system is data col-
lection for the same individual at different time points, 
as is the case for studies with follow up visits or studies 
with field and laboratory components. Where collected 
data cannot be uploaded directly, subsequent merging 
of data can be problematic. We found discordant results 
for variables generated in the laboratory to be signifi-
cantly greater than for variables generated in the clinic. 
When assessing the pattern of erroneous entries in the 
laboratory (Additional file 1: Table S1), errors occurred in 
sequential blocks, which may reflect that the participant 
identifier (CODE) for the EDC data had been assigned 
erroneously in the laboratory. Alternatively, the quality of 
data entry may vary between the clinical and the labora-
tory staff, highlighting the importance for adequate train-
ing of all study personnel.

Our findings add to the growing body of evidence that 
suggests that EDC is an effective alternative to tradi-
tional paper-based data collection [2, 8, 9]. Although cost 

Fig. 2 Proportion of discrepant results per variable sorted in sequence of data collection. Variables left of the dotted line are collected with the 
patient, variables right of the dotted line are collected in the laboratory. Red highlighted variables are excluded from analysis



Page 6 of 6Ley et al. BMC Res Notes          (2019) 12:537 

effectiveness was not assessed, previous studies suggest 
that EDC is cost effective, at least in large studies [2, 10].

In conclusion, we found the greatest source of data 
error was attributable to data omissions, specifically 
among categorical variables. Data omissions appeared 
to be following a MNAR pattern and this needs to be 
addressed in a twofold approach. A well-designed EDC 
system that does not permit blank entries can address 
omission of recorded data, extensive training of data col-
lection staff in hindsight to the socio-cultural context 
is likely to improve the quality of data collection. Since 
direct electronic data collection is unlikely to be per-
formed in duplicate, a system that performs real-time 
logic checks would be highly desirable. EDC, however, 
may only be suitable if data can be synchronized in real 
time and can be accessed from multiple locations, which 
requires a fairly complex preparatory phase and this may 
not be cost effective for small studies.

Limitations
In the absence of a reference method we could not deter-
mine the quality of data entry per system directly. We 
also did not record the identity of the data entry staff per 
case record and accordingly could not assess differences 
in data entry quality per staff.

Additional file

Additional file 1: Table S1. Database coded as discrepant (1) and con-
cordant (0) data entries.
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