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Using DIVAN to assess disease/
trait-associated single nucleotide variants 
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Abstract 

Objective: The majority of sequence variants identified by Genome-wide association studies (GWASs) fall outside 
of the protein-coding regions. Unlike coding variants, it is challenging to connect these noncoding variants to the 
pathophysiology of complex diseases/traits due to the lack of functional annotations in the non-coding regions. To 
overcome this, by leveraging the rich collection of genomic and epigenomic profiles, we have developed DIVAN, or 
Disease/trait-specific Variant ANnotation, which enables the assignment of a measurement (D-score) for each base 
of the human genome in a disease/trait-specific manner. To facilitate the utilization of DIVAN, we pre-computed 
D-scores for every base of the human genome (hg19) for 45 different diseases/traits.

Results: In this work, we present a detailed protocol on how to utilize DIVAN software toolkit to retrieve D-scores 
either by variant identifiers or by genomic regions for a disease/trait of interest. We also demonstrate the utilities of 
the D-scores using real data examples. We believe that the pre-computed D-scores for 45 diseases/traits is a useful 
resource to follow up on the discoveries made by GWASs, and the DIVAN software toolkit provides a convenient way 
to access this resource. DIVAN is freely available at https://sites.google.com/site/emorydivan/software.
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Introduction
Over the past decade, genome-wide association studies 
(GWASs) have successfully identified tens of thousands 
of single-nucleotide variants (SNVs) that show statisti-
cally significant association with thousands of diseases 
and traits. Databases have been developed to store those 
SNPs such as the Association Results Browser (ARB) 
(https://www.ncbi.nlm.nih.gov/projects/gapplus/sgap_
plus.htm) and Genome-Wide Repository of Associations 
Between SNPs and Phenotypes (GRASP) [1].

An important finding from these studies is that most 
of the identified SNPs fall into the non-coding regions 
[2]. Unlike coding variants, how to gauge the functional 
impact of non-coding variants is a daunting challenge 

since they do not directly change the translated protein 
sequence. It is generally believed that non-coding vari-
ants interferes with the transcription factor (TF) bind-
ing and histone modification mechanisms of target 
genes [3], which subsequently affect the gene expression. 
Epigenomic data have thus been long recognized as an 
potential source of functional annotation for non-coding 
variants [4].

On the other hand, in recent years, large international 
consortia, such as ENCODE (the Encyclopedia of DNA 
Elements) [5] and the REMC (Roadmap Epigenomics 
Mapping Consortium) [6] have been commissioned to 
systematically conduct genome-wide profiling experi-
ments including ChIP-seq [7], DNase-seq [8] and FAIRE-
seq [9] across hundreds of cell lines/tissues. The publicly 
available epigenomic datasets offer a great resource to 
better understand the biology of the non-coding part of 
the genome [10].

Taking advantage of these valuable resources, multiple 
computational approaches have already been developed 
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to annotate genetic variants using genome-wide profil-
ing data including GWAVA [11], CADD [12], GenoCan-
yon [13], Eigen, EigenPC [14], DANN [15], fitCons [16], 
FATHMM [17], deltaSVM [18], dbNSFP [19], FunSeq  2 
[20] and iCAGES [21]. A common feature of those meth-
ods is that they are disease/trait neutral, which means 
they only predict if a variant is deleterious or not, but 
not able to tell if a variant is likely to be associated with a 
particular disease/trait of interest. However, the latter is 
more of interest in the clinics.

To overcome the limitation, we recently developed a 
novel computational method named DIVAN (DIsease-
specific Variant Annotation) [22], which is capable of 
gauging whether a mutation, no matter where it is located 
in the genome, is likely to be associated with a specific 
disease/trait. Like most of the existing methods, DIVAN 
offers a pre-computed functional score (referred to as 
the D-score) for every base of the entire human genome. 
The only difference is that these D-scores are disease/
trait-specific. i.e., one set of scores for each disease/trait. 
For each disease, DIVAN model is trained using known 
GWAS variants with matching benign variants, and a set 
of informative features is selected from more than 1800 
epigenomic profiles collected. We further develop a com-
putational and memory efficient DIVAN software toolkit, 
which could be executed on a typical local computer.

In this work, for the sake of completeness, we first 
briefly describe the method and workflow of DIVAN, and 
then we present a detailed protocol on how to utilize the 
DIVAN software toolkit to obtain D-scores for a set of 
known variants, or a set of arbitrary genomic regions in a 
step-by-step manner.

Main text
Review of DIVAN
Construct positive and negative SNP sets
For each of the 45 diseases/traits studied, the set of dis-
ease/trait-associated SNVs (referred to as risk variants) 
identified by GWAS cataloged in ARB is treated as the 
positive set. To construct the corresponding negative set, 
we choose from all SNVs cataloged by the 1000 Genomes 
Project with minor allele frequency greater than 0.05 
and, according to ARB, not associated with any known 
disease/trait (referred to as benign variants). We impose 
two criteria. The “distance to TSS-matched” criterion 

restricts that benign variants match those risk variants in 
terms of the distances to Transcription Start Site (TSS). 
The “region-matched criterion” requires that all benign 
variants located near (within 10  kb) of at least one risk 
variant. Given that there are way more benign variants 
than risk variants, the negative set is chosen to be 10 
times the size of the positive set.

Collect epigenomic/genomic profiles from ENCODE 
and REMC
Epigenomics profiles including DNase-seq & FAIRE-seq 
characterizing open chromatin, and ChIP-Seq measuring 
histone modification, TF binding and RNA polymerase 
binding are collected from ENCODE and REMC. The 
genomic features mainly include repeated elements and 
conversation scores (GERP element [23] and phastCons 
scores [24]).

Annotate GWAS SNPs using epigenomic/genomic profiles
The entire genome is partitioned into consecutive win-
dows of 200  bp. The read counts for these windows 
(adjusted for control data if available) are treated as the 
epigenomic features. In addition, we also annotate each 
window with presence or absence of repeat elements, 
GERP elements as genomic feature. We also use the 
phastCons scores for each window as another genomic 
feature. The result is a genome-wide annotation matrix 
with rows as 200  bp windows and columns as genomic 
and epigenomic features. Any variant is annotated with a 
full set of features by simply identifying the window that 
it falls into.

Build a disease/trait‑specific feature‑selection ensemble 
learning model
For each disease/trait, we first apply a feature selection 
step to select the informative features that better differ-
entiate risk variants from benign variants. Specifically, 
for each feature, we apply a statistical test to measures 
the difference between positive and negative sets of vari-
ants. Cross-validation is applied to select an optimal 
threshold that decides which feature is deemed informa-
tive thus kept in the model. After the informative features 
are selected, an ensemble learning approach is used to 
build up multiple classifiers, each of which is assigned 
an equal number of risk and benign variants for training. 
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Thus, given a variant/position, the prediction outcome 
is decided by the average of the votes from all classifi-
ers, defined as the D-score, which could be interpreted 
as the probability of that variant/base being disease/
trait-associated.

Protocol
There are two ways to obtain D-scores for known vari-
ants: by variant identifiers or by genomic regions. For 
variant identifiers, DIVAN is capable of retrieving 
D-scores of known variants by variant identifiers or by 
genomic regions. We discuss the detailed step how to 
obtain the D-score of known variants by variant identifi-
ers below. The detailed steps for how to retrieve D-scores 
of known variants by genomic regions and retrieve aver-
age D-scores for arbitrary genomic regions could be 
found in Additional file 1.

Retrieve D‑scores of known variants by variant identifiers
First, download the set of pre-computed genome-
wide base-level D-scores for the disease/trait of inter-
est and variation database needed. For example, to 
retrieve D-scores for the Behcet Syndrome using the 
Ensembl variant identifiers, download files Emsembl.tar.
gz, BehcetSyndrome.tar.gz and scoredistTSS.tar.gz and 
uncompress them into three folders “Ensembl”, “Behcet-
Syndrome” and scoredistTSS. Second, either run the R 
script “scoreDIVAN.cmd.R” in the command line or the 
R script “scoreDIVAN.console.R” inside an R console. 
Note that all the files, extracted folders and R scripts 
should be placed under the same directory before execut-
ing the command. In this example, use the command line

R –slave –args –no-save variant.txt Behcet-
Syndrome Ensembl scoredistTSS score.variant.
txt < scoreDIVAN.cmd.R

which takes input file “variant.txt” and generates 
output file “score.variant.txt”. The input file is for-
matted with each variant in one row. The output 
file contains the D-score with its corresponding per-
centile in the genome along with genomic position of 
each matched query variant. The illustration of the 
procedure is presented in Fig. 1a. 

Performance
DIVAN software works on a PC or laptop with less than 
4 GB of memory. For a query of 125,713 regions (383 MB 
in total length), DIVAN only takes around 2 min. Moreo-
ver, the size of compressed file with pre-computed whole 
human genome base-level DIVAN score for one disease/
trait is only around 100 MB. Therefore, DIVAN software 
is able to run on a regular PC or laptop. All the testing 
examples in the tutorial have been successfully per-
formed on a MacBook laptop with a 1.7 GHz processor 
and 8 GB of memory.

Real data examples
Behcet Syndrome (MIM 109650) is a rare disorder caus-
ing inflammation of the blood vessels and a geneti-
cally complex disease. Non-coding SNP rs924080 (chr1, 
67760140) at the IL23R-IL12RB2 locus has been previ-
ously reported to be significantly associated with the 
Behcet Syndrome (p  =  6.69  ×  10−9, OR  =  1.28) [25]. 
This SNP is also reported to be significantly associ-
ated with Inflammatory Bowel Diseases (MIM 612244) 
(p  =  2.57  ×  10−6) [26]. We obtain the D-scores of 
rs924080 across 45 diseases/traits studied (Fig.  2a). 
Clearly, The D-scores of rs924080 in Behcet Syndrome 
(0.82) and inflammatory bowel diseases (0.81) are sig-
nificantly higher than the D-scores of other diseases. The 
finding is consistent with the two GWAS results.

It is also interesting to obtain the D-scores in genomic 
region of interest to investigate the functional connection 
between the genomic region and diseases/phenotypes. It 
is reported in dbGaP [27] that three SNPs located in the 
intronic region of gene SSU72 (chr1, 1477052- 1510261) 
have been identified by GWASs to be significantly asso-
ciated with glucose level (rs3766178 (p =  3.26 ×  10−5, 
chr1, 1542800), rs880051 (p  =  1.89  ×  10−5, chr1, 
1558347), rs2296716 (p =  2.54 ×  10−5, chr1, 1562444). 
The D-scores of the three SNPs across 45 diseases/traits 
are shown in Fig. 2b. It is not surprising to see that Type2 
Diabetes (MIM 125853) ranks at the top as glucose in 
cells cannot respond to insulin correctly for Type2 Diabe-
tes patients. It is also interesting to observe that D-scores 
in the three SNPs are quite high in Macular Degenera-
tion. The metabolites of Glycolysis, which a critical path-
way involves the metabolism of both glucose and lactate, 
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has been reported to be abnormal in patients with Age-
Related Macular Degeneration (MIM: 603075) [28]. 
Clearly, there exists a functional connection between the 
genomic region (glucose) and Type2 Diabetes as well as 
Macular Degeneration.

We further compare the distribution of D-scores of 
GWAS SNPs significantly associated with Behcet Syn-
drome, Macular Degeneration, Bipolar Disorder and 
Pancreatic Neoplasms in ARB and the background 
(taken to be all bases on chromosome 22) (Fig.  3). We 
perform the Wilcoxon Signed-Rank test between the 
D-scores of the risk variants and those in the back-
ground. As expected, we observe overall that the 
GWAS SNPs have significantly higher D-score than 
those in the background (p =  1.52 ×  10−158 in Behcet 
Syndrome; p =  3.3. ×  10−260 in Macular Degeneration; 
p = 4.31 × 10−188 in Bipolar Disorder; p = 1.97 × 10−146 
in Pancreatic Neoplasms). Interestingly, we also find a 
few spots in the background that have higher D-scores 
than some of the GWAS SNPs. We hypothesized that 
those regions might harbor undiscovered novel risk vari-
ants those diseases.

Limitations
Up to date, hundreds of diseases/traits have been stud-
ied in GWAS. In the future, we will pre-compute 
D-scores for more diseases/traits of interest besides the 
45 diseases/traits already studied to make DIVAN soft-
ware more comprehensive. Moreover, the calculation 
of current DIVAN score does not consider the order of 
GWAS p-values, which could be another important fea-
ture added into the training model. Other types of epig-
enomic features, including eQTL, DNA methylation, and 
pre-computed scores from GWAVA, CADD, and Geno-
Canyon could also be informative features to improve 
DIVAN further.

(See figure on previous page.) 
Fig. 1 a Illustration of using DIVAN to obtain D-scores of known variants by variant identifiers. The input file contains a list of variant identifiers 
with each variant as one row. The output file contains tab-delimited columns representing variant identifier, D-score, chromosome, chromosome 
position and D-score percentile of each variant respectively. b Illustration of using DIVAN to obtain D-scores of known variants fall inside genomic 
regions of interest. The input file contains a list of genomic regions in the format of tab-delimited chromosome, start and end positions. The 
D-scores of known variants located within each genomic region are reported. The output file contains tab-delimited columns representing chromo-
some, start and end positions, variant identifier, position of variant and D-score with its corresponding percentile of each variant respectively. c 
Illustration of using DIVAN to obtain average D-scores of genomic regions of interest. The input file contains a list of genomic regions in the format 
of tab-delimited chromosome, start and end position. The mean and standard deviation of D-scores for all bases within each genomic region are 
calculated. The output file contains tab-delimited columns representing chromosome, start and end positions, mean of D-scores with the cor-
responding percentile and standard deviation of D-scores for each region respectively

a

b

Fig. 2 a D-score distribution for rs924080 for 45 diseases/traits. b 
D-score distribution of glucose-associated SNPs located in the SSU72 
gene body for 45 diseases/traits
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GWAS: Genome-Wide Association Study; SNP: single nucleotide polymor-
phism; ARB: Association Results Browser; GRASP: Repository of Associations 
Between SNPs and Phenotypes; DIVAN: Disease-specific Variant ANnotation; 
ENCODE: encyclopedia of DNA elements; REMC: Roadmap Epigenomics Map-
ping Consortium; eQTL: expression quantitative trait loci; ChIP-seq: chromatin 
immunoprecipitation (ChIP) with massively parallel DNA sequencing; DNase-
seq: DNase I hypersensitive site sequencing; FAIRE-seq: formaldehyde-assisted 
isolation of regulatory elements sequencing; GERP: genomic evolutionary rate 
profiling.

Additional file

Additional file 1. The detailed protocol for using DIVAN in three cases: 
retrieve D-scores of known variants by genomic regions; retrieve average 
D-scores for arbitrary genomic regions; retrieve D-scores for multiple 
diseases/traits in batch.
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