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Examination of the gait pattern based 
on adjusting and resulting components of the 
stride‑to‑stride variability: proof of concept
U. Laessoe1,2*  , N. M. B. Jensen1 and P. Madeleine3

Abstract 

Background:  Stride-to-stride variability may be used as an indicator in the assessment of gait performance, but the 
evaluation of this parameter is not trivial. In the gait pattern, a deviation in one stride must be corrected within the 
next strides (elemental variables) to ensure a steady gait (performance variable). The variance in these elemental and 
performance variables may therefore be evaluated as adjusting and resulting components of variability. We explored 
this approach to gait evaluation by matching the velocity of one stride to a subsequent stride with four different 
time lags ranging from 0.5 to 2 strides with 0.5 stride increments. The time lag values corresponded to the following 
contralateral stride, the following ipsilateral stride, the second following contralateral stride and the second following 
ipsilateral stride.

Methods:  Twenty asymptomatic young adults walked on an instrumented treadmill at their preferred gait speed. 
The stride velocity was calculated, and variances in the stride-to-stride differences and in the stride-to-stride sums 
represented the adjusting and the resulting variances, respectively. A ratio between these values of greater than one 
indicated a meaningful stride-to-stride interaction.

Results:  For the four time lags (0.5, 1, 1.5, and 2 strides), the adjusting/resulting variance ratios (mean and CI 95%) 
were 1.0 (0.8–1.2), 2.9 (2.3–3.6), 1.2 (1.0–1.4) and 1.2 (0.9–1.4), respectively.

Conclusions:  This new approach to the evaluation of stride-to-stride variability suggests that gait velocity adjust-
ments occurred within one full stride cycle during treadmill walking among asymptomatic young adults. The validity 
of the approach needs to be tested in over-ground walking.
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Background
Gait assessment
Assessing the spatio-temporal aspects of the gait pat-
tern is relevant to the evaluation of human motor per-
formance. The gait characteristics may be derived 
objectively from spatial or temporal parameters such as 
gait velocity, step length, step time or double support 
time, but a summarization of time series may result in the 
loss of valuable information.

During a clinical examination of the gait, the lack of a 
steady rhythm in the gait pattern will draw the attention 
of the clinician. Such an observation will often be inter-
preted as a deficit in the motor planning or in the pos-
tural control of the patient. Accordingly, several studies 
have observed that evaluation of stride variability may be 
important when characterizing the gait pattern [1, 2].

Gait variability
Gait variability has been addressed using a variety of 
means and methods [2, 3]. The variability of the gait pat-
tern, based on a discrete time series analysis of a large 
number of gait cycles, has been proven to be significant 
and may reveal information about the maturation of gait 
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function in children [4]. Additionally, more advanced sta-
tistics have been used to analyse gait variability, including 
linear techniques such as the autocorrelation function 
[5] and non-linear approaches [6, 7] such as approximate 
entropy [8], sample entropy, the maximum Lyapunov 
exponent [9] or the detrended fluctuation analysis [10]. 
However, in a daily clinical context, the gait pattern is 
most often evaluated by less sophisticated methods.

Interpretation of variability
An emerging perspective indicates that variability may be 
used to characterize the level of motor performance [11]. 
An increase in the stride-to-stride time variability has 
been associated with fall risk in the elderly [12]. Addi-
tionally, challenging dual-task situations and physical 
impairment may result in greater gait variability [13, 14]. 
Gait variability is therefore often regarded as an indicator 
of motor deficits. However, by assessing the complexity 
(the degree of irregularity using approximate or sample 
entropy) of a kinematic time series relative to pathology 
or impaired motor control, i.e., structural variability, both 
increased and decreased variability of movement charac-
teristics have been reported [11, 15–17].

A given motor task can be performed using different 
combinations of movements owing to the redundancy of 
the motor system [18]. When a motor task is repeated, 
the two actions will never be identical because a certain 
degree of variation in movement synergies is considered 
natural [19]. Inherent biomechanical and neuro-motor 
redundancies are available within the context of the con-
trol processes involved [20], and these must also be con-
sidered when interpreting the gait pattern.

Elemental and performance variables in gait
According to a definition by Guthrie [21], skill “consists 
in the ability to bring about some end result with maxi-
mum certainty and minimum outlay of energy, or of time 
and energy”. A skilled movement strategy, when walking 
on a flat surface, would result in a steady gait with only 
natural intrinsic deviations [22]. In terms of energy con-
sumption, the whole-body momentum during walking 
should be preserved [23]. A change in velocity implies 
that accelerations, according to Newton’s second law, 
require force and energy. Therefore, deviations in overall 
gait velocity or direction are not considered optimal [24].

From a clinical point of view, any tendency toward 
deviation in the gait pattern during one stride should 
be corrected at some point within the following strides. 
These ongoing corrections should be coordinated to 
ensure a steady gait. With this understanding, the gait 
performance is a result of the interaction of stride sub-
systems acting in synergy. A certain degree of stride-to-
stride variation may be expected and may be a sign of 

good motor performance. Therefore, the interpretation 
of gait variability as an outcome measure is not trivial 
and subject to further scientific attention [25].

Latash and colleagues have been studying synergies 
in other settings, and their work with performance and 
elemental variables may provide inspiration for a new 
perspective on the variability of the gait pattern [19]. We 
propose that the evaluation of gait variability may also be 
addressed with respect to both performance and elemen-
tal variances. The overall gait pattern (i.e., the whole-
body propulsion expressed as velocity) may be seen as 
the performance variable. Body propulsion is a product 
of the ground reaction forces derived from the foot con-
tact with the ground for each step or stride. These ground 
reaction forces may be modified by the timing and/or the 
placement of the feet on the ground and by joint torques 
generated in the body (especially the ankle, knee and hip 
joint). The impact of these forces from each foot contact 
may be regarded as elemental variables. The performance 
variable, as indicated by the overall gait velocity, is modi-
fied continuously by adjustments of the elemental vari-
ables, as expressed by the velocity of each step or stride.

A variation in the stride-to-stride sum (an unintended 
deviation in the overall gait velocity, i.e., performance 
variable) is regarded as “resulting” variance in the present 
study. A deviation in stride-to-stride differences (when a 
deviation in one stride is positively compensated within 
the following stride, i.e., elemental variables) is regarded 
as “adjusting” variance in the present study. If the result-
ing variance is a sign of a loss of energy and the adjusting 
variance is seen as a natural part of movement adjust-
ments, the ratio between the adjusting and resulting vari-
ations may be expected to serve as an indicator of motor 
performance during gait.

Objective
This proof of concept study explored the relevance of a 
new approach to gait variability evaluations based on the 
existence of a meaningful ratio between the elemental 
(stride-to-stride difference) and the performance (stride-
to-stride sum) variables of gait. The study also inves-
tigated the timing of such stride-to-stride correction 
mechanisms during treadmill walking.

Methods
Participants and experimental setup
Twenty young and healthy subjects (13 females and 7 
males) participated in the study. The mean age of the 
study population was 24  years (SD 3.7), and the mean 
body mass index was 22.9 (SD 2.4). The participants 
walked on an instrumented treadmill with the speed set 
at their preferred gait velocity. At first, they walked for 3 
min to become accustomed to walking on the treadmill. 
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Then, the gait pattern was recorded for 1 min. After 
10 min of rest, this procedure was repeated.

The sensors in the treadmill (FDM-T; Zebris Medi-
cal GmbH) provided “electronic footprints” from which 
the temporal and spatial parameters of the gait could be 
derived. The pressure platform in the treadmill had 1.4 
sensors per cm2, and the sampling rate was set to 100 Hz. 
The raw data were exported to Matlab (Mathworks, 
R2008a) for offline analysis. Heel strike was identified for 
each step and a stride was defined as the sequence from 
one heel strike to the following ipsilateral heel strike. 
Stride time and stride length were extracted from these 
data, and the velocity (cm/s) of each stride was calcu-
lated (stride velocity  =  stride length/stride time). The 
sole stride data (not the step data) were used because the 
differences between the gait cycles were the focus of the 
study and because of the possibility of bias in the step-to-
step differences caused by asymmetry in the gait pattern.

Stride‑to‑stride interaction analysis
The natural gait pattern is not stereotyped but con-
stantly adjusted over time. To ensure a relatively steady 
gait pattern, any tendency towards deviation in gait 
velocity during one stride must be corrected at some 

point within the few following strides. The existing liter-
ature suggests that such gait variability can be evaluated 
using a stride-to-stride comparison [12, 13]. However, 
the optimal time lag value to be used in the proposed 
gait variability analysis is unknown. For a stride-to-
stride comparison, the smallest possible time lag value 
is 0.5 stride. We expected meaningful gait corrections to 
occur within two full gait cycles, considering the added 
constraints in space and time imposed by walking on a 
treadmill [26]. Consequently, we set the largest time lag 
value to 2.

The gait pattern was examined relative to the presence 
of a stride-to-stride interaction by matching the velocity 
of one baseline stride (stridei) to the velocity of the fol-
lowing stride with four different time lags (stridei+x). The 
subsequent stride would be one of the following:

a.	 The following contralateral stride (stridei+½)
b.	 The following ipsilateral stride (stridei+1)
c.	 The second following contralateral stride (stridei+1½)
d.	 The second following ipsilateral stride (stridei+2)

For each iteration, the next iteration was performed 
three steps later (see Fig.  1). This was done to ensure 

Steps
Strides

a1
a2

a3
a4

a5
a6

Example Lag 1: (a1,a3); (a4,a6) ; (a7,a9); … a7
a8

a9

Stride-to-stride match:

Lag ½: (Xi , Xi+½) Lag 1: (Xi , Xi+1) Lag 1½: (Xi , Xi+1½) Lag 2: (Xi , Xi+2)
(a1 , a2) (a1 , a3) (a1 , a4) (a1 , a5)
(a4 , a5) (a4 , a6) (a4 , a7) (a4 , a8)
(a7 , a8) (a7 , a9) (a7 , a10) (a7 , a11)

… … … …
Fig. 1  Illustration of the stride-to-stride comparison with different time lags. Three of the lag-1 comparisons are presented in the graphics with 
shaded colours. For each iteration, the next iteration was performed three steps later
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independence between strides and to avoid potential 
effects due to a bivariate relationship.

The baseline stride velocity was plotted against the 
velocity of the subsequent stride in a coordinate system 
to enable a visual evaluation of the interaction between 
adjusting and resulting variances (Fig.  2). The adjusting 
and resulting variances were evaluated in the diagonal 
directions of the plot. This means that the horizontal and 
vertical axes were rotated 45° anticlockwise for the vari-
ance analysis. Adjusting variance presents in the direction 
along a straight line with a negative slope (i.e., relative to 
the distance from the line with a positive slope travelling 
through the mean of the data points [Xmean, Ymean]). This 
variance would reflect the corrections from one stride 
to another that were considered necessary and relevant 
adjustments. By contrast, the variance in the orthogonal 
diagonal direction (relative to the distance from the line 
with a negative slope) would reflect a variation in gait 
velocity (resulting variance). Large deviations in overall 
gait velocity are considered nonoptimal.

In a mathematical sense, the adjusting variance may 
also be explained as the variance in the differences in 
stride-to-stride velocity and the resulting variance may 
be explained as the variance in the sums of the stride-to-
stride velocity.

The adjusting/resulting variance ratio may therefore 
simply be calculated as the variation in stride-to-stride 

differences divided by the variation in the stride-to-stride 
sums:

According to the approach used in this study, a posi-
tive stride-to-stride interaction exists when the adjusting 
variance is larger than the resulting variance. This means 
that a ratio between the adjusting and the resulting vari-
ance >1.0 indicates the existence of an appropriate stride-
to-stride interaction.

Statistical analysis
The data was analysed in Excel (MS Office 2007) and 
SPSS (PASW ver. 20). The mean values, the stand-
ard deviations and the 95% confidence intervals were 
reported. The adjusting/resulting ratio was evaluated by a 
one-sample t test and confidence intervals (95% CI). A P 
value <0.01 was regarded as significant.

The consistency between trials 1 and 2 was described 
by intra-class correlations (ICC3.1), averaged differences 
and typical error (TE). ICCs were interpreted as 0.0–0.4, 
unacceptable; 0.4–0.6, moderate; 0.6–0.8, substantial; 
and 0.8–1.0, almost perfect agreement according to Lan-
dis and Koch [27]. TE =  (SDdiff/√2), where SDdiff is the 
standard deviation of the individual difference scores 
between the trials.

Results
The average gait velocity on the treadmill was 1.2 (SD 0.1) 
m/s. The average stride velocity was 118.2 (5.7) cm/s with 
an average individual variance of 0.02 (0.01) and a coef-
ficient of variation of 0.12 (0.03).

The parameters related to the stride-to-stride interac-
tion approach, i.e., adjusting and resulting variances and 
the ratio between these, are presented in Table 1.

Figure 3 illustrates the divergence between the different 
time lags.

In the four time-lag analyses, the ICC3.1 values between 
trial 1 and trial 2 for the adjusting/resulting ratio were 
0.17, 0.35, 0.43 and 0.06. The corresponding averaged dif-
ferences were −0.19, −0.17, 0.06 and −0.16, and the TE 
values were 0.34, 1.30, 0.40 and 0.46.

Discussion
Summary
The approach to the gait analysis used in this study evalu-
ated the variation in stride-to-stride velocity differences, 
i.e., the adjusting variability, relative to the variation in 
stride-to-stride sums, i.e. the resulting variability of the 
gait velocity. A stride-to-stride interaction pattern was 
observed during treadmill walking. This was reflected 
in an adjusting-resulting variance ratio of 2.9 (CI 95% 
2.3–3.6) when comparing the velocity of strides to their 

(variance[stridei − stridei+t])/(variance[stridei + stridei+t])

116.2 116.4 116.6 116.8 117
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Fig. 2  Stride-to-stride relationships. An example of stride veloc-
ity (cm/s) plotted for each stride (Xi) with respect to the following 
ipsilateral stride (Xi+1). The adjusting variability was evaluated with 
respect to the diagonal line with the positive slope, and the resulting 
variability was evaluated with respect to the dashed line with the 
negative slope
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Table 1  Stride-to-stride synergy variability parameters for stride velocity

Variance parameters are presented by mean values (SD), as well as confidence intervals for their ratio, with respect to stride-to-stride comparisons with four different 
time-lags: lagi+½ the following contralateral stride; lagi+1 the following ipsilateral stride; lagi+1½ the second following contralateral stride; lagi+2 the second following 
ipsilateral stride

* P < 0.01

** P < 0.001

Adjusting variance Resulting variance Adjusting/resulting variance ratio CI 95%

Trial 1

 lagi+½ 0.040 (0.019) 0.042 (0.015) 1.0 (0.4) (0.8–1.2)

 lagi+1 0.060 (0.025) 0.022 (0.008) 2.9 (1.4)** (2.3–3.6)

 lagi+1½ 0.043 (0.018) 0.041 (0.019) 1.2 (0.5) (1.0–1.4)

 lagi+2 0.042 (0.017) 0.040 (0.020) 1.2 (0.5) (0.9–1.4)

Trial 2

 lagi+½ 0.034 (0.011) 0.045 (0.011) 0.8 (0.3)* (0.7–0.9)

 lagi+1 0.055 (0.018) 0.022 (0.006) 2.8 (1.5)** (2.1–3.4)

 lagi+1½ 0.042 (0.012) 0.035 (0.011) 1.3 (0.4) (1.0– 1.5)

 lagi+2 0.038 (0.010) 0.040 (0.011) 1.0 (0.4) (0.9–1.2)

Fig. 3  Adjusting/resulting variance ratios (mean and 95% confidence intervals) are presented in pairs from the two trials. The four sets of ratios 
represent stride-to-stride comparisons, which were generated with four different time lags (Xi, Xi+t)
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subsequent ipsilateral strides. According to this analysis, 
the adjustment of the gait velocity occurred with a time 
lag of 1 full stride in asymptomatic young adults.

Stride‑to‑stride evaluation
The relevance of gait pattern analysis has been illus-
trated in a study by Hausdorff et al., in which increased 
stride-to-stride time variability was found to indicate 
poor balance and a risk for fall among elderly subjects 
[12]. The method used in the present study evaluated 
the data from one stride relative to the following stride. 
This approach is consistent with the approach suggested 
by Slifkin and Newell [28]. They stated that the standard 
deviation, a measure of the size of the variability, does 
not provide a complete picture of variability because 
other constructs of variability like the structure of the 
time series also contains important information [28]. 
Moe-Nilssen et  al. analysed the structure of the time 
series using an autocorrelation coefficient to detect gait 
deficits [5]. This method demonstrated validity in the 
discrimination between fit and frail elderly persons [29]. 
The autocorrelation is, however, sensitive to the number 
of steps included in the analysis sequence. More sophisti-
cated analyses, including non-linear dynamics, have also 
proven to be useful in gait analyses [30, 31].

A simple and well-known method for assessing the 
structure of system output is to view plots of relation-
ships between each data point (xt) and the next data point 
in a time series, i.e., data embedding (see Fig.  2). The 
resulting scatter plot depicts the bivariate relationship 
of (xt) and (xt+1), a relationship that can be quantified 
as the lag-1 autocorrelation [28]. We chose a standard 
embedding technique to build a state-space reconstruc-
tion using original stride velocities and the delayed forth-
coming ones. This choice is important because too-low 
or too-high values may result in state-space vectors that 
fold onto themselves or become indistinguishable [32]. In 
the present study, 1 full stride cycle was found to be suf-
ficient to adjust the gait velocity. This shows that our a 
priori choice for the smallest and largest time lags were 
sound during treadmill walking.

A stride‑to‑stride interaction approach
Latash and colleagues [19] inspired the stride-to-stride 
interaction analysis used in the present study. Gait vari-
ability may include inter-stride corrections (elemental 
variables) that ensure a more or less steady gait (per-
formance variable). Such a stride-to-stride evaluation 
of the gait pattern reflects the traditional clinical obser-
vations of the flow and rhythm of the gait pattern. In a 
clinical context, common sense indicates that a devia-
tion in one stride will be corrected during the following 
strides to preserve good postural control and the flow 

of the movement. Therefore, the stride-to-stride inter-
action approach provides an easy-to-comprehend and 
affordable (in terms of computing time) means to assess 
variability, which may also be used in online feedback 
applications.

Limitations
The following limitations have been discussed as part of 
the peer review process:

The use of a treadmill is a certain limiting factor since 
walking on a treadmill does not reflect a natural gait and 
may not ensure natural gait adjustments [33]. Consid-
ering the explorative nature of the study, the ability to 
collect data for a large number of steps in a controlled 
environment was important, and the use of a treadmill 
for data collection allowed for an analysis of stride length 
and time over many consecutive strides. We believe that 
the resulting variance may be smaller on a treadmill com-
pared to over-ground walking due to the augmented 
spatial and temporal constraints when walking on a 
treadmill [26]. Furthermore, reliability issues have been 
reported for gait variability parameters [34]. The pre-
sent study can serve only as a proof of concept. As such, 
it constitutes a first step toward a better understanding 
of an alternative approach to assess stride-to-stride vari-
ability. Future studies should challenge the relevance of 
this approach during over-ground walking and challenge 
its convergent validity by addressing different age groups 
and patient categories.

The present data revealed that a time lag of 1 full stride 
was sufficient to adjust gait velocity. This was evident in 
both trial 1 and trial 2, which may indicate some robust-
ness of the finding. However, we also found low ICCs, 
indicating unacceptable or moderate test–retest agree-
ment [27]. These low ICCS can mostly be attributed 
to the homogenous study group and the constraints 
imposed by the use of a treadmill on the gait pattern, 
resulting in poor prerequisites for a high correlation [35]. 
The target groups for the clinical gait examinations are 
often elderly people and patients with motor deficits. 
Higher ICC values may be expected when evaluating the 
reliability in these populations.

Conclusions
In the present study, stride-to-stride interactions were 
found during treadmill walking. The gait pattern requires 
ongoing systematic adjustments of the gait velocity. Such 
adjustments were revealed to occur within one full stride. 
In conclusion, we suggest that the evaluation of the adjust-
ing/resulting variance ratio during gait could be used to 
examine variability relative to gait assessments. Future 
studies that test the validity of this approach in over-ground 
and in different populations walking are warranted.
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