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Abstract 

Background:  Multidrug resistance is a growing global public health threat with far more serious consequences than 
generally anticipated. In this study, we investigated the antibiotic resistance and genomic traits of a clinical strain of 
Escherichia coli LCT-EC001.

Results:  LCT-EC001 was resistant to 16 kinds of widely used antibiotics, including fourth-generation cephalosporins 
and carbapenems. In total, up to 68 determinants associated with antibiotic resistance were identified, including 8 
beta-lactamase genes (notably producing ESBLs and KPCs), 31 multidrug efflux system genes, 6 outer membrane 
transport system genes, 4 aminoglycoside-modifying enzyme genes, 10 two-component regulatory system genes, 
and 9 other enzyme or transcriptional regulator genes, covering nearly all known drug-resistance mechanisms in E. 
coli. More than half of the resistance genes were located close to mobile genetic elements, such as plasmids, trans-
posons, genomics islands, and insertion sequences. Phylogenetic analysis revealed that this strain may have evolved 
from E. coli K-12 but is a completely new MLST type.

Conclusions:  Antibiotic resistance was extremely severe in E. coli LCT-EC001, mainly due to mobile genetic elements 
that allowed the gain of a large quantity of resistance genes. The antibiotic resistance genes of E. coli LCT-EC001 can 
probably be transferred to other bacteria. To the best of our knowledge, this is the first report of a strain of E. coli 
which has such a large amount of antibiotic resistance genes. Apart from providing an E. coli reference genome with 
an extremely high multidrug-resistant background for future analyses, this work also offers a strategy for investigating 
the complement and characteristics of genes contributing to drug resistance at the whole-genome level.
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Background
According to the World Health Organization (WHO) 
report ‘Antimicrobial resistance: global report on sur-
veillance 2014’, multidrug resistance is a growing global 
public health threat with far more serious consequences 
than generally anticipated. Out of the WHO member 
states, 50% reported that E. coli isolated from within 
these states was resistant to third-generation cephalo-
sporins and fluoroquinolones—the best antibiotics avail-
able for treating multidrug-resistant bacteria. In February 
2017, the WHO published its first ever list of antibiotic-
resistant “priority pathogens”—a catalogue of 12 families 
of bacteria that pose the greatest threat to human health. 
E. coli was defined as one of the most critical multid-
rug-resistant bacteria, which were considered to have 
built-in abilities to find new ways to resist treatment and 
pass along genetic material that allows other bacteria to 
become drug-resistant as well. It is widely accepted that 
infections caused by antibiotic-resistant bacteria burden 
healthcare resources and increase the risk of poor clini-
cal outcomes for patients. Global estimates suggest that 
more than 700,000 people per year die from drug-resist-
ant infections [1]. It is predicted that antibiotic-resistant 
infections will kill ~ 10 million people per year by 2050, 
costing the global economy ~ $100 trillion [2]. The seri-
ousness of this situation was surmised in the WHO 
report: ‘A post antibiotic era, in which common infec-
tions and minor injuries can kill, is instead a very real 
possibility for the 21st century’.

Revealing the mechanisms underlying drug resistance 
in bacterial pathogens is crucial in infection disease con-
trol and management. With significant progress in high-
throughput sequencing and bioinformatics analysis of 
pathogens, whole-genome sequencing has become more 
accessible for the identification and tracking of multid-
rug-resistance (MDR) microorganisms in hospitals and 
communities [3]. In this study, we isolated E. coli strain 
LCT-EC001 from a 78-year-old male patient with sev-
eral health issues, including diabetes, hypertension and 
chronic obstructive pulmonary disease, who had received 
long-term therapy with multiple drugs. The drug resist-
ance of E. coli strain LCT-EC001 was tested, and whole-
genome sequencing was conducted to understand the 
genetic elements contributing to antibiotic resistance. 
This work contributes a clinically isolated drug-resistant 
E. coli strain as a valuable reference for future studies 
and presents a strategy for the comprehensive analysis of 
drug resistance at the whole-genome level.

Methods
Bacterial isolation and culture conditions
An E. coli isolate (designated LCT-EC001) was obtained 
from the sputum of a 78-year-old male patient who had 

several health issues (diabetes, hypertension and chronic 
obstructive pulmonary disease) and had received multid-
rug therapy over a long time period. The bacterium was 
inoculated in Brain Heart Infusion (Oxoid, UK) medium 
at 37 °C.

Antibiotic susceptibility test
The antibiotic susceptibility profile was tested using 
a VITEK 2 Compact System (bioMerieux Inc., USA) 
according to the manufacturer’s instructions as previ-
ously reported [4]. 17 kinds of antibiotics tested are as 
follows: ampicillin, cefazolin, ampicillin/sulbactam, cefo-
tetan, ceftriaxone, cefepime, ceftazidime, aztreonam, 
ertapenem, imipenem, amikacin, gentamicin, tobramy-
cin, levofloxacin, ciprofloxacin, trimethoprim/sulfa, and 
nitrofurantoin.

High‑throughput sequencing and assembly
Isolation of genomic DNA was carried out using the 
cetyltrimethylammonium bromide (CTAB) method. 
Total DNA obtained was subjected to quality control by 
agarose gel electrophoresis and quantified by Qubit [5]. 
The genome of E. coli strain LCT-EC001 was sequenced 
with MPS (massively parallel sequencing) Illumina tech-
nology. Two DNA libraries were constructed: a paired-
end library with an insert size of 500 bp and a paired-end 
library with an insert size of 5  kb. The 500  bp library 
and the 5  kb library were sequenced using an Illumina 
HiSeq 2000 platform (Illumina, USA). Quality control 
of the two paired-end library reads was performed using 
readfq (version 10) program [6] with the following steps: 
(1) Eliminate reads once its low quality nucleotide bases 
(Q-value ≤ 38) exceeding the threshold (40 bp by default), 
(2) Eliminate the reads containing Ns in the reads greater 
than the threshold (10 bases by default), (3) Eliminate 
reads whose overlap with the adapter exceeding the 
threshold (15 bp by default), and (4) Filter duplicates to 
keep only one copy of the totally same reads. For a library 
of 500  bp, 6.19% of reads were filtered, while 8.48% of 
reads were filtered for a library of 5 kb. The filtered reads 
were assembled by SOAPdenovo [7] to generate scaf-
folds. The parameters used for assembly were as follows: 
SOAPdenovo all -F -K 107 -k 107. All reads were used for 
further gap closure by using GapCloser (version 1.12) [8] 
with default parameters.

Gene prediction, annotation and protein classification
Gene prediction was performed on the LCT-EC001 
genome assembly by GeneMarkS [9] with an integrated 
model that combined the GeneMarkS generated (native) 
and heuristic model parameters. Gene annotation was 
performed with a BLASTp [10] search (E-value less than 
1·e−5, minimal alignment length percentage larger than 
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40%) against 4 databases in a standalone environment. 
The databases are KEGG (Kyoto Encyclopedia of Genes 
and Genomes, v2016.4) [11], COG (Clusters of Orthol-
ogous Groups, v2015.12) [12], GO (Gene Ontology, 
v2014.10) [13], and ncRNA (noncoding RNA database, 
tRNA: v1.3.1, rRNA: v1.2, and sRNA: v2013.8) [14–16]. 
A genome overview was created with Circos [17] to show 
annotation information. In addition, genomic islands 
(GIs), prophages, repeat regions, transfer elements, plas-
mids, and insertion sequences elements (IS elements) in 
LCT-EC001 were analyzed. Repetitive sequences were 
predicted using RepeatMasker [18]. Tandem repeats 
were analyzed using Tandem Repeat Finder (TRF) [19]. 
PHAST [20] was used for prophage prediction. Island-
Path-DIOMB [21] was used to predict genomic islands 
and horizontal gene transfer by examining features such 
as dinucleotide sequence composition bias and the pres-
ence of mobility genes.

Phylogenetic analysis and multilocus sequence typing 
(MLST)
The genome datasets of the other 62 E. coli strains were 
compared with the genome of LCT-EC001 for SNP 
detection by using MUMmer with default settings (ver-
sion 3.22). Then, the repeat regions of LCT-EC001 were 
detected by self-blast (choosing BLASTn parameter 
with blastall, using BLAST v2.2.23), TRF and Repeat-
Masker. After that, SNPs located in the repeat region 
were filtered. Based on the location array of SNPs, a 
phylogenetic tree was generated using the neighbor-
joining method with 1000 bootstraps via MEGA6. 
MLST was performed with the web tool at http://
cge.cbs.dtu.dk/servi​ces/MLST/, using the assembled 
genome. By comparing the sequences of seven house-
keeping genes (ADK,FUMC,GYRB,ICD,MDH,PURA
,RECA) in LCT-EC001 with that in the database, the 
MLST type was analyzed.

Analysis of antibiotic resistance genes
A BLASTp [10] search (E-value less than 1·e−5, minimal 
alignment length percentage larger than 40%) was per-
formed against 3 databases for drug resistance analysis. 
The databases are ARDB (Antibiotic Resistance Genes 
Database), CARD and ARG-ANNOT (Antibiotic Resist-
ance Gene-ANNOTation). Then, the identified sequences 
were all BLAST searched online (https​://blast​.ncbi.nlm.
nih.gov/Blast​.cgi) to match genes in NCBI. The identi-
fied resistance genes were further verified by PCR and 
Sanger sequencing. Location relationships between these 
identified genes and genomic islands, prophages, repeat 

regions, transfer elements, plasmids, and IS elements 
were analyzed.

Results and discussion
Strain LCT‑EC001 is resistant to most clinical antibiotics
We tested the susceptibility of E. coli strain LCT-EC001 
to 17 kinds of widely used antibiotics with the VITEK 
2 Compact System in triplicate. Our findings showed 
that E. coli strain LCT-EC001 was resistant to 16 kinds 
of antibiotics, including fourth-generation cephalo-
sporins (cefepime) and carbapenems (ertapenem and 
imipenem), and was only sensitive to amikacin, indicat-
ing that it is a severely multidrug-resistant bacterium. 
However, extended spectrum β-lactamases (ESBL) were 
negatively detected. The results are shown in Table 1.

Normally, E. coli colonizes the intestines of humans 
and other animals [22]. However, it is a frequent cause 
of community and hospital-acquired infections, such as 
those of the urinary tract, bloodstream, abdomen, skin 
and soft tissues under certain circumstances [23]. This 
bacterium also causes pneumonia, neonatal meningitis 
and food-borne infections on a global scale [24]. It is 
well accepted that antimicrobial resistance is related 
to widespread antibiotic use, especially their inappro-
priate use in humans and other animals, as well as in 
the food industry [25]. With the increasing incidence of 
multidrug-resistant organisms, antibiotic resistance has 
now become a serious global public health problem.

Table 1  Antimicrobial susceptibility profile of E. coli strain 
LCT-EC001

R resistant, S sensitive, I intermediate

Classification Antibiotic MIC (μg/ml) Sensitivity

Beta-lactam antibiot-
ics

Ampicillin ≥ 32 R

Cefazolin ≥ 64 R

Ampicillin/sulbactam ≥ 32 R

Cefotetan ≥ 64 R

Ceftriaxone ≥ 64 R

Ceftazidime ≥ 64 R

Cefepime ≥ 64 R

Aztreonam ≥ 64 R

Ertapenem ≥ 8 R

Imipenem 4 R

ESBL Neg

Aminoglycoside 
antibiotics

Amikacin ≤ 2 S

Gentamicin ≥ 16 R

Tobramycin ≥ 16 R

Quinolone antibiotics Levofloxacin ≥ 8 R

Ciprofloxacin ≥ 4 R

Sulfonamides Trimethoprim/sulfa ≥ 320 R

Nitrofurans Nitrofurantoin ≥ 64 I

http://cge.cbs.dtu.dk/services/MLST/
http://cge.cbs.dtu.dk/services/MLST/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Genomic features of the strain LCT‑EC001
An illustration of the genomic contents in the genome 
of E. coli strain LCT-EC001 is shown in Fig. 1. The final 
assembled genome consisted of 17 scaffolds with a 
total length of 5,198,242  bp and a mean GC content of 
50.79%. The gene annotation included 5013 protein 
coding sequences (CDSs) accounting for 86.61% of the 
genome (Table 2), 84 tRNA (transfer RNA) fragments, 65 
snRNA (small nuclear RNA) genes, 7 copies of 5S rRNA 
(ribosomal RNA), 6 copies of 16S rRNA, 6 copies of 23S 
rRNA (Additional file  1: Table  S1), 17,031  bp of inter-
spersed repeat sequences and 31,219 bp of tandem repeat 
sequences (Additional file 2: Table S2). A total of 69.18% 
of the gene distribution in the GO database is shown in 
Additional file 3: Table S3, 78.04% in the COG database 
shown in Additional file  4: Table  S4, and 65.93% in the 
KEGG database shown in Additional file 5: Table S5.

Phylogenetic tree and MLST analysis of LCT‑EC001
To interpret the evolution of such an extreme multid-
rug-resistant Escherichia coli isolate, a selection of 62 

E. coli complete genomes (1 chromosome) downloaded 
from NCBI was used to map phylogenetic trees by 
using neighbor-joining. All samples except LCT-EC001 
were named as E. coli plus the NCBI uid. The results 
showed that LCT-EC001 was most closely related to E. 
coli K-12, which is mostly used in laboratories (Fig. 2), 
indicating that LCT-EC001 may have evolved. MLST 
analysis showed that the seven housekeeping genes in 
LCT-EC001 were ADK10, FUMC11, GYRB4, ICD8, 
MDH8, PURA13, and RECA2. However, no available 
MLST type could match that of LCT-EC001, revealing 
that this strain was a completely new type.

Fig. 1  Genomic map of E. coli strain LCT-EC001. From outer to inner in a, the first circle shows the identified genes in LCT-EC001. The 2nd–4th 
circles show the COG, KEGG, and GO functions of these identified genes, respectively, and each color represents a function classification in which 
details are annotated in e, d, and b, respectively. The 5th circle shows the ncRNA results, and each color represents a classification in which details 
are annotated in c. For these five circles, the outer side of each represents a positive strand, while the inner side represents a negative strand. The 
6th circle shows the GC contents. The 7th circle represents the LCT-EC001 GC-skew distribution. GC-skew = (G − C)/(G + C); purple and green 
indicate positive and negative values, respectively

Table 2  The genome summary of E. coli strain LCT-EC001

Genome size (bp) 5,198,242

Scaffold number 17

N50 length (bp) 4,259,009

GC content (%) 50.79

Gene number 5013

Gene average length (bp) 898

GC content of genes (%) 50.79
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Analysis of the complement of antibiotic resistance genes
To understand the basis of antibiotic resistance in E. coli 
strain LCT-EC001, we carried out sequence alignments 
with the ARDB database, CARD database and ARG-
ANNOT database. A total of 68 determinants associ-
ated with antibiotic resistance were identified, with a 
length range of 348–3594 bp, and mean length of 1305 bp 
(Additional file 6: Table S6). All those determinants were 
matched to genes in NCBI with similarity of at least 

99%, then further named and classified according to the 
matched gene information, including 8 beta-lactamase 
genes, 31 multidrug efflux system genes, 6 outer mem-
brane transport system genes, 4 aminoglycoside-modify-
ing enzyme genes, 10 two-component regulatory system 
genes, and 9 other enzyme or transcriptional regulator 
genes (Fig. 3). PCR and Sanger sequencing were further 
used to confirm that all the genes did exist in E. coli strain 
LCT-EC001. Beta-lactamases are enzymes produced 

Fig. 2  Evolutionary relationships between LCT-EC001 and other E. coli strains. Sixty-two strains of E. coli with complete genomes from NCBI were 
used for phylogenetic analysis. The phylogenetic tree was deduced by neighbor-joining. From the results, we found that the strain LCT-EC001 was 
close to the lineage of E. coli K-12 (represented with “Δ”). The names of the E. coli strains were composed of E. coli and the NCBI uid
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by bacteria that provide resistance to β-lactam antibiot-
ics such as penicillins, cephalosporins, and cephamycins 
by breaking the antibiotics’ structure, a four-atom ring 
known as a β-lactam. Among the 8 beta-lactamase genes, 
2 were the extended-spectrum β-lactamase (ESBL) genes 
Tem-1 and CTXM-14, and 1 was the Klebsiella pneu-
moniae carbapenemase (KPC) gene KPC-2. ESBLs can 
hydrolyze extended-spectrum cephalosporins, including 
cefotaxime, ceftriaxone, and ceftazidime, as well as the 
oxyimino-monobactam aztreonam. Thus, ESBLs confer 
multiresistance to these antibiotics and related oxyim-
ino-beta lactams, which play an important role in anti-
biotic resistance in E. coli. KPC is another key enzyme 
in MDR, due to its ability to hydrolyze a broad variety 
of β-lactams, including carbapenems, cephalosporins 
and penicillins [26]. Interestingly, ESBL gene were not 
detected by VITEK 2 Compact System, highlighting its 
flaws in clinical setting.

The drug resistance genes in LCT-EC001 covered 
nearly all known drug-resistance mechanisms in E. 
coli. Of these genes, 34 genes were detected from the 
ARDB database, 61 genes were detected from the CARD 
database, and 19 genes were detected from the ARG-
ANNOT database (Additional file  7: Table  S7). In addi-
tion, 6 of these genes were located in genome islands, 11 
genes were located in plasmids, 3 genes were near trans-
posons, 14 genes were near insertion sequences, and no 
genes were related to prophages or repeat regions (Addi-
tional file  7: Table  S7). A more concerning problem is 
that antibiotic resistance traits in bacteria can transfer 
between each other, regardless of their genus [27], via 
mobile genetic elements (MGEs) such as plasmids [28], 
insertion sequences [29], integrons/transposons [30], and 
chromosomal fragments (including resistance islands) 
[31]. A plasmid is a kind of extrachromosomal DNA 
molecule with the ability to autonomously replicate. A 
plasmid can harbor genes encoding β-lactams, even car-
bapenemases or extended-spectrum β-lactamases, and 

aminoglycosides [32] and genes producing antibiotic-
target protecting proteins, antibiotic-modifying enzymes 
or multidrug efflux pumps [33]. Plasmids can also acquire 
mobile genetic elements by encoding endonucleases/
methylase restriction systems [34]. Furthermore, plas-
mids can move from one bacterial cell to another by 
conjugal transfer [34], playing a vital role in the spread 
of resistance determinants among bacteria. An insertion 
sequence (IS) is an important MGE that widely exists in 
bacterial genomes, usually with a length of 0.6–2.0  kb 
[35]. IS elements can help resistance genes to transfer 
between and within bacteria [36] and can upregulate 
downstream resistance genes [37]. Integrons are another 
MGE responsible for the emergence and spread of anti-
biotic resistance genes, including β-lactamases, amino-
glycosides, and fluoroquinolones [38]. Transposons, like 
plasmids, have the potential to transfer horizontally or 
vertically among pathogens, driving the development of 
antibiotic resistance [39]. A genomic island (GI), usually 
with a size of 4.5–600  kb and generated by lateral gene 
transfer (LGT), is a large continuous genomic region. In 
addition, GIs can carry tens to hundreds of genes, often 
important for bacterial evolution, such as antibiotic 
resistance [40].

It is worth mentioning that our genome is a draft 
genome comprising 18 contigs, which means there are 17 
gaps of sequence missed and other drug-resistant genes 
that may not have been identified.

Additional files

Additional file 1. Gene annotation of LCT-EC001.

Additional file 2. Repeat sequences of LCT-EC001.

Additional file 3. Gene distribution of LCT-EC001 in the GO database.

Additional file 4. Gene distribution of LCT-EC001 in the COG database.

Additional file 5. Gene distribution of LCT-EC001 in the KEGG database.

Fig. 3  Antibiotic resistance genes in LCT-EC001. Resistance genes matched in the ARDB, CARD, or ARG-ANNOT database were identified in scaffolds 
1–6, mainly in scaffold1. As scaffold1 is too long, it is shown in five sections with 1 Mbp separation. Genes of the same function classification are 
shown in the same color

https://doi.org/10.1186/s13099-019-0298-5
https://doi.org/10.1186/s13099-019-0298-5
https://doi.org/10.1186/s13099-019-0298-5
https://doi.org/10.1186/s13099-019-0298-5
https://doi.org/10.1186/s13099-019-0298-5
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Additional file 6. Gene length of 68 antibiotic resistance determinants in 
LCT-EC001.

Additional file 7. Location and database source of 68 antibiotic resistance 
determinants in LCT-EC001.
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