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Abstract 

Background:  Although immune checkpoint inhibitor (ICI) is regarded as a breakthrough in cancer therapy, only a 
limited fraction of patients benefit from it. Cancer stemness can be the potential culprit in ICI resistance, but direct 
clinical evidence is lacking.

Methods:  Publicly available scRNA-Seq datasets derived from ICI-treated patients were collected and analyzed to 
elucidate the association between cancer stemness and ICI response. A novel stemness signature (Stem.Sig) was 
developed and validated using large-scale pan-cancer data, including 34 scRNA-Seq datasets, The Cancer Genome 
Atlas (TCGA) pan-cancer cohort, and 10 ICI transcriptomic cohorts. The therapeutic value of Stem.Sig genes was fur‑
ther explored using 17 CRISPR datasets that screened potential immunotherapy targets.

Results:  Cancer stemness, as evaluated by CytoTRACE, was found to be significantly associated with ICI resistance 
in melanoma and basal cell carcinoma (both P < 0.001). Significantly negative association was found between Stem.
Sig and anti-tumor immunity, while positive correlations were detected between Stem.Sig and intra-tumoral het‑
erogenicity (ITH) / total mutational burden (TMB). Based on this signature, machine learning model predicted ICI 
response with an AUC of 0.71 in both validation and testing set. Remarkably, compared with previous well-established 
signatures, Stem.Sig achieved better predictive performance across multiple cancers. Moreover, we generated a gene 
list ranked by the average effect of each gene to enhance tumor immune response after genetic knockout across 
different CRISPR datasets. Then we matched Stem.Sig to this gene list and found Stem.Sig significantly enriched 3% 
top-ranked genes from the list (P = 0.03), including EMC3, BECN1, VPS35, PCBP2, VPS29, PSMF1, GCLC, KXD1, SPRR1B, 
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Background
Immune checkpoint inhibitor (ICI) has ushered in a 
new era of cancer treatment and provided unprece-
dented clinical benefits for patients [1]. However, only a 
relatively small proportion of patients respond to it [2], 
which highlights the necessity of biomarker research for 
optimizing patient selection and combination strategies 
to tackle immune resistance.

Traditional biomarker research mostly focused on 
the analysis of whole exome sequencing (WES) or RNA 
sequencing (RNA-Seq) from intact tumor tissue (bulk 
data) [3–8], which only reflects the average genetic pro-
file across a large population of different cells. Pre-exist-
ing ICI biomarkers derived from these studies showed 
limited predictive values. The development of single-cell 
RNA sequencing (scRNA-Seq) enables us to dissect gene 
expression at single-cell resolution and identify novel 
biomarkers with better performance [9].

Cancer stem cells (CSCs) are self-renewal cells that 
promote tumor initiation, progression, and metastasis 
[10]. Mounting evidences revealed a prominent associa-
tion between stemness and cancer immune evasion and 
resistance [11]. A previous study demonstrated that high 
stemness correlates with immune cell exclusion across 
21 solid cancer types [12], but direct clinical evidence 
validating the negative association between stemness 
and ICI outcomes is lacking. With the help of a power-
ful computational framework (CytoTRACE) developed 
by Gulati et  al., we can accurately characterize cancer 
stemness and identify stemness-correlated genes at the 
resolution of single-cell level to better investigate the 
impacts of stemness on ICI [13].

In this study, we revealed and verified the negative 
association between cancer stemness and ICI outcomes 
in two scRNA-Seq ICI cohorts [14, 15]. Thereafter a 
stemness signature (Stem.Sig) was developed through 
an integrative analysis of 34 scRNA-Seq datasets, which 
consisted of 345 patients and 663,760 cells across 17 can-
cer types [14–43]. The predictive value of Stem.Sig was 
further explored and validated through a comprehen-
sive analysis of pan-cancer transcriptomic data (10,154 
patients; 30 cancer types) [44], 17 CRISPR datasets (4 

cancer types) [45–51], and 10 independent ICI cohorts 
(921 patients; 5 cancer types) [52–61]. Our findings 
uncovered the potential of Stem.Sig for predicting ICI 
outcomes more accurately than previously recognized 
signatures across multiple cancer types.

Methods
scRNA‑Seq ICI cohorts
To investigate the relationship between cancer cell 
stemness and immunotherapy efficacy, a melanoma 
cohort with both ICI response and scRNA-Seq data was 
analyzed [14, 15]. Another independent scRNA-seq ICI 
cohort of basal cell carcinoma was used to validate the 
results. Data of these two cohorts was accessed through 
GEO accession number: GSE115978 [14] and GSE123813 
[15], respectively (Additional file 1: Table S1).

Pan‑cancer scRNA‑Seq datasets
For the development of stemness signature (Stem.Sig), 34 
scRNA-Seq datasets with both malignant and stromal/
immune cells data were collected from the TISCH por-
tal (http://​tisch.​comp-​genom​ics.​org/) [62], which con-
sist of 345 patients and 663,760 cells (Additional file  1: 
Table S2). These datasets cover 17 cancer types, including 
basal cell carcinoma (BCC), breast cancer (BRCA), chol-
angiocarcinoma (CHOL), colorectal cancer (CRC), gli-
oma, head and neck cancer (HNSC), liver hepatocellular 
carcinoma (LIHC), medulloblastoma (MB), Merkel cell 
carcinoma (MCC), multiple myeloma (MM), neuroendo-
crine tumor (NET), non-small cell lung cancer (NSCLC), 
ovarian serous cystadenocarcinoma (OV), pancreatic 
adenocarcinoma (PAAD), skin cutaneous melanoma 
(SKCM), stomach adenocarcinoma (STAD), and uveal 
melanoma (UVM) [14–43].

Pan‑cancer transcriptomic data
Transcriptomic data of The Cancer Genome Atlas 
(TCGA) Pan-cancer cohort was downloaded from the 
UCSC Xena data portal (https://​xenab​rowser.​net) [44] 
to explore the potential links between Stem.Sig and 
immune suppression across 30 different cancer types. 
Three cancer types were excluded from our analysis, 

PTMA, YBX1, CYP27B1, NACA, PPP1CA, TCEB2, PIGC, NR0B2, PEX13, SERF2, and ZBTB43, which were potential therapeu‑
tic targets.

Conclusions:  We revealed a robust link between cancer stemness and immunotherapy resistance and developed 
a promising signature, Stem.Sig, which showed increased performance in comparison to other signatures regard‑
ing ICI response prediction. This signature could serve as a competitive tool for patient selection of immunotherapy. 
Meanwhile, our study potentially paves the way for overcoming immune resistance by targeting stemness-associated 
genes.

Keywords:  Big data analysis, Single-cell sequencing, Immune checkpoint therapy, Stemness, Pan-cancer
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including diffuse large B cell lymphoma (DLBC), acute 
myeloid leukemia (LAML), and thymoma (THYM), as 
they mainly consist of immune cells [63]. Total mutation 
burden (TMB) was retrieved from cBioPortal (https://​
www.​cbiop​ortal.​org) [64, 65] and intratumor heterogene-
ity (ITH) data was from Thorsson et al. [66], which were 
used for analyzing the correlation between Stem.Sig and 
TMB or ITH.

ICI RNA‑Seq cohorts
To validate the predictive value of Stem.Sig, we systemi-
cally collected transcriptomic data and clinical infor-
mation of pretreatment samples from 10 ICI RNA-Seq 
cohorts, including 5 SKCM cohorts (Hugo 2016 [59], Liu 
2019 [54], Gide 2019 [55], Riaz 2017 [56], Van Allen 2015 
[60]), 2 urothelial carcinoma (UC) cohorts (Mariathasan 
2018 [53], Synder 2017 [58]), 1 glioblastoma multiform 
(GBM) cohort (Zhao 2019 [57]), 1 gastric cancer (GC) 
cohort (Kim 2018 [61]) and 1 renal cell carcinoma (RCC) 
cohort (Braun 2020 [52]). Anti-PD-1 therapy, anti-PD-L1 
therapy, anti-CTLA4 therapy, and anti-PD-(L)1 plus anti-
CTLA-4 combination therapy were employed in 6, 2, 1, 
and 1 cohort, respectively. Cohort Hugo 2016 [59] com-
prises 27 pre-treated tumor samples from 26 patients, 
while cohort Zhao 2019 [57] consists of 34 pre-treated 
tumor samples from 17 patients. In these two cohorts, we 
randomly selected a single tumor sample for each corre-
sponding patient. The details of these cohorts are sum-
marized in Additional file 1: Table S3.

CRISPR screening data
To explore potential therapeutic targets of Stem.Sig 
genes, we collected data from 7 published CRISPR/Cas9 
screening studies that assessed the individual effect of 
each gene knockout on tumor immunity, including Free-
man 2019 [47], Kearney 2018 [46], Manguso 2017 [51], 
Pan 2018 [50], Patel 2017 [49], Vredevoogd 2019 [48], 
and Lawson 2020 [45]. The first six CRISPR studies have 
been previously curated by Fu et  al. [8] In addition to 
Fu et  al., we further collected another CRISPR cohort 
from Lawson et  al. [45]. According to model cell lines 
and treatment conditions applied, these seven CRISPR 
studies were divided into 17 datasets (Additional file  1: 
Table S4). The CRISPR analysis covers melanoma, breast 
cancer, colon cancer, and renal cancer cell lines. We uti-
lized these data to identify genes that are more likely to 
modulate lymphocyte-mediated cancer killing and influ-
ence immunotherapy response across different datasets.

The process of CRISPR screens is to perform genome-
wide CRISPR-Cas9 knockout across various cancer cell 
lines that were co-cultured with/without cytotoxic lym-
phocytes (CTLs) in vitro or implanted into immune-defi-
cient mice/immune-competent mice in vivo. Then RNA 

sequencing is used to estimate the abundance of sgRNA 
targeting the corresponding gene. To measure the effect 
of gene knockout on cancer fitness under the pressure 
of CTLs or anti-tumor immunity, log-fold changes of 
sgRNA reads are calculated for paired screens of cell lines 
(with CTLs vs. without CTLs; immune-deficient mice 
vs. immune-competent mice) [45]. Normalized z scores 
were called from the log-fold changes in order to remove 
batch effects and compare genes among CRISPR datasets 
from different studies. The lower z scores indicate better 
immune response after gene knockout. We also ranked 
genes based on the average z scores across 17 datasets. 
Top-ranked genes with lower z scores were characterized 
as immune resistant.

scRNA‑Seq data analysis
Previous studies revealed a global reduction of chroma-
tin accessibility during lineage commitment [13]. Since 
chromatin accessibility could be quantitatively reflected 
by single-cell gene counts, Gulati et al. had discovered a 
prominent association between single-cell gene counts 
and differential status of the corresponding cell [13]. 
Higher single-cell gene counts correlate with less cel-
lular differentiation (higher stemness). The CytoTRACE 
algorithm is developed by Gulati et  al. to capture, 
smooth, and calculate the expression level of genes that 
are most highly correlated with single-cell gene counts 
with scRNA-Seq data. When the calculation of the 
CytoTRACE algorithm is finished, each single cell will 
get a score that represents its stemness within the given 
dataset. CytoTRACE is a robust computational frame-
work for differentiation states prediction via scRNA-seq 
data, which was validated in large-scale datasets and 
outperformed pre-existing computational techniques of 
stemness [13]. R package CytoTRACE v0.3.3 was applied 
to calculate the CytoTRACE scores for malignant cells. 
CytoTRACE scores range from 0 to 1, while higher scores 
indicate higher stemness (less differentiation) and vice 
versa.

The R package Seurat v4.0.6 was used to identify dif-
ferentially expressed genes of malignant cells in each 
dataset. Genes with the log-fold change (logFC) ≥ 0.25 
and false discovery rate (FDR) < 1e−05 were considered 
as differentially up-regulated genes of malignant cells in 
each dataset [62].

Anti‑tumor immunity and pathway analysis
Over Representation Analysis (ORA) was conducted to 
determine whether known biological functions or pro-
cesses are enriched in Stem.Sig [67]. The R package clus-
terProfiler v4.2.1 was used to perform ORA and visualize 
the results [68].

https://www.cbioportal.org
https://www.cbioportal.org
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Gene set variation analysis (GSVA) was used to calcu-
late the Stem.Sig scores and relative enrichment of other 
gene signatures and biological pathways across sample 
populations. The R package GSVA v1.42.0 was applied to 
perform GSVA [69].

We further evaluated the correlation between Stem.Sig 
and tumor-infiltrating leukocytes (TILs)/immune-related 
genes (IRGs) in TCGA cohort. Immune-related genes 
and their functional classifications were obtained from 
Thorsson et al. [66]. The R package MCP-counter v1.1.0 
was utilized to estimate the abundance of tumor-infiltrat-
ing leukocytes [70].

Clinical outcomes
The primary clinical outcomes were objective response 
rate (ORR) and overall survival (OS). ORR was assessed 
using Response Evaluation Criteria in Solid Tumors 
(RECIST) version 1.1 in all cohorts [71], except cohort 
Hugo 2016 [59], whose ORR was assessed using immune-
related RECIST (irRECIST). Patients were divided into 
two groups according to their response status: complete 
response (CR) and partial response (PR) as responders, 
or stable disease (SD) and progressive disease (PD) as 
non-responders.

Derivation of predictive model for ICI response
Dataset
Top five ICI RNA-Seq cohorts with most patients were 
combined to form a large cohort (n= 772), including 
RCC (n=181), UC (n=348), and SKCM (n=243). These 
five cohorts are Braun 2020 RCC [52], Mariathasan 2018 
UC [53], Liu 2019 SKCM [54], Gide 2019 SKCM [55], 
and Riaz 2017 SKCM [56]. We used ComBat method to 
remove the batch effect of different ICI RNA-Seq cohorts 
[72]. Then we randomly split this combined cohort into 
two datasets: training set (80%, n = 618) and validation 
set (20%, n=154). The other five ICI RNA-Seq cohorts 
[57–61] were consolidated as an independent testing set 
(n = 149).

Model training and parameter tuning
We trained the ICI response classification model with 
Stem.Sig, using seven common machine learning (ML) 
algorithms, including support vector machine (SVM), 
Naïve Bayes (“NB”), random forest (“RF”), k-nearest 
neighbors (“KNN”), AdaBoost Classification Trees (“Ada-
Boost”), boosted logistic regressions (“LogiBoost”), and 
cancerclass [73, 74]. For each ML algorithm with param-
eters except cancerclass, fivefold cross-validation (CV) 
was adopted for hyperparameter tuning to optimize the 

performance of the model. To ensure robustness, we 
repeated the optimization process 10 times with different 
random seeds for each single resampling [75]. As for can-
cerclass which does not require parameters, we trained 
the model using the entire training set directly.

Model validation and independent testing
We had seven models derived from the training set, using 
different ML algorithms. Then we applied these mod-
els to the validation set and compared their results. The 
model with the best performance was chosen as the final 
Stem.Sig model. To evaluate the predictive value of the 
final model, we applied it to the testing set.

Comparing Stem.Sig with other predictive gene signatures
To further evaluate the predictive value of Stem.Sig, we 
compared Stem.Sig with other ICI response signatures 
reported previously, including six pan-cancer signatures 
(INFG.Sig [76], T.cell.inflamed.Sig [76], PDL1.Sig [77], 
LRRC15.CAF.Sig [78], NLRP3.Sig [79], and Cytotoxic.Sig 
[80]) and seven melanoma-specific signatures (CRMA.
Sig [81], IMPRES.Sig [7], IPRES.Sig [82], TcellExc.Sig 
[14], ImmmunCells.Sig [83], IMS.Sig [84], and TRS.Sig 
[85]). Pan-cancer signatures were compared with Stem.
Sig in the testing set regarding the performance of ICI 
response prediction. As for melanoma-specific signa-
tures, we compared their performance with Stem.Sig 
using melanoma patients from the testing set (Hugo 2016 
[59] and Van Allen 2015 [60]). Codes and algorithms 
for the 13 aforementioned signatures were derived from 
their original studies, such as ssGSEA for NLRP3.Sig 
[79], cancerclass for ImmuneCell.Sig [83], overall expres-
sion for TcellExc.Sig [14], and so on. Details of these sig-
natures and their corresponding algorithms can be found 
in Additional file 1: Table S5.

Statistical analysis
Statistical analyses were performed using R v4.1.1 
(https://​www.r-​proje​ct.​org). Comparison of CytoTRACE 
scores between response and non-response subgroups 
was analyzed by two-sided Wilcoxon tests. We used 
Spearman correlation to evaluate the association between 
Stem.Sig and biological pathways or immune features. 
Benjamini-Hochberg procedure (B-H) was applied to 
calculate FDR. The R package caret v6.0-90 and cancer-
class v1.34.0 were used for model training, validation, 
and testing [74]. The receiver operating characteristic 
(ROC) curve was used and a larger area under the ROC 
curve (AUC) indicated a better predictive performance 
An AUC of 0.9–1.0 is considered excellent, 0.8–0.9 very 
good, 0.7–0.8 good, 0.6–0.7 sufficient, 0.5–0.6 bad, and 

https://www.r-project.org
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less than 0.5 considered not useful [86]. Patients pre-
dicted by the final model as “NR” and “R” were catego-
rized into high-risk and low-risk subgroups for survival 
analysis. The association between the Stem.Sig-based risk 
grouping and OS was analyzed by Cox proportional haz-
ards regression analysis. Further survival analysis of indi-
vidual cohort from testing set was adjusted for available 
confounding factors, including TMB, tumor purity, sex, 
and age.

Results
Cancer stemness is associated with ICI resistance
A previous published ICI SKCM cohort with scRNA-
seq data was firstly employed to evaluate the associa-
tion between cancer stemness and ICI outcomes [14]. 
After removing patients without malignant cells data, 
we adopted 24 patients from this cohort, consisting of 
11 non-responders (NR) and 13 treatment-naïve patients 
(TN). Ideally, it is better to compare the cancer stemness 
between responders (R) and non-responders. How-
ever, data of responders was not available in this cohort. 
Given that treatment naïve patients likely include both 
potential responders and non-responders, comparison 
of stemness was conducted between NR and TN as pre-
viously described [14]. As shown in Fig. 1A, cancer cells 
with high stemness were enriched in the NR subgroup. 
Further analysis showed that tumors from the NR sub-
group had a significantly higher level of stemness (P < 
0.001, Fig.  1B), indicating that cancer stemness is nega-
tively associated with ICI outcomes. Another ICI cohort 
with a different cancer type (BCC) was employed to vali-
date this finding [15]. In the BCC cohort, tumor stemness 
of 4 non-responders was compared to that of 6 respond-
ers. We found a more prominent gap of stemness level 
between NR and R subgroups in the BCC cohort (P < 
0.001, Fig. 1C and D).

Development of Stem.Sig through pan‑cancer scRNA 
analysis
As cancer stemness is significantly associated with ICI 
resistance, we hypothesized that a Stem.Sig reflecting the 
stemness level of the tumor may help in the prediction 
of ICI efficacy. Therefore, 34 scRNA-Seq datasets were 
employed to develop the Stem.Sig (Fig.  2A; Additional 
file  1: Table  S6). We performed Spearman correlation 
analysis between gene expression level and CytoTRACE 

scores for malignant cells among pan-cancer scRNA 
datasets. Genes that were positively correlated with 
CytoTRACE scores (Spearman R > 0 and FDR < 1e−05) 
were regarded as Gx. Genes that were differentially up-
regulated in malignant cells were regarded as Gy. To 
obtain up-regulated tumor-specific genes that were 
positively associated with stemness, Gx and Gy were 
intersected to give rise to Gn for each dataset [14]. For 
example, G1 consisted of genes derived from the intersec-
tion of Gx and Gy in the first scRNA-Seq dataset. Geo-
metric mean of Spearman R was calculated for each gene 
across G1–G34. Finally, genes with geometric mean of 
Spearman R > 0.4 (moderate to strong correlation) were 
pooled as Stem.Sig [87].

We investigated the biological functions that were 
over-represented in Stem.Sig (Fig.  2B). The enriched 
pathways mainly comprise processes involving hypoxia, 
glycolysis, ubiquitination, EPH-ephrin signaling, WNT 
signaling, and nucleotide excision repair (NER). Specific 
genes of these pathways were shown in the cnetplot of 
Fig.  2B. Some genes have been reported to be associ-
ated with unfavorable outcomes of immunotherapy, such 
as EPHA3, EPHA7, ENO1, ACTG1, DKK2, NPM1, and 
BCL10 [6, 88–92].

Analysis of the potential links between Stem.Sig 
and immune suppression using pan‑cancer TCGA cohort
First, we performed a thorough analysis of Stem.Sig and 
75 immune-related genes [66]. A general negative asso-
ciation was observed between Stem.Sig and expression 
level of immune-related genes across 30 different cancer 
types (Fig. 3A). Then we evaluated the infiltration status 
of immune cells to better characterize the tumor immune 
microenvironment (TIME). Tumors with high Stem.Sig 
had decreased cytotoxic immune cells, including CD8+ T 
cells, NK cells and macrophages (Fig. 3B). Taken together, 
these results indicated that Stem.Sig was negatively asso-
ciated with anti-tumor immunity.

Secondly, we analyzed the enrichment of hallmark 
pathways regarding the expression level of Stem.Sig 
to investigate whether immunosuppressive biological 
functions were upregulated in high Stem.Sig tumors. 
Metabolic pathways, DNA repair, and MYC signaling 
were found to be enriched in tumors with high Stem.
Sig(Fig.  3C). All of these pathways contributed to the 

(See figure on next page.)
Fig. 1  Identification and validation of a negative association between cancer cell stemness and ICI outcomes. A, C t-Distributed Stochastic 
Neighbor Embedding (tSNE) plot of malignant cells from SKCM or BCC. Top tSNE plots depicting the distribution of CytoTRACE scores among 
malignant cells. Dark-green indicates lower scores (low stemness) while dark-red indicates higher scores (high stemness). Bottom tSNE plots label 
the malignant cells by response phenotype. B, D raincloud plot of CytoTRACE scores by response phenotype (NR vs. TN) in SKCM cohort or by 
response phenotype (NR vs. R) in BCC cohort. The center of the box plot are median values, the bounds of the box are 25% and 75% quantiles 
(Wilcoxon test; *** P < 0.001). Abbreviation: NR, non-responders; R, responders; TN, treatment naïve patients.
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Fig. 1  (See legend on previous page.)
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poor immune response according to previous studies 
[93–95].

Furthermore, we investigated the association between 
Stem.Sig and ITH, a stemness-associated feature that 
mediates immunosuppression [12]. As expected, ITH 

were positively correlated with Stem.Sig across can-
cer types. (R = 0.42, P = 0.021, Fig. 3D). Same analysis 
was applied to TMB, a well-known immune-relevant 
factor. Interestingly, a similar positive association was 
detected between Stem.Sig and TMB as well (R = 0.47, 

Fig. 2  Development and description of stemness signature. A Circos plot depicting the development of Stem.Sig. B Pathway enrichment analysis 
of genes in Stem.Sig. The bar plot showed the top 20 enriched Reactome pathways. The cnetplot presented the network of specific genes from 
these pathways. Colored points referred to the corresponding pathways. Abbreviation: CFTR, cystic fibrosis transmembrane conductance regulator; 
GG-NER, global genomic nucleotide excision repair; HIF, hypoxia-inducible factor; PCP, planar cell polarity; CE, convergent extension

(See figure on next page.)
Fig. 3  Analysis of the potential links between Stem.Sig and immune resistance using pan-cancer TCGA cohort. A Circos plot depicting the 
correlation between Stem.Sig and the expression level of immune-related genes across multiple cancer types. From inside to outside of the circos 
plot, the vertical axis with a black arrow indicated different cancer types, which were annotated by the y axis of plot B. B Heatmap depicting the 
correlation between Stem.Sig and the infiltration of immune cells across multiple cancer types. C Heatmap depicting the correlation between Stem.
Sig and the Top 10 Hallmark pathways. D Correlation of median Stem.Sig and median TMB of each cancer type. E Correlation of median Stem.Sig 
and median ITH of each cancer type. GSVA scores were calculated to estimate the expression level of Stem.Sig for each sample
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Fig. 3  (See legend on previous page.)
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P = 0.008, Fig. 3E). High TMB indicates better immune 
response, while high Stem.Sig dose the opposite. To bet-
ter elucidate the correlation of anti-tumor immunity with 
both Stem.Sig and TMB, we further divide patients into 
four subgroups: high Stem.Sig/high TMB (HSHT), high 
Stem.Sig/low TMB (HSLT), low Stem.Sig / high TMB 
(LSHT), and low Stem.Sig / low TMB (LSLT). Median 
GSVA score of Stem.Sig and median TMB were used as 
thresholds for grouping. Then we compared the abun-
dance of immune cells among these four subgroups. 
Interestingly, LSHT was found with the highest level of 
cytotoxic lymphocytes (P < 0.001), while HSLT with the 
lowest level (P<0.001). High cancer stemness (HS) could 
promote immune resistance and evasion, while low TMB 
level (LT) is associated with decreased anti-tumor immu-
nity due to lack of antigenicity. As expected, decreased 
infiltration of cytotoxic lymphocytes was detected for 
both HS and LT groups (p < 0.001, Additional file 2: Fig.
S1 A and B). It is reasonable that the coexistence of these 
two factors (HSLT) may result in a TIME with the least 
infiltration of cytotoxic lymphocytes. On the contrary, 
LSHT could lead to the most abundant CTLs in the 
TIME. However, the anti-tumor immunity of the other 
two groups (HSHT and LSLT) seems to be more contro-
versial than the aforementioned groups (HSLT, LSHT), 
since HSHT and LSLT both have an immune-suppressed 
(HS or LT) factor and an immune-promoted (LS or HT) 
factor. Further subgroup analysis found a higher level of 
cytotoxic lymphocytes in LSLT than in HSHT (p < 0.001, 
Additional file  2: Fig.S1 C). In conclusion, the order of 
anti-immunity from highest to lowest is: LSHT > LSLT 
> HSHT > HSLT (all p < 0.001, Additional file 2: Fig.S1 
C). Therefore, tumors with low Stem.Sig presented with 
significantly better anti-tumor immunity than those with 
high Stem.Sig regardless of TMB level.

Immunotherapy outcome prediction by Stem.Sig
To investigate the predictive value of Stem.Sig, we col-
lected bulk RNA-Seq data and clinical information 
from 10 ICI cohorts. Pre-treatment samples of these 
cohorts were curated and analyzed. Patients received 
anti-PD(L)-1, anti-CTLA-4, or anti-PD(L)-1 plus anti-
CTLA-4. All these 10 cohorts were split into 3 data set: 
training set (n=620), validation set (n=154), and test-
ing set (n=149). The flow chart of the analysis process 
was shown in Fig.  4A. Firstly, we trained the model 
with seven different machine learning algorithms and 
applied 10-time repeated 5-fold cross-validation for 
parameter optimization of each model. After training, 
we harvested seven models. Then, we evaluated and 
compared the AUC of these models in the validation 
cohort. Naïve Bayes model achieved the highest AUC of 
0.71 and was selected as Stem.Sig model (Fig.  4B). For 

further assessment of the Stem.Sig model, we applied it 
to the independent testing set to predict ICI response 
and observed a same AUC of 0.71 (Fig.4C).

To evaluate whether the Stem.Sig model can predict 
overall survival, we divided ICI-treated patients into 
low-risk and high-risk subgroups based on the predicted 
“R” and “NR” respectively. The Kaplan-Meier analysis 
of OS was shown in Fig. 4D. Low-risk group achieved a 
significantly longer overall survival in training, valida-
tion, and testing sets (all log-rank p < 0.01). In the vali-
dation cohort, high-risk patients predicted by the Stem.
Sig model had a median OS of only 13.3 months, com-
pared to 31.2 months of low-risk patients (HR: 1.87; 
95%CI: 1.21–2.90). In the testing set, a similar median OS 
of 13.4 months was observed in high-risk patients, while 
low-risk ones had not reached the median OS (HR: 3.08; 
95%CI: 1.64–5.81).

We performed subgroup analysis for five individual 
cohorts that contribute to the testing set. Regard-
ing ICI response prediction, AUC ranged from 0.62 
to 0.81 among these cohorts (Additional file  2: Fig.
S2A). Van Allen 2015 SKCM achieved a favorable 
AUC of 0.81 (95%CI: 0.66−0.95), followed by Synder 
2017 UC (AUC: 0.80; 95%CI: 0.61−0.99). Compared 
to other cohorts, Zhao 2019 GBM presented with the 
lowest AUC of 0.62 (95%CI: 0.33−0.91). In survival 
analysis, Kim 2018 GC was removed due to a lack of 
OS data. For the other four cohorts, we observed a 
HR ranged from 1.73 to 4.05 in high-risk patients pre-
dicted by the Stem.Sig model (Additional file  2: Fig.
S2B). After adjusting available confounding factors, 
significant survival benefits were still found in Van 
Allen 2015 SKCM (adjusted p = 0.02) and Synder 2017 
UC (adjusted p = 0.02), while the other two cohorts 
showed only numerical survival differences. It is pos-
sibly due to the limited sample size.

We further compared the performance of Stem.Sig 
with previous well-established predictive gene signa-
tures. Compared with pan-cancer signatures (INFG.Sig 
[76], T.cell.inflamed.Sig [76], PDL1.Sig [77], LRRC15.
CAF.Sig [78], NLRP3.Sig [79], and Cytotoxic.Sig [80]), 
Stem.Sig showed best performance in the testing set 
with an AUC of 0.71, followed by INFG.Sig with an 
AUC of 0.66 (Fig.  5A). Most of these pan-cancer sig-
natures showed ideal performance in only one or two 
cohorts. For example, AUC of INFG.Sig reached 0.85 in 
Kim 2018 GC and 0.67 in Van Allen 2015 SKCM, but it 
decreased to 0.53–0.54 in the other three cohorts (Addi-
tional file 1: Table S7). However, Stem.Sig achieved suf-
ficient to very good performance in all cohorts, covering 
four cancer types: SKCM, GBM, UC, and GC, which 
further stresses its potential as a predictive model of ICI 
response in a pan-cancer manner (Fig.  5B). Compared 
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Fig. 4  Prediction of ICI outcomes using Stem.Sig. A Flow chart of training, validating, and testing the Stem.Sig model constructed using machine 
learning process. In the training set, we applied 10-time repeated 5-fold cross-validation for parameters tuning of different machine learning 
algorithms. In the validation set, Naïve Bayes algorithm with best AUC was kept as the final Stem.Sig model. (parameter: fL=0; adjust = 0.75; 
useKernel = TRUE). B Comparison of multiple ROC plot depicting the performance of different machine learning algorithms in the validation set. C 
ROC plot depicting the performance of the final Stem.Sig model in validation and testing cohort. D Kaplan-Meier curves comparing OS between 
High-risk and Low-risk patients in validation and testing set. “NR” and “R” predicted by the final Stem.Sig Model was defined as “High-risk” and 
“Low-risk” patients respectively. HR were calculated by Cox proportional hazards regression analysis. Abbreviation: TPR, true positive rate; FPR, false 
positive rate; AUC, area under the curve; HR, hazard ratio; CI, confidence intervals
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with melanoma-specific signatures (CRMA.Sig [81], 
IMPRES.Sig [7], IPRES.Sig [82], TcellExc.Sig [14], 
ImmmunCells .Sig [83], IMS.Sig [84], and TRS.
Sig [85]), Stem.Sig remained in the top 3 with an 

AUC of 0.76 in prediction of ICI response regard-
ing melanoma patients. IMPRES.Sig and CRMA.Sig 
showed a slightly better AUC of 0.81 and 0.77 than 
Stem.Sig.

Fig. 5  Comparing AUC of Stem.Sig with other predictive gene signatures. A Circos plot depicting the performance of pan-cancer signatures in the 
testing set. The vertical axis indicated AUC values. Testing set comprises five different cohorts, including Hugo 2020 SKCM, Van Allen 2015 SKCM, 
Kim 2018 GC, Zhao 2019 GBM, Synder 2017 UC. B Heatmap comparing the predictive value of Stem.Sig and other pan-cancer signatures. Different 
signature rows were ordered by their AUC in the testing set. From top to bottom, Stem.Sig ranked first while Cytotoxic.Sig ranked last. C Bar plot 
depicting the AUC values of Stem.Sig and other melanoma-specific signatures in the SKCM cohort (Hugo 2016 + Van Allen 2015).
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Exploration of potential therapeutic targets from Stem.Sig 
using CRISPR screen data
We systemically collected immune response data of 
knockout genes from seven CRISPR cohorts, which 
were further divided into 17 datasets according to the 
model cells and treatment conditions used in these 
CRISPR cohorts. Totally, there were 22,505 genes 
recorded by these CRISPR datasets. We ranked genes 
based on their mean z scores. Top-ranked genes were 
immune-resistant genes, which may promote anti-tumor 
immunity after knockout. Bottom-ranked genes were 

immune-sensitive genes, which may suppress anti-tumor 
immunity after knockout. The process of gene rank-
ing was shown in Fig.  6A. Among all 22,505 genes, the 
number of 1%, 2%, and 3% top-ranked genes was 225, 
450, and 675, respectively. Next, we calculated the per-
centage of top-ranked genes that were presented in Stem.
Sig and previous immune-resistant signatures, includ-
ing TcellExc.Sig, ImmuneCells.Sig, IMS.Sig, LRRC15.
CAF.Sig, and CRMA.Sig (except IPRES.Sig, which com-
prises 73 genetic pathways instead of individual genes) 
[14, 78, 81, 83, 84]. Stem.Sig, TcellExc.Sig, IMS.Sig, 

Fig. 6  Exploration of potential treatment targets from Stem.Sig using CRISPR screening data. A Ranking of genes based on their knockout effects 
on anti-tumor immunity across 17 CRISPR datasets. Negative (positive) z scores indicated better (worse) immune response after knockout of a 
specific gene. Genes were ranked according to their mean z scores. Top-ranking genes were associated with immune resistance. Blank squares in 
the heatmap referred to missing values of gene data from the corresponding cohort. B Radar plot comparing the percentage of top-ranked genes 
for Stem.Sig and other predictive signatures. C Heatmap depicting z scores of 20 Stem.Sig genes in the 3% top-ranked genes across different CRISPR 
datasets
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and ImmuneCells.Sig were the only four gene sets that 
had genes ranked in the top 3%. As expected, Stem.Sig 
had the highest percentage of top-ranked genes than 
other signatures (Fig.  6B). Immune-resistant genes (3% 
top-ranked genes) were significantly over-represented 
in Stem.Sig (P=0.03; Fisher’s exact test). There were 20 
genes of Stem.Sig that were ranked in the top 3%, includ-
ing EMC3, BECN1, VPS35, PCBP2, VPS29, PSMF1, 
GCLC, KXD1, SPRR1B, PTMA, YBX1, CYP27B1, NACA, 
PPP1CA, TCEB2, PIGC, NR0B2, PEX13, SERF2, and 
ZBTB43. Immune-resistant features of these stemness-
associated genes were validated by multiple independent 
CRISPR datasets (Fig. 6C), which may serve as potential 
therapeutic targets in synergy with ICB.

Discussion
Although the mechanism between cancer stemness and 
anti-tumor immunity has been widely explored [10, 12, 
96, 97], direct clinical evidence on the association of 
stemness and ICI response has not been reported. Here 
we utilized CytoTRACE to evaluate the stemness level of 
individual malignant cells and uncovered the inverse cor-
relation between stemness and ICI outcomes, supported 
by the results from two ICI scRNA-Seq cohorts of SKCM 
and BCC [14, 15]. CSCs have been found in virtually 
all solid tumors [10]. Motivated by these observations, 
we hypothesized that the negative association between 
stemness and ICI efficacy generally existed across various 
cancers. Therefore, a large-scale comprehensive analysis 
was performed to identify over-expressed genes in malig-
nant cells that significantly correlated with increased 
stemness. These genes formed a pan-cancer stemness 
signature, namely, Stem.Sig. We carefully validated 
the predictive value of Stem.Sig. Remarkably, Stem.Sig 
achieved better performance of predicting ICI response 
than previous predictive signatures across multiple inde-
pendent ICI cohorts with bulk RNA-Seq data [52–61]. 
This study is the first report to demonstrate the robust 
link between stemness and ICI outcomes through a com-
prehensive analysis of large-scale data. Most importantly, 
we constructed a gene expression signature, Stem.Sig, 
that successfully predicts response to immunotherapy 
across multiple cancer types.

We found that Stem.Sig genes were enriched in the fol-
lowing biological functions: hypoxia, glycolysis, ubiquit-
ination, nucleotide excision repair, EPH-ephrin signaling, 
and WNT signaling. WNT signaling is the key pathway 
that drives self-renewal of CSCs and maintains cancer 
stemness [98]. Hypoxia causes an increase in transcrip-
tion factors (e.g., OCT4, SOX2, c-myc, and Nanog) which 
contribute to the sustenance of CSCs [99]. Anaero-
bic glycolysis is the distinct metabolic hallmark of stem 

cells [100]. Ubiquitination-mediated transcriptional 
regulatory network is essential in the maintenance of the 
stemness and pluripotency of stem cells [101]. Nucleo-
tide excision repair (NER) is a major DNA repair path-
way, which preserves genome integrity of cancer stem 
cells as to overcome stressful conditions [93]. Activity of 
EPH-ephrin signaling, as the largest family of receptor 
tyrosine kinases, is found enhanced in CSCs [102]. In our 
previous study, nonsynonymous somatic mutations of 
EPHA3 and EPHA7 was found associated with improved 
ICI efficacy [6]. It is reasonable that elevated EPH-ephrin 
signaling may contribute to the immunosuppressive 
features of CSCs. Furthermore, we evaluated the cor-
relation between Stem.Sig and twelve previously identi-
fied stemness signatures [12]. As expected, Stem.Sig was 
found positively associated with these stemness signa-
tures across different cancer types (Additional file 2: Fig. 
S3). Our results were in line with previous studies and 
suggested that Stem.Sig encompasses genes that robustly 
and specifically correlate with cancer stemness.

TCGA pan-caner transcriptomic analysis revealed 
a consistently down-regulated expression of immune-
related genes and reduced infiltration of immune cells 
in tumors with high Stem.Sig level across different can-
cer types. Interestingly, a negative association between B 
cells and Stem.Sig was also observed. B cells could favora-
bly affect ICI response via tertiary lymphoid structure 
(TLS), and hence we analyzed the relationship between 
TLS and Stem.Sig [103]. TLS scores were found inversely 
associated with Stem.Sig (Additional file 2: Fig. S4). Fur-
ther analysis also revealed an up-regulation of some 
immune-relevant biological functions, including metab-
olism, DNA repair, and MYC signaling. Acquisition of 
hypermetabolic phenotype is an evolving mechanism 
that mediates immune evasion [94]. Enhanced DNA-
repair capacity prepared malignant cells for unfriendly 
environments [93]. Increased MYC signaling suppresses 
immune response by elevating expression of PD-L1 and 
CD47 [95]. Tumors with high Stem.Sig presented with 
substantially immunosuppressive features, which corrob-
orate the predictive value of Stem.Sig.

Also, we observed a positive correlation between Stem.
Sig and both TMB and ITH, which is similar to the results 
of Miranda et al. [12]. It is noteworthy that high TMB is 
associated with high stemness. Although TMB is a well-
recognized ICI biomarker, there is still a significant num-
ber of patients with high TMB fail to response to ICI 
[104]. Our stratified analysis revealed a significantly nega-
tive correlation between Stem.Sig and anti-tumor immu-
nity in both low TMB and high TMB tumors. Cancer 
stemness can be a reasonable explanation of the immune 
resistance of high TMB tumors, which further stressed 
the importance of Stem.Sig as a predictive ICI biomarker.
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Stem.Sig is a novel biomarker that is capable of predict-
ing ICI response effectively and distinguishing patients 
with survival benefits successfully. We further compared 
Stem.Sig with other state-of-the-art signatures, including 
six pan-cancer signatures [76–80] and seven melanoma-
specific signatures [7, 14, 81–85]. Stem.Sig outperformed 
pan-cancer signatures with better generalization and 
achieved an overall favorable performance in different 
cohorts across multiple cancer types. Compared with 
melanoma-specific signatures, Stem.Sig ranked top 3 and 
achieved a competitive AUC of 0.76.

Biomarker research is not only for improving patient 
selection but also for combination strategies that can 
overcome immune resistance. Considering such a robust 
link between Stem.Sig and ICI outcomes, we used 
CRISPR datasets to explore potential drug targets from 
Stem.Sig. We ranked genes based on their relevance to 
immune response and harvested the most immune-resist-
ant Stem.Sig genes. For example, BECN1 is among the 
top-ranked Stem.Sig genes to render the TIME resistant 
to ICI. BECN1 plays a central role in autophagy, which is 
essential for self-renewal of CSCs and the maintenance 
of cancer stemness [105]. Targeting BECN1 can induce 
expression of CCL5, promote infiltration of NK cells, and 
thus improve antitumor immune response [106]. Top-
ranked Stem.Sig genes, such as EMC3, BECN1, VPS35, 
and PCBP2, showed improved immune response after 
knockout in melanoma, renal carcinoma, breast carci-
noma, and colon adenocarcinoma from multiple CRISPR 
datasets. These stemness-associated genes could be 
potential therapeutic targets for various cancer types. Fur-
ther research of these top-ranked Stem.Sig genes would 
help to develop a combined strategy of immunotherapy.

Our study has some limitations. First, there were 
only treatment naïve patients and non-responders from 
GSE115978 [14]. Comparison of the cancer stemness was 
conducted between non-responders and treatment naïve 
patients. Considering the average response rate of mela-
noma is 30–40%, a considerable proportion of treatment 
naïve patients would probably not response to ICI. Theo-
retically, the difference between TN and NR is smaller than 
that of R and NR, since TN is a mixture of NR and R. How-
ever, a significant difference of stemness level still existed 
between NR and TN in this study, which indicates an even 
greater gap between NR and R. And this was confirmed 
by analysis of another scRNA-Seq ICI cohort, GSE123813 
[15]. Secondly, some clinical annotation data (e.g., sex/age/
tumor stage/TMB/ITH) was unavailable in some RNA-Seq 
ICI studies for multivariate cox regression analysis of over-
all survival. Thirdly, the 10 RNA-Seq ICI cohorts adopted 
in our studies only cover five cancer types (GC, SKCM, 
RCC, UC, and GBM). The consistent negative associa-
tion between Stem.Sig and anti-tumor immunity across 30 

cancer types can compensate this to some degree. Still, the 
predictive value of Stem.Sig in a pan-caner setting needs to 
be verified by future prospective ICI trials.

Conclusions
We provided the first solid clinical evidence that cancer 
stemness was associated with immunotherapy resistance. 
Using pan-cancer analysis of single-cell transcriptomic 
data, we developed a gene expression signature, Stem.
Sig, which outweighs other well-established signatures 
in predicting ICI outcomes across multiple cohorts. Fur-
ther exploration of Stem.Sig also revealed some potential 
therapeutic targets. Our study demonstrates a promis-
ing solution for patient selection in immunotherapy and 
sheds light on tackling ICI resistance through targeting 
cancer stemness to boost anti-tumor immunity.
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