
Wojtowicz et al. GenomeMedicine           (2019) 11:49 
https://doi.org/10.1186/s13073-019-0659-1

METHOD Open Access

Hidden Markov models lead to higher
resolution maps of mutation signature
activity in cancer
Damian Wojtowicz1†, Itay Sason3†, Xiaoqing Huang1†, Yoo-Ah Kim1, Mark D. M. Leiserson2*,
Teresa M. Przytycka1* and Roded Sharan3*

Abstract

Knowing the activity of the mutational processes shaping a cancer genome may provide insight into tumorigenesis
and personalized therapy. It is thus important to characterize the signatures of active mutational processes in patients
from their patterns of single base substitutions. However, mutational processes do not act uniformly on the genome,
leading to statistical dependencies among neighboring mutations. To account for such dependencies, we develop
the first sequence-dependent model, SigMa, for mutation signatures. We apply SigMa to characterize genomic and
other factors that influence the activity of mutation signatures in breast cancer. We show that SigMa outperforms
previous approaches, revealing novel insights on signature etiology. The source code for SigMa is publicly available at
https://github.com/lrgr/sigma.
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Background
Cells acquire somatic mutations over time from expo-
sure to different combinations of mutational processes,
potentially leading to cancer. Understanding the activity
of mutational processes is critical for cancer treatment,
as many standard treatments introduce DNA damage
or inhibit DNA damage repair genes [1, 2]. Presently,
clinicians use specialized assays for specific biomark-
ers to characterize DNA damage repair deficiencies,
such as microsatellite instability (see, e.g., [3]). Large-
scale cancer sequencing efforts have recently opened
up new avenues for characterizing the activity of muta-
tional processes. The key insight is that mutational pro-
cesses leave signatures of their activity in cancer genomes,
the most well-studied of which are patterns of base
substitutions.
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An increasing body of research aims at inferring signa-
tures and their exposures from large datasets of mutations
from cancer whole-exome and whole-genome sequences
[4–10], and the Catalogue of SomaticMutations in Cancer
(COSMIC) consortium has collected a census of 30 vali-
dated mutation signatures [11]. Many of these signatures
are associated with deficient DNA damage repair path-
ways; some have been validated experimentally [12, 13],
expanding the opportunity for targeted therapy. For exam-
ple, Davies et al. [14] provided evidence that muta-
tion signatures reveal patients deficient in homologous
recombination repair (HR) and thus may benefit from
PARP inhibitor treatment. Importantly, some of these
patients do not harbor biallelic inactivations in known HR
genes. Other signatures are associated with environmen-
tal exposures to carcinogens such as tobacco smoke [15]
or aflatoxin [16], and two are associated with aging [17]
indicating that the underlying mutational processes may
be active in healthy cells.
Despite these advances, uncovering etiology of muta-

tion signatures and inferring their exposures remain
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significant challenges, e.g., about half of the COSMIC
signatures have no known etiology. Even with validated
mutation signatures, it can be difficult to infer their
exposures and assign individual mutations to the corre-
sponding signature, in part because there may be multiple
signatures of the same mutational process. One key factor
to inferring signature exposure is the sequential depen-
dency of the signatures. This is the idea that mutations
that are adjacent in a given cancer genome are more
likely to be the result of the same mutation signature. In
their seminal work, Nik-Zainal et al. [18] identified clus-
ters of mutations in breast cancers (termed kataegis) that
display a particular base substitution signature. Kasar et
al. [7] uncovered a signature of “canonical” activation-
induced cytidine deaminase (AID) pathway activity in
chronic lymphocytic leukemia that was missed by Alexan-
drov et al. [4]. Part of the reason for their discovery was
that they incorporated the “nearest mutation distance”
into their model, since AID is known to cause multiple
mutations within local regions of the genome. Morganella
et al. [19] identified the so-called processive groups of up
to 20 mutations believed to come from the same signa-
ture. Morganella et al. [19] and Haradhvala et al. [20] both
characterized signatures in terms of the transcriptional
and replicative strands and replication timing. Supek and
Lehner [21] identified mutation signatures that are specif-
ically associated with clusters of mutations and showed
that the activity of these signatures is associated with an
increase in the mutation rate of expressed genes.
Motivated by this earlier work, we set out to model

the genomic factors that bias mutational process activ-
ity, such as genome position, CpG islands, and replication
origins. We hypothesized that by capturing the statisti-
cal dependencies introduced by these genomic factors,
our models would yield more precise estimates of muta-
tion signature exposure, andwould further reveal genomic
features that correlate with mutational process activi-
ties. Our contribution is threefold: (i) we suggest the
first probabilistic model to account for sequential depen-
dency among mutation signatures; (ii) we use this model
to rigorously assign mutation signatures to individual
mutations and characterize the genomic and phenotypic
preferences of mutation signatures; and (iii) we study
the transition probabilities between different mutation
signatures.

Methods
A hidden Markov model of mutation signatures
Following previous work, we categorize mutations in a
cancer genome into L = 96 categories that include its base
substitution (C:G>A:T, C:G>T:A, C:G>G:C, A:T>C:G,
A:T>T:A, A:T>G:C), and left- (4) and right-flanking (4)
nucleotides [4]. We model an observed sequence of muta-
tions using a hidden Markov model (HMM). The model

assumes that each observation, representing a mutation
category, is emitted by one of K states in a Markov chain,
representing a mutation signature. The sequence of states
that generated the observed sequence is unknown, but as
the states form a Markov chain, each state depends on
the previous state, thus capturing sequential dependencies
between states. An HMM is parameterized by a vector π

of K starting probabilities, a K × K transition matrix A,
and a K × L emission matrix E.
The above HMM can capture sequential dependen-

cies but is less motivated for “isolated” mutations that
are distant from any other mutation. We call such dis-
tal mutation regions sky and refer to regions of proximal
mutations as clouds (using a distance threshold of 2000 bp
as explained below).
We model sky mutations using a multinomial mixture

model (MMM). The MMM is characterized by a vector
g of K mutation signature marginal probabilities and the
same emission matrix E. To model cloud mutations, we
use a dynamic Bayesian network (DBN) that is a simple
extension of an HMM in that it allows subsequences gen-
erated by the HMM to be interspersed with mutations
generated by the MMM (for a review of DBNs, see [22]).
We call the resulting composite model Signature Markov
model (SIGMA); a simplified overview of the model is pre-
sented in Fig. 1, and its cloud component is sketched in
Additional file 1: Figure S1.
We now define the SIGMA model for clouds. The input

data is a sequence of O1, . . . ,OT mutation categories.
The (hidden) signature that generated mutation category
Ot is represented by Qt . The transitions between signa-
tures at each subsequent position depend on whether the
observed mutation category occurs within sky (marked
by a binary indicator It) or clouds. The joint probability
distribution of the model is:

Pr(OT
t=1,Q

T
t=1, I

T
t=1)

= Pr(Q1)Pr(I1)

⎡
⎣

T∏
t=2

Pr(Qt |Qt−1, It−1)Pr(It |It−1)

⎤
⎦

T∏
t=1

Pr(Ot |Qt).

(1)

We now define the conditional probability distributions
(CPDs). The transition between signature states Qt−1 to
Qt depends on the indicator It−1 in the following man-
ner. Within sky, the transitions occur according to the
marginal probability of each state (i.e., as in the MMM),
while otherwise the transitions to stateQt depend on state
Qt−1. Formally, when It = 0 (i.e., the current mutation is
in a cloud):

Pr(Qt = j|Qt−1 = i, It−1 = f ) =
{
Aij if f = 0,
πj if f = 1. (2)
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Fig. 1 Overview of the SIGMA model. The input data consists of (a) a set of predefined signatures that form an emission matrix E (here, for simplicity,
represented over six mutation types) and (b) a sequence of mutation categories from a single sample and a distance threshold separating sky and
cloud mutation segments. c The SIGMA model has two components: (top) a multinomial mixture model (MMM) for isolated sky mutations and
(bottom) an extension of a hidden Markov model (HMM) capturing sequential dependencies between close-by cloud mutations; all model
parameters are learned from the input data in an unsupervised manner. d SIGMA finds the most likely sequence of signatures that explains the
observed mutations in sky and clouds

The probability of the initial state depends only on
the starting probabilities of the signatures, such that
Pr(Q1 = i) = πi.
The transitions between the sky segment indicator It

only depends on the previous indicator It−1, i.e.,

Pr(It = j|It−1 = i) = Bij, (3)

where B is the 2 × 2 transition matrix between the sky
and cloud segments. Note that B implicitly governs the
length of those segments and can be learned directly from
observed data. The probability of starting in a sky/cloud
state is given by Pr(I1 = i) = ρi, where ρ is a 2 × 1
starting probability vector. Finally, given the state Qt , each
observation Ot is independent of all other variables, i.e.,

Pr(Ot = j|Qt = i) = Eij. (4)

Model training
We learn the SIGMA model parameters from data using
the Baum-Welch expectation-maximization algorithm
with random initialization. We then compute Viterbi
paths—the most likely sequence of states that generated

the data—to assign mutations to signatures and compute
signature exposures (i.e., signature frequency per sample).
In practice, we find that the assignments are robust with
respect to the random initialization used in the learning
process; on average, over 95% of mutations are assigned to
the same signature when compared to themajority assign-
ments in 31 random initialization runs of SIGMA, and the
standard errors of the presented results are small with
respect to the random initializations.
Rather than model the mutations in a cohort of can-

cer genomes with a single SIGMA, we train a model per
sample. The motivation for this approach comes from the
assumptions of earlier methods (e.g., [5]) that signature
exposures are different across samples.
The SIGMA model has several meta-parameters that

are set in advance: (i) the set of signatures used and
(ii) a distance threshold indicating the beginning of a
new segment (cloud or sky) of mutations. In this work,
we focus on the assignment of signatures to mutations
rather than on signature learning; hence, we consider only
COSMIC signatures [23], focusing on the signatures pre-
viously identified as active in breast cancers: signatures
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1, 2, 3, 5, 6, 8, 13, 17, 18, 20, 26, and 30. For the other
meta-parameter, we performmodel selection and evaluate
the performance of each choice using the log-likelihood
of the model on held-out data. To this end, we use a
leave-one-out cross-validation scheme leaving one of the
chromosomes out.We report themedian SIGMA held-out
likelihood across the different initializations. The results
are summarized in Fig. 2a, and accordingly, we set the
distance threshold to 2000 bp at which the held-out log-
likelihood was maximized. Thus, a mutation whose flank-
ingmutations (if any) are more than 2000 bp away is called
sky; otherwise, the mutation is considered to be within
a cloud.
We note that while SIGMA always models the mutations

in sky as being independent from one another, the Marko-
vian component of SIGMA learns whether the mutations
in clouds are sequence dependent or independent. In
practice, approximately 71% of mutations in clouds are
found to be sequence dependent according to the most
likely sequence of mutation events.

Software availability
We implemented SIGMA in Python 3. The code is publicly
available at https://github.com/lrgr/sigma. On average, it
takes approximately 8 seconds to train SIGMA on a single
sample of breast cancer whole genome, learning a total of
146 model parameters.

Data
We analyzed 3,479,652 mutations in the cohort of 560
breast cancer (BRCA) whole genomes previously analyzed
by Nik-Zainal et al. [24]. Each patient has an average of
208.2 clouds containing an average of 2.33mutations, with
271,492 total mutations in clouds (8%) and 3,208,160 total
mutations in sky (92%).
We also analyzed single base substitutions from the

International Cancer Genome Consortium Data Por-
tal [25] in 160 pancreatic cancer (PACA), 151 chronic
lymphocytic leukemia (CLLE), and 241 malignant lym-
phoma (MALY) whole-cancer-genome sequences. The
PACA data is from ICGC release 25 (PACA-AU), and we
restricted to the sample per patient with the most muta-
tions, and we removed patients where all samples had
fewer than 500 mutations. We analyzed COSMIC signa-
tures 1, 2, 3, 5, 6, and 13 in the PACA dataset. The CLLE
and MALY data is from ICGC release 27 (CCLE-ES and
MALY-DE) and is also restricted to the sample with the
most mutations per patient. We analyzed COSMIC signa-
tures 1, 2, 5, 9, and 13 in the CLLE dataset and COSMIC
signatures 1, 2, 5, 9, 13, and 17 in the MALY dataset.
To compare SIGMA to NMF, we recomputed the NMF

assignments of signatures to mutations used by Morganella
et al. [19] following their maximum likelihood approach.
We downloaded the gene expression data for 266
BRCA samples from Table S7 in Nik-Zainal et al. [24].

A B C

Fig. 2 a Comparative assessment of model performance on held-out data for MMM and SIGMA across different distance thresholds. SIGMA at a
threshold of 2000 bp shows the best performance by maximizing the log-likelihood (the y-axis has a customized scale with a scale break). b
Comparison of fraction of signature 1 mutations found in CpG islands in sky and clouds. Both NMF and SIGMA show significant depletion of signature
1 in CpG islands with respect to randomized data, with SIGMA exhibiting more pronounced depletions, particularly in clouds. We performed 1000
permutations of signature assignments preserving mutation trinucleotide context within each sample. We used a one-sided Wilcoxon signed-rank
test to compare the observed and randomized numbers of signature 1 in CpG islands. c Spearman correlation comparison of APOBEC3A/B
expression with signature 2 and 13 activities across samples. For signature 2, the mutation counts in clouds with SIGMA are positively correlated with
APOBEC3A/B expression while the NMF-based counts have zero or negative correlation in both sky and clouds. Signature 13 mutation counts are
positively correlated in both models. In b and c, the significance level was categorized as *P value (P) < 0.05; **P < 5 × 10−3; ***P < 5 × 10−5. All
bar plots show mean values with standard error of the mean (small black bars) from 31 random initializations of MMM and SIGMA models

https://github.com/lrgr/sigma
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For replication timing analysis, we downloaded percent-
age normalized replication time estimates from Repli-seq
data in the MCF-7 cell line from the ENCODE project
[26], and we split them into deciles and counted sky
and cloud mutations in each decile. All analyses related
to replication time were corrected for genomic size by
accounting for unknown (N) bases. The MCF-7 cell line
was chosen as it most closely represents breast cancers
(see Morganella et al. [19] for details). The CpG islands’
coordinates were downloaded from the UCSC Genome
Browser [27] and gene annotations from the ENSEMBL
database (release 60) [28].
We evaluated inferred signature assignments to muta-

tions in part using clinical and demographic features of
each of the 560 cancers. We downloaded clinical and
demographic data from Table S1 in Nik-Zainal et al. [24],
restricting our analysis to those features that are mea-
sured in at least 85% of the patients (omitting gender since
the cohort is > 99% female): age, tumor grade, estrogen-
receptor (ER) status, progesterone-receptor (PR) status,
and HER2 status. We imputed missing data using the
mean.

Results
In order to capture the sequential dependencies among
mutation signatures, we propose a hidden Markov mod-
eling framework. Within this framework, the identity
of the mutation signature underlying a given mutation
depends (through conditional probability) on the iden-
tity of the signature that yielded the preceding mutation
in the genome. This modeling approach is motivated
by earlier work that has shown that the mutations in
localized clusters are often found to be from the same
signatures [19, 21], thus suggesting a sequential depen-
dency among mutation signatures. However, the majority
of mutations in the cancer genome are hundreds of thou-
sands of base pairs from the nearest mutation, suggesting
that this dependency only manifests on small, localized
regions of the cancer genome. To account for this com-
plexity, we develop a composite model, SIGMA, that can
infer the sequential dependencies among mutation sig-
natures within localized densely mutated regions. We
train our model and apply it to 560 breast cancer whole
genomes previously analyzed in [24], partitioning each
tumor’s mutation into sky (isolated mutations) and clouds
(groups of close-by mutations). The model is sketched in
Fig. 1; full details on the model, its training, mutation
partitioning, and data appear in the “Methods” section.

SIGMA uncovers sequential dependency between
mutation signatures and leads to stronger associations
with related biological signals
To assess the utility of SIGMA in capturing sequential
dependencies, we compare it to a baseline probabilistic

model with no sequential dependencies. Since the state-
of-the-art method for inferring mutation signatures, non-
negative matrix factorization (NMF), is non-probabilistic,
we use a related multinomial mixture model (MMM) as
our baseline. The model parameters are learned so as to
maximize the likelihood of the model using expectation
maximization. Both SIGMA and MMM were applied to
each sample separately, fixing the 12 COSMIC signatures
previously found to be active in breast cancer (see the
“Methods” section for details).
Figure 2a summarizes the performance of the mod-

els in cross-validation on a breast cancer dataset of 560
genomes. We draw two conclusions from these results.
First, there is a significant sequential dependency among
the mutation signatures within clouds, as the variants
of SIGMA all outperform the baseline MMM. Second,
the sequential dependency is strongest for mutations
within 1000–4000 bases of one another; SIGMA achieves
the highest held-out log-likelihood in this range using
a distance threshold of 2000 bp. Thus, we adopt the
threshold of 2000 bp for the remainder of our exper-
iments. Following previous studies that indicated that
certain cloud-like regions are formed by a single muta-
tional process [19], we also tested a variant of our
model in which a single signature is allowed within
a cloud, reflecting the hypothesis that each cloud was
formed in a single sweep. SIGMA outperformed this vari-
ant in log-likelihood on held-out data (− 13,714,498 vs.
− 13,725,785). It also outperformed a variant in which
only APOBEC signatures 2 and 13 (potentially inter-
spersed by sky mutations) are allowed within clouds (log-
likelihood of − 13,718,394), supporting the greater flexi-
bility our model allows within those regions. A summary
of the performance of the models in cross-validation on
additional cancer types is presented in Additional file 1:
Figure S2, where it is shown that SIGMA outperforms the
baseline MMM.
An important feature of our proposed probabilistic

model is that it allows inferring the most likely muta-
tion events that led to the observed data. Hence, we
wished to assess if the inferred assignments of signa-
tures to mutations can strengthen the associations with
related biological signals in comparison with NMF-based
assignments [19]. One of the best understood signatures
is the age-related signature 1, the result of an endogenous
mutational process initiated by spontaneous deamination
of 5-methylcytosine. This process occurs at cytosine-
guanine (CpG) dinucleotides and is related to the major
site of cytosine methylation which carries the risk of
spontaneous deamination of 5-methylcytosine (5mC) to
yield thymine. CpG methylation is a silencing mark. CpG
islands are GC-rich genomic regions that are often located
around gene promoters of active genes and are typically
not methylated [29, 30]. Thus, we expect a depletion of
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signature 1 in those regions after correction for trinu-
cleotide context of mutations. While both models shows
significant depletion of signature 1 in CpG islands, SIGMA
exhibits more pronounced depletions, especially in clouds
(Fig. 2b).
APOBEC enzymes are another relatively well-

understood source of mutations in cancer. The APOBECs
deaminate cytosines in single-stranded DNA, prefer-
entially at TpC sequence context and are thus believed
to be associated with signatures 2 and 13. In particular,
APOBEC3A and APOBEC3B are among the main factors
causing mutations in human cancers and specifically
implicated in inducing clustered mutations (kataegis)
[31–33], prompting us to test for an association between
APOBEC3A/B expression and the number of muta-
tions attributed to signatures 2 and 13. Surprisingly, the
NMF-based mutation assignments show no or nega-
tive correlation between signature 2 and APOBEC3A/B
expression both in sky and clouds, and a statistically
significant correlation is observed only with signature 13.
In contrast, using mutation assignments from SIGMA,
we find that the signature 2 mutation counts in clouds
show positive correlations with the APOBEC3A and
APOBEC3B expression (P = 5 × 10−3 and 1 × 10−7,
respectively; Fig. 2c). Signature 13 mutations remain
positively correlated in both sky and clouds.

Sky and clouds show distinct mutations patterns
In SIGMA, clouds are defined as dense groups of muta-
tions, but unlike the definition of clustered mutations
[21] or processive groups [19], we make no restriction
on consecutive mutations being of the same type and/or
being on the same strand. We also do not require that
the number of mutations in a cloud is large or filter
out nearby mutations. Despite our liberal 2000-bp cut-
off for maximal distance of two constitutive mutations
in a cloud, median distances between mutations in the
same cloud are less than 500 bp independently of its size
(number of mutations in a cloud; see Fig. 3a) while the
median distance between mutations in the sky is more
than 150,000 bp. As expected, the differences in muta-
tion assignments between SIGMA and NMF are much
higher for the mutations that belong to clouds than to sky
(Fig. 3b).
Interestingly, clouds and sky show quite different distri-

bution of signature exposures, even though they have sim-
ilar nucleotide and trinucleotide content (Additional file 1:
Figure S3). For example, clouds are strongly enriched in
signatures 2, 13, 18, 21, and 30 (log2 fold change > 0.75)
but depleted in signatures 1, 3, and 5 (Fig. 3c).
The above observations suggest that the properties of

clouds and sky are quite different. Moreover, we observed
that sky mutations show a gradual increase of muta-
tions toward late replication regions (67% total increase),

while cloud mutations show an increase towards both
early and late replication regions (27% and 34% increase
with respect to the lowest level, respectively; see Addi-
tional file 1: Figure S4). Therefore, we analyzed the distri-
bution of mutations assigned to individual signatures with
respect to replication time considering clouds and sky as
two potentially different subpopulations. With the excep-
tion of mismatch repair signature 6, all signatures within
sky are enriched in late replication regions (Fig. 3d). Some
signatures, such as signatures 1, 5, and 8, show no appre-
ciable differences in the trends between sky and clouds;
however, many other signatures do. The most striking
difference in the trends is displayed by the APOBEC
signatures 2 and 13. Previous studies that analyzed the
relation of APOBEC with replication time appeared to
be contradictory. Kazaonov et al. [34] reported enrich-
ment of APOBEC mutations in early-replicating regions
and hypothesized that this unusual mutagenesis profile
may be associated with a higher propensity to form single-
strand DNA substrates for APOBEC enzymes in early-
replicating regions. However, Morganella et al. [19] found
that signature 2 is enriched in late-replicating regions sug-
gesting that APOBEC mutations assigned to signature 2
are more efficiently repaired in early-replicating regions.
They were also surprised to find that signature 13 dif-
fered from signature 2 and showed no dependency of
mutation frequency on replication time (see also Addi-
tional file 1: Figure S5). Our analysis reconciles these
two results and demonstrates that while APOBEC muta-
tions associated with clouds show properties consistent
with these reported by Kazaonov et al., the sky associ-
ated ones show the usual enrichment in late-replicating
regions. The cumulative mutation profile depends on the
individual characteristics of the sky-associated and cloud-
associated subpopulations and their relative abundance.
Interestingly, the proportion of cloud-associated muta-
tions relative to sky-associated mutations is higher for
signature 13 than for signature 2 (Fig. 3c) contributing
to the differences in cumulative trends of these two sig-
natures reported by Morganella et al. (Additional file 1:
Figure S5).
We performed a similar analysis of signature exposures

considering genomic location of mutations with respect to
promoter, intragenic, and intergenic regions (Additional
file 1: Figure S6). We found interesting differences
between exposure distributions in sky and clouds, most of
which can be explained by known biology. For example,
replication origins are known to be enriched in promot-
ers while gene poor regions are known to replicate late.
This observation and the association of APOBEC signa-
tures in clouds with early replication (Fig. 3d) can explain
the high proportion of these signatures in the promoter
regions while the proportion in intergenic regions is the
lowest.
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Fig. 3 a Distribution of distance between consecutive mutations in clouds of various sizes (number of mutations in a cloud). b Difference between
NMF and SIGMA in mutation signatures assigned to mutations is higher for cloud mutations. c Comparison of exposure to mutation signatures in
sky and cloud regions based on SIGMA signature assignments. d Frequency distribution of the 12 mutation signatures (assigned by SIGMA) over
replication time. The red line is the distribution over replication time from early to late for mutations in clouds. The blue line is the distribution of
trends for sky mutations downsampled to the number of mutations found in clouds. The sampling was repeated 1000 times, and the 95%
confidence intervals of the downsampled sky mutation frequencies are shown. All results show mean values with standard error of the mean (small
vertical bars) from 31 random initializations of SIGMA

Overall, these analyses demonstrate that some signa-
tures have very different properties when considered in
the context of clouds versus sky, suggesting that the inter-
play of mutational processes that underlines the same
signature in sky and in clouds might be different.

Transition probabilities reveal associations between
signatures
Next, we asked if the transition probabilities can provide
additional insights into the etiology of mutation signa-
tures. Since the number of cloud mutations in individual
patients is small, we used cumulative transition prob-
abilities obtained by counting the transitions between

signatures in clouds across all samples. We quantified the
enrichment of transition probabilities between signatures
using Pearson residuals. The most frequent transitions
are from each signature to itself (Fig. 4a). Correcting
for this enrichment, we then considered the enrichment
between pairs of different signatures (Fig. 4b). Ten pairs
of signatures showed Pearson residuals above 10 in both
transition directions and are discussed below.
Expectantly, we observed an enrichment of transitions

between the two APOBEC signatures 2 and 13 and
between the mismatch repair signatures 6, 20, and 26.
These are groups of different (and dissimilar) signatures
that are known to be underlined by the same general
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A B

Fig. 4 Enrichment of transition frequencies between mutation signatures in sequence-dependent cloud segments across all samples. a Enrichment
represented as Pearson residuals between observed and expected signature frequencies shows a strong enrichment of self-transitions. b
Enrichment computed in the same way but ignoring self-transitions to correctly estimate the enrichment of transitions between different
signatures while accounting for the enrichment for self-transitions. Mean values of enrichment from random initializations of SIGMA are shown

mutagenic processes and are often found in the same
samples. Interestingly, there is also a strong association
between signatures 3 and 8 suggesting a relation between
signature 8 and homologous recombination deficiency
that was shown to underlie signature 3 [35] and is consis-
tent with the findings of [24].
We also observed an enrichment in the transitions

between signatures 18 and 30 suggesting a possible
relation between these less understood signatures. Fur-
ther supporting this relationship, we found that these
signatures significantly co-occur in the same patients
(P < 2.2 × 10−16 for clouds based on the Fisher exact test
where signatures with exposure at least 0.01 are consid-
ered to be present; co-occurrence is not significant in sky).
Previous studies linked a new signature that is very similar
to signature 18 to bialleic deactivation of MUTYH, which
is involved in the base excision repair in response to oxida-
tive damage [36–38]. Specifically, MUTYH is involved in
repairing the damage caused by 8-oxoguanine—one of the
most common DNA lesions resulting from the presence
of reactive oxygen species (ROS). If not corrected, it leads
to G-to-T transversion. Recent studies provided further
support for the relation of signature 18 and ROS [39].
As for signature 30, recent studies linked it to muta-

tions in the NTHL1 gene [12]. Similarly to the MUTYH
gene, NTHL1 is a glycosylase that is also involved in the
repair of oxidative DNA damage. Unlike MUTYH which
is involved in the repair of oxidized purines, NTHL1 is
involved in the removal of oxidative pyrimidine lesions. If
not corrected, oxidized, deaminated cytosines are a source
of C-to-T transitions in vivo [40] which is consistent with
the mutational profile of signature 30.

Finally, we also observed enriched transitions between
signature 18 and the DNA mismatch repair (MMR) sig-
nature 20. This is consistent with the growing under-
standing that the MMR pathway is also important for the
response to oxidative damage. In fact, mismatch repair-
deficient mice show susceptibility to oxidative stress-
induced intestinal carcinogenesis [41]. In addition, a study
by Colussi et al. [42] showed that baseline 8-oxoG levels
were higher in DNA extracted from MSH2- and MLH1-
deficient cell lines. The relations between the remaining
signature pairs with value of Pearson residuals above 10—
(6,1), (17,26) and (8,30)—remain to be investigated.
These observations indicate that the analysis of transi-

tion probabilities can be extremely valuable in shedding
light on the etiology of less understood signatures.

Evaluation against clinical and demographic data
To show the utility of our model in the clinical setting, we
evaluated the assignment of mutations to their underly-
ing signatures using clinical and demographic data. Our
analysis is based on the intuition that more accurate
assignments will have higher correlation with clinical and
demographic data, since multiple signatures have been
shown to correspond to exogenous factors such as the
patient’s age at diagnosis [17].
We analyzed the Spearman correlation between the

number of mutations attributed to each of the signa-
tures and five different clinical/demographic features: age,
tumor grade, final estrogen-receptor (ER), progesterone-
receptor (PR), and HER2 status (Fig. 5 and Additional
file 1: Figure S7). Importantly, we separated mutations
with respect to sky and clouds. This allows us to isolate
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Fig. 5 Spearman correlation coefficients between demographic or clinical features and mutations attributed to each signature in sky and cloud
regions. Only significant correlations with a p-value cutoff of 0.001 are shown. Barplots show mean correlations with standard error of the mean
(small black bars) from 31 random initializations of SIGMA

clinical features that are correlated with patient muta-
tions in clouds from those in sky. First, we evaluated the
signatures with known etiologies that match our clini-
cal dataset. For example, signatures 1 and 5 have been
hypothesized to be active in normal cells and “clock-like”
due to their correlation with the age of the patient [17].
Reassuringly, we found statistically significant association
between the number of mutations attributed to signatures
1 and 5 and age and only found these correlations for
mutations in sky (especially for signature 5 whose corre-
lation with age is much stronger than previously reported
in BRCA [17]). As another example, signatures 2 and 13
display patterns of mutations linked to APOBEC pro-
teins and are correlated with APOBEC activity, which has
been linked toHER2 expression in breast cancers [43–45].
Specifically, HER2 signaling has been shown to elevate
DNA replicative stress which, in turn, causes an overall
increase in single-stranded DNA during replication [46]
increasing opportunity for APOBECmutations and might
also induce APOBEC expression [45]. Our results also
capture this relationship, with statistically significant asso-
ciations between mutations attributed to both APOBEC
signatures and HER2 status in both sky and clouds.
We also found significant associations of cloud muta-

tions in most of the signatures with tumor grade. The
numerous associations between cloud mutations and
tumor grade might be driven in part by the general associ-
ation of high-grade tumors with mutation burden (Spear-
man correlation of 0.48 for sky and 0.49 for clouds) as
non-random distribution of mutations in highly mutated
genomes can lead to emergence of clouds. Interestingly, in
contrast to mutation enrichment in clouds, the increased
mutation burden in sky can be attributed mostly to two

signatures: 3 and 13. Since signature 3 is associated with
HRD [35], which leads to defective DNA double-strand
break repair, this might be an additional reason for the
observed enrichment of cloud mutations [47–49]. Inter-
estingly, only sky-associated mutations of signature 13 but
not signature 2 show correlation with tumor grade. This
is consistent with the recent finding of the induction of
APOBEC3B in response to DSB [50]. In addition, pre-
vious studies demonstrated a relation between increased
APOBEC3B enzymatic activity and tumor grade [44].
Consistently, as shown in Fig. 2c, APOBEC3B expression
correlates with sky mutations attributed to signature 13
but not to signature 2. We report additional significant
correlations for final ER and PR status in Additional file 1:
Figure S7.
Finally, we compared the overall correlation of the num-

ber of mutations attributed to the 12 signatures computed
with our model and NMF with the clinical and demo-
graphic data, taking the overall mutation counts into
account for both models. To this end, we computed a sin-
gle correlation using canonical correlation analysis (CCA)
[51]. The obtained (Pearson) correlation was higher for
SIGMA than NMF (0.676 vs. 0.665). These results provide
further evidence that by using sequential information,
SIGMA is better able to assign mutations to signatures
compared to previous models.

Discussion
In this study, we developed SIGMA, a probabilistic model
of sequential dependency for mutation signatures, allow-
ing for an accurate assignment of mutations to signatures.
Application of SIGMA revealed new insights into the
mutagenic processes in cancer.
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Our analysis reinforced the idea that cloud (close-by)
mutations have distinct properties from sky (isolated)
mutations in terms of signature exposures (Fig. 3c), bio-
logical correlates (Figs. 2b, c and 3d), and clinical cor-
relates (Fig. 5). While some of the differences between
these two mutation groups have been appreciated before,
e.g., [21], our analyses bring novel insights. Interest-
ingly, mutations that are assigned to the same signatures
can have distinct properties when localized in clouds
versus sky suggesting that they correspond to differ-
ent subpopulations. These subpopulations, despite being
assigned the same signature, might correspond to differ-
ent combinations of causes. As a case in point, we found
that APOBEC-associated mutations have different prop-
erties with respect to replication time depending on their
assignment to sky versus clouds.
To verify that our categorization of sky mutations does

not suffer from a bias toward mutations in difficult-to-
map regions, we downloaded regions of low mappability
from [52, 53], which were previously used for mutation
signature studies [21, 54]. We find that only 4523 of
3.4 million mutations (approximately 0.1%) fall in these
difficult-to-map regions and conclude that this will not
lead to a systematic bias that could change the conclusions
of our study. Future research could further examine the
partition to sky and clouds, potentially introducing a com-
plete generative model that accounts also for the distances
between mutations.
While evaluating the predictions of SIGMA using clin-

ical and demographic data, we found a statistically sig-
nificant anti-correlation of signature 3 activity (associated
with homologous recombination repair deficiency [HRD])
and patient age. We hypothesize that this is in part a con-
sequence of germline variants predisposing to HRD (such
as BRCA1 mutations; see [55]) leading to earlier onset of
breast cancer. In fact, the correlation between signature 3
activity and age drops from − 0.22 to − 0.13 when remov-
ing patients with BRCA1 or BRCA2 germline variants
as identified by Nik-Zainal et al. [24]. Thus, in general,
mutation signatures whose activity is anti-correlated with
age may indicate that the signature’s etiology includes
predisposing germline variants.
The basic HMMmodel presented here can be extended

and refined in various ways. In this work, we focused on
modeling sequential dependency of previously validated
mutational signatures from COSMIC [11]. One extension
to our model, in case no prior knowledge on relevant
mutation signatures is available, is to learn signatures
and transitions simultaneously across multiple samples.
Another possible refinement is to cast it in a Bayesian
framework and add prior distributions to the model
parameters. This refinement will be especially important
when training the model on different cancer types where
the number of samples is low.

Conclusions
We presented the first probabilistic model of sequen-
tial dependency for mutation signatures, SIGMA. We first
showed that models of sequential dependency of muta-
tion signatures have greater predictive power for held-out
data than models that ignore this dependency. Next, we
found that by modeling sequential dependencies previ-
ously observed among mutations [18–21], we improved
the estimation of mutation-to-signature assignment and
revealed new insights into the genomic factors that bias
mutational process activity. In particular, our analysis rec-
onciled two apparently contradictory results showing that
while APOBEC mutations associated with clouds show
properties consistent with these reported by Kazaonov
et al. [34], the sky-associated ones show the usual
enrichment in late-replicating regions as observed by
Morganella et al. [19]. The results obtained with SIGMA
shed also new light on the etiology of signatures
18 and 30.
The ability to correctly determine which mutational

processes generated a specific mutation is of primary
importance for understanding of the emergence of
tumors. For example, previous studies provided evidence
that APOBEC activity is responsible for the generation of
helical domain hotspot mutations in the PIK3CA gene in
papilloma virus-driven tumors [56]. Computational tools
like SIGMA provide the means for finding such rela-
tionships between mutational processes and gene-level
cancer drivers. A more precise assignment of mutations
to signatures also allows for a more precise estimation
of signature exposures and, consequently, can help to
uncover relations between mutational processes and clin-
ical and demographical phenotypes that might be difficult
to infer if the signature exposure is low and signature
assignment noisy.

Additional file
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(PDF 226 kb)
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