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Reconstruction of full-length circular RNAs
enables isoform-level quantification
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Abstract

Currently, circRNA studies are shifting from the identification of circular transcripts to understanding their biological
functions. However, such endeavors have been limited by large-scale determination of their full-length sequences
and also by the inability of accurate quantification at the isoform level. Here, we propose a new feature, reverse
overlap (RO), for circRNA detection, which outperforms back-splice junction (BSJ)-based methods in identifying
low-abundance circRNAs. By combining RO and BSJ features, we present a novel approach for effective reconstruction
of full-length circRNAs and isoform-level quantification from the transcriptome. We systematically compared the
difference between the BSJ-level and isoform-level differential expression analyses using human liver tumor
and normal tissues and highlight the necessity of deepening circRNA studies to the isoform-level resolution.
The CIRI-full software can be accessed at https://sourceforge.net/projects/ciri.
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Background
Circular RNA (circRNA) is a type of RNA molecules in
which both ends are covalently linked. Advances in deep
sequencing and identification algorithms have resulted in
a huge number of circRNAs from fly to human [1–6].
Most recently, new subclasses of circRNAs, including
non-exonic circRNAs [7, 8] and exon-intron circRNAs
[9], have been explored. Subsequent studies unveiled the
ubiquity of alternative splicing (AS) events within cir-
cRNAs and revealed a profound difference in the expres-
sion of circRNAs and mRNAs [10]. Profiting from these
identified circRNAs, most recent studies have shifted to
the efforts of revealing the biological functions of cir-
cRNAs. As a heterogeneous class, circRNAs may partici-
pate in various aspects of biological processes. In addition
to the well-studied function of microRNA sponges [3, 4],
studies have illustrated that these circular transcripts may
be involved in gene regulation [11], development [12], in-
nate immune response [13], and diseases [14–21]. Recent
efforts have shown that N6-methyladenosine (m6A) pro-
motes the efficient initiation of protein translation from

circRNAs [22]. Subsequently, Zhou et al. demonstrated
the prevalence of m6A in circRNAs [23]. Collectively,
these intriguing findings illustrate the complexity of cir-
cRNA functions and show that our understanding of how
circRNAs participate in biological processes is still
rudimentary.
Evolutionary analyses of gene sequences and expres-

sion patterns have provided essential insights into gene
functional study. Increasing attention has also been paid
to evolutionary analysis of circRNAs among different
species. Rybak-Wolf et al. systematically compiled a
catalog of neuronal human and mouse circRNAs and
found that these circRNAs were preferentially enriched
in mammalian brain and that the same circRNAs were
often expressed in both species and were well conserved
in sequence [24]. As the first systematic analysis of cir-
cRNAs in mammalian brains, this work represents an
important step toward further elaboration of circRNA
functions. However, owing to the lack of full-length cir-
cRNAs, sequence conservation comparison is restricted
to flanking introns and coding DNA sequences (CDSs).
Considering the prevalence of circRNA isoforms gener-
ated by combinations of internal components within
back-splice junctions (BSJs), current cross-species con-
servation analyses based on partial sequences may lead
to biased estimation of circRNA conservation with

* Correspondence: zhfq@biols.ac.cn
†Yi Zheng and Peifeng Ji contributed equally to this work.
1Computational Genomics Lab, Beijing Institutes of Life Science, Chinese
Academy of Sciences, Beijing 100101, China
2University of Chinese Academy of Sciences, Beijing 100049, China
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zheng et al. Genome Medicine            (2019) 11:2 
https://doi.org/10.1186/s13073-019-0614-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-019-0614-1&domain=pdf
http://orcid.org/0000-0002-6216-1235
https://sourceforge.net/projects/ciri
mailto:zhfq@biols.ac.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


respect to expression pattern and sequence composition.
Moreover, using BSJs to represent a collection of differ-
ent circRNA isoforms hampers our understanding of
specific circRNA functions and makes it difficult to
achieve further evolutionary insights into circRNAs
among species. A fully automated method that can iden-
tify large-scale full-length circRNAs from RNA-seq data
has yet to be developed.
A number of efforts have recently been made to ex-

plore the internal landscape of circRNAs. Some studies
utilized a straightforward strategy that simply combined
all known mRNA exons in a sequential order as putative
full-length circRNA [2, 25]. This method, however, relies
on an unsupported assumption that circular and linear
transcripts share the same composition and thus may
lead to misunderstanding in downstream analyses. Other
methods, such as CIRI-AS [10], CIRCexplorer2 [26], and
FUCHS [27], involve identifying the internal compo-
nents of the BSJ. CIRI-AS employs a spliced junction
signature-based algorithm and enables, for the first time,
high-throughput detection of internal components of
circRNAs based on short-read sequencing. Similar to
CIRI-AS, FUCHS predicts circRNA internal sequences
by extracting the mapping results of BSJ reads. In an al-
ternative manner, CIRCexplorer2 detects alternative spli-
cing events through comparison analysis between
poly(A)+ and poly(A)− RNA-seq data sets. However,
without considering combinations of these components,
whole-sequence prediction of circular isoforms with
complicated AS events is still beyond the reach of these
methods. Most recently, Ye et al. employed a strategy
similar to CIRI-AS to assemble full-length sequences of
circRNAs using BSJ read pairs, but this approach still
faces an inherent challenge in that only a small fraction
of circRNAs can be identified by assembling BSJ reads
[28]. As a result, without whole-sequence of circRNAs,
the reconstruction of circular isoforms within a certain
BSJ extends far beyond the scope of current analysis and
accurate quantification of circRNAs at the isoform level
remains an insurmountable obstacle. Therefore, the in-
ability of reconstructing full-length circRNAs and quan-
tifying circular isoforms places limitations on the
discovery of previous unknown biological phenomena,
which may restrict our ability to understand the diversity
and expression patterns of circRNA isoforms.
To address this challenge, we present a new feature,

reverse overlap (RO), for full-length circRNA recon-
struction and isoform-level quantification. RO is espe-
cially suitable for identifying low-abundance circRNAs
that are difficult to identify using the BSJ feature. Con-
sidering that a vast majority of circRNAs in various tran-
scriptomes are in low expression levels, the detection of
such low-abundance transcripts is extremely important
in circRNA studies. Moreover, we develop an accurate,

high-throughput approach (CIRI-full) that uses both BSJ
and RO features to reconstruct full-length circRNAs and
circular isoforms within them from RNA-seq data sets.
Several recent independent studies demonstrated that
CIRI2 exhibited remarkably balanced sensitivity, reliabil-
ity, running time, and RAM usage on circRNA detection
[29–32]. Most recently, Thomas B. Hansen further sys-
tematically compared 11 circRNA detection algorithms
and found that CIRI2 was one of the best algorithms for
circRNA identification and performed comparably to
annotation-based algorithms [33]. In CIRI-full, CIRI2 is
employed to detect cirexons (circRNA’s exon) and to de-
termine the boundaries of circRNAs. The RO feature,
which is deduced from reversely overlapped paired-end
reads, is used to explore the detailed cirexon landscape
within boundary sites and to assemble into full-length
sequence. Based on the assembled full-length circRNAs,
a forward splice graph (FSG)-based algorithm is
employed to reconstruct all full-length isoforms within
them and to determine their abundances. Compared
with previous methods, CIRI-full is not only efficient at
determining complete sequences of circRNAs, but, more
importantly, enables the analysis of circRNAs at the iso-
form level. We applied CIRI-full to survey circRNA ex-
pression patterns in samples from the brains of six
vertebrates and also explored circRNA expression diver-
gence between tumor and normal tissues at both BSJ-
and isoform-level resolution, which uncovered distinct
expression patterns between circRNAs and their iso-
forms. This study presents an important approach to as-
semble and quantify circRNAs and will greatly improve
our understanding of their biogenesis and functions.

Methods
Overview of CIRI-full
The CIRI-full algorithm is a four-step process that in-
cludes RO read detection and verification, BSJ and cir-
exon detection, combined assembly of both RO and BSJ
reads, and isoform reconstruction and quantification.
RO read detection and verification is designed to detect
RO reads from paired-end reads based on their 5′ re-
verse overlaps and to rule out linear transcripts and false
positives resulting from lariat structures using sophisti-
cated post-alignment filters. An RO-merged read is iden-
tified as full-length circRNA if the genomic alignments
of both its ends either have overlaps or are located in
the same cirexon. The BSJ and cirexon detection step
was developed to detect BSJs and cirexons and to iden-
tify single-splice events. If the BSJ read pairs are exclu-
sively located on all the cirexons within the BSJ, the
complete sequence of this circRNA can be reconstructed
using these cirexons. RNA-seq reads are processed sep-
arately in the first two steps, resulting in the identifica-
tion of a number of full-length circRNAs in addition to
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BSJs and RO-merged reads that are not sufficient for
reconstructing full-length circRNA independently.
Therefore, these unused but informative RO-merged
reads and BSJ reads are integrated in make a combined
assembly. Finally, for a given BSJ, all forward splice junc-
tions are recognized and quantified, and then an adapted
FSG [34–36] is built to estimate the isoform expression
abundance.

RO read detection and verification
During the reverse transcription step of library prepar-
ation, transcription begins at the primers and walks
along the RNA template. Owing to the unique structure
of circRNAs, these circular transcripts will be repeatedly
reverse-transcribed. When sequencing these reverse-
transcribed cDNAs, peculiar reverse overlap features on
the read pair will be observed on the pair-end reads if
the library insert length is greater than the length of the
circRNA. Specifically, the 5′- or 3′-ends on both paired
reads are reversely overlapped with each other, which
can be used as an indicator of circRNA. Moreover, it
should be noted that the presence of 3′-RO on both
reads indicates that the complete sequence of the cir-
cRNA has been read, and thus, its whole sequence can
be reconstructed.
The 5′ RO reads are identified based on the following

strategy. For each read pair, the first 10 bp at the 5′-end
of one read is divided into three subsequences with a
window size of 8 bp and a step size of 1 bp. These subse-
quences are then used as seeds to search for matches at
the 5′-end of the other read. Once all these seeds have
matches (match base pair ≥ 7 bp) on the other read, the
sequence with location ranging from the 5′ terminus to
the matches on this read is extracted and aligned to the
counterpart read. Both members of this pair of reads are
taken as candidate 5′ RO reads if the alignment satisfies
two criteria: (i) aligned length ≥ 13 bp and (ii) nucleotide
acid identity ≥ 95%. Subsequently, these two reads are
merged into a long read based on the alignment, and the
long read is treated as a candidate RO-merged read for
further validation.
During the library preparation step, the size of frag-

ments is not strictly the same as the library insert length
but varies around the insert length. Moreover, if the
fragment size is shorter than the sequenced read length,
this will yield partial adapter sequences attached to the
3′-ends of paired-end reads. The presence of this type of
read, which indeed originates from linear transcripts,
can lead to false-positive 5′ RO features when perform-
ing candidate RO read detection. To rule out such
false-positive RO reads, a mapping-based filtration strat-
egy is employed. First, the precise location of the candi-
date RO-merged read is determined. Specifically, the
candidate RO-merged read is aligned to the reference

genome using BWA-MEM (-T 19, minimum score to
output), which outputs split alignments of the read on
the genome. The alignments are then collected and
sorted according to their alignment lengths. The longest
alignment with mapping quality greater than 15 is used
as an anchor alignment, and the accumulated mapping
length within a 100-Kbp interval on both sides of this
anchor alignment is calculated. If the summed length
exceeds half of the read length, this candidate
RO-merged read is reserved for further analysis.
Otherwise, it is discarded. Finally, the reserved candi-
date RO-merged reads are remapped using a local re-
alignment strategy to accurately determine their
locations. Briefly, highly reliable mapping fragments
are determined using the BSJ position or, when no
BSJ position is available, the anchor position. Then,
the precise locations of the unmapped or abnormal
mapped fragments are obtained using dynamic pro-
gramming. After determining the locations of the can-
didate RO-merged reads, linear transcript-derived
reads are identified and ruled out if they satisfy two
criteria [1]: the reads contain no BSJ and [2] the sub-
sequences with the same length on both ends of the
read have no hit around the anchor alignment.
Because BWA-MEM was originally designed for map-

ping DNA sequencing reads, this tool does not consider
GT/AG splicing signals and fails to obtain the accurate
boundaries of split alignments in which the mapping
position may deviate by a few base pairs from the true
boundary position. Moreover, use of BWA-MEM may
also lead to the inclusion of lariat structures in the can-
didate RO reads. To justify the boundaries and remove
the lariat structures, the alignments for each candidate
RO-merged read are revisited by checking for the pres-
ence of a GT/AG splicing signal. For each read, the GT/
AG splicing site of the aligned fragments is first checked,
and the read is filtered if any aligned fragment does not
contain a GT/AG splicing site. Then, the GT/AG spli-
cing sites on the remaining candidate RO reads are justi-
fied. Next, the alignments of two 5-bp subsequences
from both sides of the junction site on each read are
extracted, and whether these alignments have map-
ping gaps or mismatches is determined. If there is no
gap or mismatch in these alignments, this read is
taken as a highly reliable RO-merged read. Otherwise,
it is discarded.

BSJ and cirexon detection
BSJs in the RNA-seq reads are detected using CIRI2
[30], and single-splice events within these BSJs are in-
ferred from CIRI-AS (parameter -d yes) [10]. Within
each BSJ, all cirexons inferred from the single-splice
events are collected, sorted, and recorded.
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Combined assembly of RO and BSJ reads
After identifying RO-merged reads and BSJ boundaries,
full-length circRNAs are identified separately using these
two types of information. Specifically, an RO-merged
read is identified as a full-length circRNA if the genomic
alignments of its both ends either have overlaps (3′ RO)
or are located on the same cirexon. Otherwise, the
RO-merged reads are reserved for further combined as-
sembly. For each BSJ, the alignments of all the
paired-end BSJ reads are collected; if the BSJ reads are
all exclusively located on cirexons, the complete se-
quence of this circRNA is reconstructed by linearly con-
necting the cirexons. Otherwise, the BSJ and the
cirexons within them are recorded for further combined
assembly.
The BSJ feature provides an efficient method of detect-

ing the existence of circRNAs but cannot be used to
identify the internal composition of the circRNA. The
RO feature greatly facilitates determination of the in-
ternal compositions of circRNAs but sometimes may fail
to cover the BSJ site owing to the limitation of read
length. Hence, CIRI-full employs a combined strategy
that uses the advantages of both BSJ and RO features to
reconstruct a more comprehensive full-length circRNA
repository. By utilizing the unused RO-merged reads
and BSJ reads, full-length circRNAs are reconstructed
using the following process. The RO-merged reads and
BSJ reads are sorted and clustered according to the BSJ.
If both types of read are observed within a BSJ, the reads
are used to reconstruct full-length circRNAs. For each
circRNA, the RO-merged reads are used to determine
additional cirexons that were not identified by the BSJ
reads, and the alignments of all the BSJ read pairs are
re-checked. If these reads are all exclusively located on
cirexons, the complete sequence is reconstructed by
linearly connecting the cirexons. Otherwise, the identi-
fied cirexons within the BSJ are outputted and marked
as a partially reconstructed circRNA.

Quantifying the expression of circRNAs at the isoform
level
After obtaining the reconstructed circRNAs, CIRI-full
builds a forward splice graph (FSG) using all BSJ reads
and RO-merged reads within each BSJ. The nodes in the
FSG represent cirexons, and the edges represent their
connections (i.e., forward splice junctions between cirex-
ons). Theoretically, the FSG covers all possible circular
isoforms that are consistent to the mapped reads within
the BSJ, and the traversing path from the start cirexon
to the end cirexon represents a candidate splicing iso-
form. It should be noted that the FSG is a closed circuit
owing to the nature of circRNAs. Then, an adapted
depth-first search (DFS) algorithm is performed to
exhaustively decompose the FSG graph into paths.

Specifically, the DFS algorithm starts iteratively at each
node and stops at the breakpoints (without continuous
splicing events) or the start cirexon. After obtaining
these paths, short paths are merged into longer paths
and redundant paths are then filtered. To avoid a large
number of false-positive paths which will significantly
affect the efficiency of later iteration steps, CIRI-full
screens out a certain number (by default, set to 10) of
paths. In detail, the edges on the FSG graph are catego-
rized into four types: (i) BSJ, (ii) phasing FSJ, where the
splicing event is exclusively occupied by only one circu-
lar isoform, (iii) co-occurred FSJs, where the number of
splicing events is supported by the same RO read, and
(iv) the remaining FSJs. Paths containing phasing FSJ
and co-occurred FSJs will give the top priority for
screening, and the corresponding paths are referred to
as phased isoforms, because these circular isoforms un-
doubtedly exist. Regarding the paths that contain the
remaining FSJs, they are sorted using the node sequen-
cing depth and the paths with high-sequencing depth
are retained to fill up the threshold (by default, set to
10). The resulting outputted paths are referred to as can-
didate isoforms.
Next, the following steps are to determine the relative

abundance for each path. In detail, a Monte Carlo simu-
lation method is used to simulate the BSJ-reads distribu-
tion on each path based on the insert length distribution
of the RNA-seq library, which is inferred from mapping
distance of paired-end reads. According to the distribu-
tion of simulated reads, the abundance of nodes and
edges (splicing events) on each path can be calculated in
the latter steps. To quantify the relative abundance of
each path, an approximate exhaustive search algorithm
is proposed. Specifically, this approach starts by assign-
ing a random putative abundance (positive integral
value) to each path, where the summed abundance for
all paths should be equal to the total number of BSJ
reads. Based on the assigned putative abundance and the
distribution of simulated BSJ reads, the putative abun-
dances of nodes and edges on each path are computed.
Based on the resulting abundance of nodes and edges,
accumulated putative abundance of nodes and edges are
calculated. Then, the distance between putative and real
abundance (inferred from mapped BSJ reads) of nodes
and edges is calculated and recorded. The putative abun-
dances of paths are adapted to real abundance of nodes
and edges. Next, it iterates through the following steps.
The putative abundances of nodes and edges on each
path are re-calculated. Accumulated putative abundance
of nodes and edges are computed. The distance between
putative and real abundance (inferred from mapped BSJ
reads) of nodes and edges is calculated and compared
with pre-recorded distance. If this distance is larger than
the pre-recorded distance, it means that the path
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abundance adaption process goes wrong and new path
abundance adaption process is performed. Otherwise,
the distance is recorded, new iteration starts. This iter-
ation process stops when the distance converges. By this
method, we can obtain the relative abundance for circu-
lar isoforms of a certain circRNA.

Simulated data sets for circRNA identification and
reconstruction
Simulated data sets were generated by a CIRI simulator
[8]. This tool can simulate RNA-seq data with given ref-
erences and annotations. Parameters such as read length,
coverage, sequencing error rate, and insert size can be
customized. Insert length distribution L follows a normal
distribution (μ, σ2). For each pair of reads, the insert
length size is generated using two independent uni-
formly distributed random numbers x1, x2 (0 < x1, x2 <
1), as follows:

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� ln x1ð Þ
p

� cos 2πx2ð Þ � σ þ μ

To make the simulated circRNA more closely resem-
ble real data, the length distribution and expression dis-
tribution of the circRNAs were also considered. We first
applied CIRI-AS to RNA-seq data from the HeLa cell
line (SRA accession number: SRR3476956) to predict
the size of identified circRNAs by summing all cirexon
lengths with supporting BSJ reads > = 5.
We also adjusted the sequencing depth of the cir-

cRNAs in the simulated data according to the real data.
For inputting parameter sequencing depth D, the cover-
age of a particular circular transcript was generated
using a uniformly distributed random number x (0 < x <
1) as follows:

Coverage ¼ D−0:5ð Þ � 3þ 1ð Þ= 1−
ffiffiffi

x
p� �

To validate the robustness of the RO feature, two
groups of simulated paired-end transcriptomic data sets
were used to test the performance of the RO detection
method. The first group was designed to test the perform-
ance of the RO feature under different sequencing depths.
This group consisted of four circular transcript sequen-
cing datasets with different average depths (2×, 5×, 10×,
and 15×). The read length was set to 200 bp, and the in-
sert length distribution was set to μ = 350 bp, σ = 200 bp.
The second group was constructed to test the perform-
ance of the RO feature under different sequencing lengths.
This group contained four sets of circular transcript se-
quencing data with different read lengths (75 bp, 100 bp,
150 bp, and 200 bp). The average depth of these four data-
sets was 10×, and the insert length followed the same dis-
tribution as that of the former group. Furthermore,
BSJ-based circRNA detection tools, including CIRI2 [30],

find_circ [4], CIRCexplorer2 [25], and KINFE [37], were
used for performance comparison.

Simulated data sets for circRNA isoform quantification
To compare the performance of circRNA isoform quan-
tification between CIRI-full and CIRI-AS, we simulated
circRNA-containing RNA-seq data sets, where two dif-
ferent isoforms were added for each circRNA by simu-
lating additional exon skipping event. Note that the
number of isoforms for each circRNA was set to two,
because only in this situation, CIRI-AS can estimate the
relative abundance of the two isoforms within a certain
circRNA using the PSI values. Consequently, two data
sets were simulated. The first one simulated transcripts
with different sequencing depth (25×, 50×, 100×, and
150×, respectively) and uniform read length of 150 bp
with insert length of 350 ± 200 bp. The second one simu-
lated transcripts with different read length (100, 150,
200, 250, and 300 bp, respectively), insert length of 350
± 200 bp and sequencing depth of 75×.
To further evaluate the sensitivity and accuracy of

CIRI-full on circRNA isoform detection and quantifica-
tion, we also simulated circRNA-containing RNA-seq
data sets with three isoforms for each circRNA. The
transcript sequencing depth was set to 50× with sequen-
cing length of 150 bp and insert length of 350 ± 200 bp.

Generation of HeLa cell RNA-seq data
Total RNA was isolated using TRIZOL (Invitrogen) from
HeLa cells grown in standard medium under standard
conditions. The RNA was divided into three samples
containing equal amounts of RNA. The quality of these
samples was manually controlled to produce different
RIN values. Specifically, the RIN value of the low-quality
RNA sample was 5 and that of the two high-quality sam-
ples was 10. Next, a RiboMinus kit (Invitrogen, Carlsbad,
CA, USA) was utilized to deplete ribosomal RNA in
these samples. The resulting RNA was incubated at 37 °
C and treated with 10 U μg− 1 RNase R (Epicenter, Madi-
son, WI, USA). One of the high-RIN samples and the
low-RIN sample were used separately as templates for
cDNA libraries following the TruSeq protocol (Illumina,
San Diego, CA, USA); the other high-RIN sample was
used to construct a sequencing library using the same
protocol but without the fragmentation step. Fragments
with a broad range of fragment size (300–800 bp) were
selected for library construction. The three libraries
(low RIN/fragmented, high RIN/fragmented, high
RIN/unfragmented) were sequenced on the Illumina
HiSeq 2500 platform of the Research Facility Center
at the Beijing Institutes of Life Science, CAS, with a
read length of 250 bp. The sequencing data sets have
been deposited to SRA with the following project ID
(PRJNA475651) [38].
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Generation of whole brain RNA-seq data
Human, macaque, and rabbit whole brain RNA samples
were purchased from Zyagen (San Diego, CA, USA).
Mouse, rat, and chicken whole brain tissues were ob-
tained from the Research Facility Center at the Beijing
Institutes of Life Science, CAS. RNA samples were iso-
lated using TRIZOL (Invitrogen). For each species, three
types of cDNA library were prepared. Specifically, a
Ribo-/RNase R library was constructed using RNA sam-
ples that had been treated with the RiboMinus kit (Invi-
trogen) and then incubated at 37 °C with 10 U μg−1

RNase R, a Ribo-/cDNA library was constructed using
RNA samples that were only treated with the RiboMinus
kit, and a poly-A library was prepared according to the
TruSeq v2 guide. Poly-A and Ribo-RNA samples were
used as templates for cDNA libraries according to the Tru-
Seq protocol (Illumina); Ribo-/RNase R-treated samples
used the same protocol but without fragmentation. These
libraries were sequenced on the Illumina HiSeq 2500 plat-
form of the Research Facility Center at Beijing Institutes of
Life Science, CAS. PolyA+ and Ribo-/RNase R libraries
were sequenced with paired-end 250-bp reads, and
Ribo-libraries were sequenced with paired-end 150-bp
reads. The sequencing data sets have been deposited to
SRA with the following project ID (PRJNA475651) [38].

HeLa cell and brain RNA-seq data processing
CircRNAs from three HeLa cell RNA-seq data sets were
identified using CIRI-full with default parameters. The
RNA-seq data sets of brain samples that had undergone
RiboMinus/RNase R treatment from six species were
processed using CIRI-full. To normalize the number of
resulting circRNAs, circRNAs with no RO read support
and those with BSJ read support ≤ 5 were filtered in hu-
man, mouse, rat, and rabbit according to the total BSJ
number. Brain data sets from RiboMinus libraries were
processed by CIRI2 with default parameters, and expres-
sion level was normalized to data set size. Poly-A-selected
RNA-seq data sets of brain samples of the six vertebrates
were analyzed using Hisat2 [39] and StringTie [40, 41]
with default parameters.

Experimental validation
To validate the predictions made by the RO method,
outward-facing primer sets were designed to amplify 21
circRNAs (15 for BSJ validation and 6 for full-length cir-
cRNA validation). PCRs were performed using 35 cycles,
and the sequences of the PCR products were determined
via Sanger sequencing. Among 21 validated circRNAs,
all BSJs and FSJs of six circRNAs were supported by
Sanger sequencing, indicating the accuracy of the recon-
structed full-length sequences of these circRNAs. The
remaining 15 circRNAs were also validated by the con-
firmed BSJ sites using Sanger sequencing.

To verify predicted circRNA isoforms and their rela-
tive abundances, outward-facing primers were designed
to quantify the expression of 17 isoforms within 8 cir-
cRNAs. Specifically, HeLa cells were grown in standard
media and conditions. Total RNA was isolated using
TRIZOL and converted to cDNA using random hexame-
ters primers within the FastKing RT Kit (TIANGEN).
Resulting cDNA was used as templates and real-time
qPCR was performed using primer pairs specific for cir-
cRNA isoforms and two negative controls (GAPDH and
b-actin) with SYBR FAST qPCR Kits (Kapa Biosystems).
The reaction volume was 20 μl, which contained 1 μl of
serial diluted cDNA, 10 μl of qPCR SYBR Green Master
Mix, 0.5 μl each of forward and reverse primers, and 8 μl
of water. Thermal cycling was carried out on StepOne-
Plus (Applied Biosystems) using the following condi-
tions: 95 °C for 5 min and followed by 40 cycles of 95 °C
for 10 s and 60 °C for 30 s. Fluorescent signals were de-
tected at the step of annealing/extension (60 °C).

Differential expression analysis of circRNAs and their
isoforms in HCC patients
RiboMinus treated RNA-seq data sets of tumor
(SRX1558046-SRX1558064) and normal liver samples
(SRX1558026-SRX1558045) from 20 HCC patients gen-
erated in a previous study [42] were downloaded from
the NCBI SRA database. Full-length circRNAs and their
isoforms were obtained by running CIRI-full on these
data sets using default parameters. The statistical signifi-
cances of differentially expressed circRNAs between nor-
mal and tumor samples were calculated using Mann–
Whitney U test.

Results
Currently available approaches on circRNA identification
are exclusively based on the detection of back-splice junc-
tions (BSJs). In this study, we propose a new feature, re-
verse overlap (RO), for full-length circRNA detection,
which outperforms previous BSJ-based methods in detect-
ing circRNAs, even for highly degraded RNA samples. We
further develop an accurate and high-throughput ap-
proach, CIRI-full, that uses both BSJ and RO features to
reconstruct full-length circRNAs and their isoforms from
RNA-seq data sets.

The CIRI-full approach
The RO identification algorithm (Additional file 1: Fig-
ure S1) is performed based on region in amplified circu-
lar transcripts in which the 5′- and 3′- ends of paired
reads are reversely overlapped with each other (Fig. 1a,
b). It should be noted that 3′- end RO (3′ RO) will
occur if the circRNA is completely covered by
paired-end reads; in this case, the entire sequence of the
circRNA can be reconstructed (Fig. 1a). However, the
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presence of RO features is dependent on library frag-
ment size, cDNA amplification, and read length (Add-
itional file 1: Figure S2). This method involves two steps,
RO detection and RO verification. The former is de-
signed to detect candidate RO reads. Specifically, for
each read pair, the 5′- end subsequences of both reads
are extracted and aligned using a seed-matching

strategy. The read pairs for which 5′- end subsequence
alignment passes the length and identity thresholds are
merged into a long sequence according to the alignment
and taken as candidate RO-merged reads. Owing to con-
tamination with lariat structures and linear transcript
reads that have partial sequences attached to both ends,
a significant number of candidate RO-merged reads are
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false positives. Next, a mapping-strategy-based RO veri-
fication step is utilized to screen out authentic
RO-merged reads. In this step, candidate RO-merged
reads are mapped to the reference genome, resulting in
several split alignments. To accurately determine the lo-
cation of candidate RO-merged reads, the longest align-
ment for each read is employed as an anchor alignment,
and the accumulated mapping length within a given
interval on both sides of the anchor is calculated. If the
summed length exceeds half of the read length, the read
is reserved and remapped using a local realignment
strategy. Abnormally mapped and unmapped regions for
each read are remapped using local realignment; then,
the boundaries of the mapping junctions are adjusted ac-
cording to the GT/AG splicing signal. Moreover, candi-
date RO-merged reads derived from linear transcripts
and lariat structures are also ruled out in this process.
Finally, the locations of both ends of the remaining
RO-merged reads are checked and recorded for further
analyses (Fig. 1c, d and Additional file 1: Figure S3).
The CIRI-full pipeline involves four different steps,

RO detection and reconstruction, BSJ and cirexon detec-
tion, combined assembly of RO and BSJ reads (Fig. 1e)
and circular isoform detection and quantification
(Fig. 1f ). Several recent studies demonstrated that CIRI2
exhibited remarkably balanced sensitivity, reliability,
running time, and RAM usage on circRNA detection
[29–32] and performed comparably to annotation-based
algorithms [33], and thus, CIRI2 was employed to detect
BSJ reads in this pipeline. RNA-seq reads are processed
separately in the first two steps, thus yielding a number
of full-length circRNAs, as well as BSJ and RO-merged
reads, which are not sufficient for reconstructing
full-length circRNA independently. Therefore, these un-
used but informative reads are integrated in the next
step to generate a combined assembly. Based on the
identified full-length circRNAs, circular isoforms within
the BSJs of a circRNA are then detected and quantified
by employing statistic-based models. In the first step, an
RO-merged read is identified as full-length circRNA if
the genome alignments of both of its ends satisfy one of
two criteria [1]: they have overlap on the genome (Add-
itional file 1: Figure S4A) or [2] they do not have overlap
but locate on the same cirexon (Additional file 1: Figure
S4B). In the second step, CIRI-AS is employed to detect
BSJ and cirexons of circRNAs. Then, for each circRNA,
the locations of BSJ read pairs within the BSJ are
checked; if all the reads are exclusively located on the
cirexons, the complete sequence of this circRNA is as-
sembled by linearly connecting the cirexons (Add-
itional file 1: Figure S4C). In the third step, incomplete
information from the first two steps is clustered accord-
ing to the BSJ, and the RO reads and cirexons for each
BSJ are combined to complement each other to

reconstruct full-length circRNAs (Additional file 1: Fig-
ure S4D). However, under certain conditions, full-length
circRNAs cannot be reconstructed; these may include
long circRNAs whose length is twofold greater than the
library size (Additional file 1: Figure S5D) and circRNAs
with incomplete cirexons due to low expression levels
(Additional file 1: Figure S5A–C). Finally, a forward
splice graph (FSG) is constructed using the BSJ and
RO-merged reads alignments within the BSJs for each
assembled circRNA (Fig. 1f ). The resulting FSG is dis-
sected into paths by using an adapted deep-first search
method, which iteratively traverses from different source
node to find all non-redundant paths (Additional file 1:
Figure S6). Next, the following steps are to estimate the
abundance of each circular isoform (Additional file 1:
Figure S7). First, a Monte Carlo method is employed to
simulate the distribution of BSJ reads on each path ac-
cording to the insert length of RNA-seq library, which
will be used to estimate the coverage of each node and
edge of this path. Then, an approximate exhaustive
search method is employed to find the optimum solu-
tion of the abundance of each path. Specifically,
CIRI-full initially assigns a random value to each path
and then calculates the abundance of every node and the
splicing events of each edge on the path based on the
simulated BSJ-reads distribution. Consequently, CIRI-full
calculates the distance between the accumulated putative
abundance of each node and splicing events of each
edge. This distance score represents the discrepancy be-
tween the putative and real abundance of each path. To
obtain the smallest distance, CIRI-full corrects the puta-
tive abundance of each path iteratively according to
the FSG until the distance scores get converged. After
iterative computation, the optimum solution will be
output, and thus, the abundance of each path is de-
termined (Fig. 1f ).

RO feature facilitates identification of low-abundance
circRNAs
To explore the advantages of the RO feature, we exten-
sively compared the performance of the RO-based
method with that of BSJ-based methods by simulating
circRNA-containing transcriptomic datasets. These data-
sets contained RNA-seq paired-end reads with an aver-
age library size of 350 bp and an average circRNA length
of 300 ± 150 bp, where the length distribution was in-
ferred from a HeLa circRNA dataset (Additional file 1:
Figure S8). To measure the effect of read length on the
results obtained using these two strategies, we simulated
datasets with an average circRNA abundance of 10X and
read lengths of 75, 100, 150, and 200 bp (Additional file 1:
Figure S9). As expected, the sensitivity of the RO-based
method increased significantly, considering that 75% of
the simulated circular transcripts were shorter than 480
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bp (Additional file 1: Figure S8A). Moreover, the number
of circRNAs that were exclusively detected by the RO
method also increased with increased read length. Sur-
prisingly, this contrasted sharply with the performance
of the BSJ-based tools except for CIRI2, for which the
sensitivity dropped rapidly, especially with read lengths
of 200 bp. The primary reason for this decrease is the in-
creased number of junction sites produced by long
reads. Most current BSJ-based approaches, except for
CIRI2, are specifically designed for short reads, and they
ignore the split alignment of long reads with more than
three splitting sites. Next, we compared the performance
of the RO- and BSJ-based methods in detecting
low-abundance circRNAs. The simulator was adapted to
generate paired-end reads with lengths of 200 bp and
circRNAs with a gamma distribution of expression
levels, in which most circRNAs exhibited low abundance
(Additional file 1: Figure S9). As shown in Fig. 2a, b and
Additional file 1: Figure S10, in all of the compared
cases, the RO-based method achieved a sensitivity com-
parable to that of CIRI2 and a specificity similar to that
of the BSJ-based methods. Notably, circRNAs that were
only detected by the RO-based method were of low
abundance, suggesting the potential application of the
method for identifying low-abundance circRNAs.
To obtain a more comprehensive understanding of the

RO feature, we further compared the relationship between
RO reads and BSJ reads used for circRNA identification. As
shown in Fig. 2c, 69% (30% + 39%) of the RO-merged reads
were derived from 78% of the circRNAs (27% + 51%) having
BSJ read support ≥ 2, and more than half of these
RO-merged reads had 3′ RO also, thus indicating that they
could directly generate full-length circRNA transcripts. The
remaining RO-merged reads comprised the 22% of the cir-
cRNAs that were exclusively identified by the RO-based
method, thus suggesting that the RO-based method offers a
distinct advantage compared with previous BSJ-based
methods, in which low-abundance circRNAs with limited
BSJ read support are usually discarded by setting an arbi-
trary threshold (e.g., #BSJ reads > 2 or more). We further
surveyed the base depth distribution of circRNAs and
found that the RO reads produced a more uniform depth
distribution along the normalized circRNA transcript than
the BSJ reads (Fig. 2d). Based on the foregoing results, we
conclude that the RO feature performs well in identifying
low-abundance circRNAs and generating more uniform
read distributions along circular transcripts. This improve-
ment will greatly facilitate downstream reconstruction of
full-length circRNAs.

The FSG-based algorithm accurately identifies and
quantifies circular isoforms
To validate the quantification accuracy of the FSG-based al-
gorithm, we simulated circRNA-containing transcriptomic

datasets with read length varying from 100 to 300 bp and
sequencing depth at 25–150 fold (Fig. 2e, f). We sought to
evaluate the performance of this approach by comparing
with CIRI-AS. Therefore, all the circRNAs in these data
sets were designed to possess two isoforms, where CIRI-AS
can estimate the relative abundance of the two isoforms
within a certain circRNA using the PSI values. We then
compared the accuracy of these two tools by calculating the
discrepancy between predicted and real abundance of each
isoform. As shown in Fig. 2e, both of these two approaches
achieved a high level of accuracy, especially for those iso-
forms with an abundance over 50 fold. Moreover, the
FSG-based quantification approach exhibited increased
levels of accuracy with increasing read length, relative to
the splicing events-based method (Fig. 2f). For more com-
plicated splicing pattern, we further designed a simulated
dataset containing 994 circRNAs with three isoforms,
which were referred to as major, medium, and minor iso-
form according to their abundance, respectively. We per-
formed CIRI-full on this dataset, detected circular isoforms
within each circRNA, and determined their abundances.
Among these simulated circRNAs, 73% (726/994) of them
could be precisely recognized for all three isoforms. For iso-
form quantification, an average of 79% of these isoforms
can be correctly determined (Fig. 2g–i). We further used
four circRNA data sets with biological replicates and two
simulated datasets to evaluate the reliability of isoform
quantification by CIRI-full. As shown in Additional file 1:
Figure S11, 76.2 ~ 85.6% of moderately or highly expressed
isoforms (#BSJ reads > = 30) in the real datasets, including
human brain tissue, human liver tissue, and Hs68 cell line,
could be accurately quantified using CIRI-full. Similar find-
ings were also found in the simulated datasets.
To experimentally evaluate our approach on quantify-

ing circRNA isoforms, we performed real-time RT-PCR
to validate eight randomly selected circRNAs with two
or three isoforms from a transcriptomic data set of HeLa
cells (Additional file 1: Figure S12–14). Each of these cir-
cRNAs was predicted to contain at least two isoforms.
We designed 17 pairs of primers to amplify fragments
containing both BSJ and alternatively spliced cirexons
and quantified their abundance using real-time RT-PCR.
As shown in Fig. 2j and Additional file 1: Table S1,
the abundances of circRNAs determined by CIRI-full
and qRT-PCR show a high level of consistency, dem-
onstrating the reliability of the FSG-based method for
isoform-level circRNA quantification.

Reconstruction of full-length circRNAs based on CIRI-full
To further investigate the utility of using both RO and
BSJ features in circRNA reconstruction, we generated
9.2 Gb of sequencing data with RiboMinus + RNase R
treatment from HeLa cells. CIRI-full was then employed
to identify circRNAs and to reconstruct their full-length
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transcripts. As shown in Fig. 3a, 77.6% of the circRNAs
were identified as full- or nearly full-length circular tran-
scripts, indicating a high efficiency of CIRI-full in recon-
structing circRNAs by combining RO and BSJ features.
We further explored the length distribution of these

reconstructed circRNAs and found that the majority
were between 150 and 500 bp in length (Fig. 3b). At this
length interval, circRNAs can be well covered by long
paired-end reads (e.g., PE250 or PE300), but above this
length, it is difficult to recover their complete sequences.
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The lengths of the unconstructed circRNAs were esti-
mated by summing their potential cirexons; the results
indicated that their lengths ranged from 750 to 1250 bp
(Additional file 1: Figure S14A). These circRNAs repre-
sented only one quarter of the total number of identified
circRNAs. By examining the length distribution and the

expression levels of full-length circRNAs in more detail,
we found that the circular transcripts reconstructed by
the RO and BSJ features exhibited distinct patterns. Spe-
cifically, the BSJ feature focused on long and highly tran-
scribed circRNAs, whereas the RO feature preferentially
identified short and low-abundance circRNAs, especially
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those with only one RO read support (Fig. 3c and
Additional file 1: Figure S14A). This finding highlights
the general principle that depending on the RO or BSJ
feature, a single feature alone may not be sufficient to
recover all full-length circRNAs.
For further validation, we generated 16.2 Gb of se-

quencing data from human brain samples based on
RiboMinus RNA sequencing with RNase R treatment
and performed CIRI-full on this dataset. Most of the cir-
cRNAs identified in this dataset were full- or nearly
full-length (Fig. 3d). The number of circRNAs in the
brain dataset was greater than that in HeLa cells when
the sizes of the data sets were normalized. The length
distribution of full-length circRNAs and the recognition
patterns of the RO and BSJ features were similar to
those identified in HeLa cells (Fig. 3e, f and Add-
itional file 1: Figure S14B). Notably, a large majority of
cirexons that were specifically identified by RO reads
were enriched in both RiboMinus-treated and RiboMi-
nus/RNase R-treated samples as compared to the poly
(A) enrichment sample (Additional file 1: Figure S15).
To verify the reconstructed circRNAs based on RO

features, both computational and experimental ap-
proaches were employed. Firstly, over 80% of circRNAs
detected by the RO-based method could be supported
by at least one BSJ-based method (Additional file 1: Fig-
ure S16A). The remaining circRNAs solely detected by
the RO-based method also exhibited a typical reversely
mapping signature when aligned them to the reference
genome (Additional file 1: Figure S16B). Secondly, we
performed experimental validation by randomly select-
ing 15 circRNA loci in the HeLa sample; 3, 6, and 6 of
these loci were highly, moderately, and weakly tran-
scribed, respectively. Outward-facing primers were de-
signed to amplify fragments containing BSJs, and the
sequences of the PCR products were determined via
Sanger sequencing. As shown in Additional file 1: Figure
S17–19, all 15 of the loci were successfully validated. For
additional validation, six predicted full-length circRNAs
were randomly selected and validated using the same ap-
proach. As shown in Additional file 1: Figure S20, all of
these predicted full-length circRNAs were successfully
verified using the experimental method. This solid evi-
dence demonstrates the excellent reliability of CIRI-full
in reconstructing full-length circRNAs.
To measure the robustness of using RO and BSJ fea-

tures for circRNA reconstruction, RNA-seq libraries
were constructed using both high-quality RNA (RNA In-
tegrity Number, RIN = 10) and degraded RNA (RIN = 5)
of HeLa cells treated by RNase R and RiboMinus. For
the high-quality RNA sample, two different methods
(with or without fragmentation) were used to construct
RNA-seq libraries. For these three libraries, 9.2, 5.3, and
11.6 Gb of sequencing data were generated, respectively.

We employed CIRI-full to detect RO and BSJ reads from
these data; the ratio of RO reads to the sum of RO and
BSJ reads was then calculated. As expected, compared
with the unfragmented library, the RO reads ratio de-
creased considerably in the fragmented and low-quality
libraries across all the compared distribution levels
(Fig. 3g, h). In particular, the low-quality library, in
which the circRNAs suffered from degradation, exhib-
ited the lowest RO reads ratio. We next investigated
whether the number of RO-identified circRNAs was also
affected (Additional file 1: Figure S21). Therefore, we
performed CIRI-full on each dataset and calculated the
ratio of RO-identified circRNAs to the sum of RO-
and BSJ-identified circRNAs. We found that although
the ratio of RO reads decreased, the number of
RO-identified circRNAs was unaffected by RNA frag-
mentation (Fig. 3i) and only weakly influenced by
RNA degradation (Fig. 3j). These findings further
confirm that the RO feature can be used to efficiently
detect low-abundance circRNAs even if most of the
RO reads are degraded or fragmented.
In addition to its high sensitivity and robustness in cir-

cRNA identification, CIRI-full also offers high accuracy
for exploring detailed internal components within cir-
cRNAs. In contrast, previous studies simply combined all
known or aligned mRNA exons in a sequential order as
putative full-length circRNAs (hereafter referred to as the
reference-based method). We measured the accuracy of
full-length circRNAs predicted using the reference-based
method by aligning them with the circular transcripts re-
constructed using CIRI-full. As shown in Fig. 3k, only 34%
of these predicted full-length circRNAs in human brain
predicted by the reference-based method perfectly
matched the circular transcripts reconstructed using
CIRI-full, thus suggesting the former method’s low level of
accuracy. The errors can be classified into three categor-
ies: false cirexons, missing ICFs, and a mixture of the
former two errors (Additional file 1: Figure S22). False cir-
exons, representing the insertion of false additional exons,
accounted for 23% of the predicted circRNAs, and the
average number of false exons per circRNA was 2.4.
Moreover, 21% of the errors were identified as missing
ICFs, referring to missing intronic/intergenic circular frag-
ments; these included an average of 25.5% of the
full-length circular transcripts. A mixture of both false cir-
exons and missing ICFs accounted for up to 22% of the er-
rors. A similar error rate was also consistently observed in
HeLa cells and mouse brain samples (Additional file 1:
Figure S23), strongly indicating that the reference-based
method is error-prone and not reliable for resolving the
internal structure of circRNAs. Compared with previous
approaches, which focused on the determination of in-
ternal sequence or alternative splicing events, CIRI-full
exhibited a high efficiency on reconstructing circular
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transcripts using the combination of RO and BSJ features
(Additional file 1: Figure S24).

Profiling full-length circular RNAs in vertebrate brains
Evolutionary analysis is essential for insights into the
genetic basis of phenotypes and into functional screen-
ing. For circRNAs, such analyses remain scarce despite
growing attention to these circular transcripts. With this
goal in mind, we determined circRNA repertoires in
brain samples of six vertebrate species, including human,
macaque, mouse, rat, rabbit, and chicken. For each spe-
cies, a whole-brain sample was sequenced using
RNA-seq with RiboMinus/RNase R treatment, Poly A
enrichment and RiboMinus treatment (Fig. 4a). Then,
we applied CIRI-full to the RiboMinus/RNase R-treated
transcriptomic data to comprehensively explore the cir-
cular transcripts for each species, including the numbers
of circRNAs, cirexons, BSJ reads, ICFs, full-length cir-
cRNAs, and RO reads. HISAT and StringTie [41] were
performed on the Poly (A) enrichment data to obtain
linear transcript abundance. We identified approximately
3500 to 11,500 full-length circRNAs in these organisms.
Analysis of the lengths of these full-length circular tran-
scripts revealed that circRNA length was highly con-
served among these species, with the majority of
circRNAs ranging from 250 to 500 bp in length (Fig. 4a).
Next, we measured the exon boundary conservation of
orthologous circular and linear transcripts between pairs
of closely related species, including human and macaque
and mouse and rat. Considering that most of the cirex-
ons in circRNAs are identical to those in linear mRNAs,
only the ICFs that are exclusively present in circRNAs
were used for boundary conservation analysis. As shown
in Additional file 1: Figure S25, lncRNA exon boundaries
exhibited larger and more frequent changes across mam-
mals than did protein-coding exons. Interestingly, the
boundary conservation level of ICFs was similar to that
of protein-coding exons. Consequently, compared with
lncRNAs, circRNAs exhibit more constraint with respect
to maintaining an exact position of splicing events
among orthologous pairs. We further counted the num-
ber of shared circRNAs and mRNAs in these two pairs
of species and found that circRNAs exhibited signifi-
cantly decreased conservation compared with protein-
coding genes (Fig. 4b); only a small subset of ortholo-
gous circRNAs were conserved between closely related
species. For example, approximately 23.5% of human cir-
cRNAs were also expressed in macaque and 21.4% of
mouse circRNAs were also expressed in rat, whereas
more than 76% of protein-coding genes were expressed
in both members of these two species pairs.
We further examined the orthologous circRNAs

present in these six vertebrates and calculated the num-
ber of orthologous circRNAs that possessed the same

sequences and BSJs and the number of shared genes on
their ancestral nodes (denoted by “a”, “b”, “c”, and “d”).
As shown in Fig. 4a, the number of shared full-length
orthologous circRNAs and BSJs decreased rapidly with
increased genetic distance. In contrast, the number of
shared orthologous circRNAs decreased much more
slowly, thus indicating that although derived from the
same genes, the circRNAs of different species diverged
rapidly in terms of sequences and BSJs. Next, the expres-
sion levels of orthologous circRNAs and genes on each
node were estimated. As shown in Fig. 4c, the shared
orthologous circRNAs exhibited increased levels of ex-
pression compared with lineage-specific circRNAs,
whereas this scenario was not observed in the shared
orthologous genes from which the circRNAs were de-
rived. These findings suggest that there is a distinct evo-
lutionary conservation pattern of orthologous circRNAs
and that these shared circRNAs provide valuable targets
for further functional screening. We next surveyed cir-
cRNA AS events in the six species. All four types of AS
events could be detected within circRNAs in all these
species (Fig. 4d). Exon skipping (ES) was the most preva-
lent AS type in circRNAs. Alternative 3′-splicing site
(A3SS) and alternative 5′-splicing site (A5SS) were also
major circular AS types, in agreement with our previous
study showing that AS events not only occur in mRNAs
but are also prevalent in circRNAs [10]. To this end, we
investigated the expression level of conserved circRNA
isoforms in these species. As shown in Fig. 4e, conserved
circRNA isoforms exhibited similar splicing patterns in
closely related species. For example, the expression and
splicing patterns of these circRNAs were more similar
between human and macaque than between human and
other species.

Read length is a key determinant of circRNA identification
but not quantification
Considering that most of publicly available RNA-seq
data sets are generated for linear transcripts, which are
typically in short sequencing length and contain a very
limited fraction of RO reads, one may question whether
this FSG quantification method works on short sequen-
cing reads. To test this possibility, we truncated the
250-bp paired-end reads from human brain RNA-seq
data set (RNase R + RiboMinus treatment) to 100-bp
paired-end reads, and compared the performance of
CIRI-full on both data sets with long (PE250) and short
(PE100) sequencing reads. As shown in Fig. 5a, although
most of the highly expressed circRNAs (BSJ reads > =
20) could be successfully identified in both data sets, the
number of identified circRNAs transcribed at low levels
decreased rapidly after truncating into short reads. This
scenario was also observed for the assembled circular
isoforms in terms of number and length (Fig. 5b). In
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particular, only less than a half of full-length circRNA
isoforms with length > 300 bp were reconstructed by the
FSG-based method. It has been demonstrated that the
number of assembled full-length linear transcripts can
benefit from increasing sequencing depth [43]. We
therefore investigated whether this holds true for cir-
cRNA isoforms. We classified the identified circRNAs
into five categories according to their expression level
and subsequently calculated the number of full-length
circRNA isoforms in each category. Strikingly, the recov-
ery of full-length circRNA isoforms did not considerably
improved with increasing sequencing depth (Fig. 5c), in-
dicating that the read length rather than sequencing
depth is the key determinant of circRNA isoform detec-
tion. This finding further raised the question as to
whether the read length affects the accuracy of circRNA

isoform quantification. We checked the relative abun-
dance difference of the shared circRNA isoforms in
these two data sets (PE250 and PE100) and found a high
level of concordance, especially for highly expressed cir-
cRNAs (Fig. 5d). This observation demonstrates that the
FSG-based method is efficient in quantifying circRNA
isoforms even with short read length, but researchers
can recognize more circRNA isoforms by increasing the
sequencing read length.

Isoform-level quantification helps filter false positives in
differential circRNA expression analysis
Unlike mRNA transcripts, current differential expression
analysis on circRNAs is limited to the BSJ level due to the
inability of detecting isoforms within a certain BSJ (Fig. 6a,
top). Using our FSG-based isoform quantification algorithm,
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however, it is possible to distinguish differentially expressed
isoform from circRNAs with the same BSJ (Fig. 6a, bottom).
To explore the difference of expression patterns between
BSJ and isoform levels, we applied CIRI-full to 40 RNA-seq
data sets of HCC tumor tissues and their adjacent normal
tissues [42]. The sequencing data size mapped to the refer-
ence genome varied from 10 to 27 Gb and the number of
identified circRNAs from these data sets ranged from ap-
proximate 4000 to 14,000 (Fig. 6b). Notably, a small fraction
of circRNAs in these 40 samples contained at least two iso-
forms. Moreover, the number of isoforms positively corre-
lated with sequencing data size, suggesting that increasing
sequencing depth and read length should facilitate the de-
tection of isoforms within circRNAs (Fig. 6c).
To better understand the discrepancy between

BSJ-level and isoform-level differential expression ana-
lysis, we extracted top 1000 most abundant circRNAs
that expressed in at least 80% of the 40 samples and
found that 778 of them could be fully reconstructed.
Then, we investigated their expression changes between
normal and tumor tissues at both BSJ and isoform levels.
Specifically, Mann–Whitney U test was employed to cal-
culate the significance of expression alternation and
signs of P value were used as proxies for directions of

changes in expression (Fig. 6d). Among these 778 cir-
cRNAs, 587 of them showed the same significance
values between BSJ-level and isoform-level differential
expression analysis, because each of these circRNAs only
expressed a single isoform, with 66 and 230 significantly
up- and downregulated in tumor tissues, respectively
(Fig. 6e). Regarding the remaining 191 circRNAs that
expressed multiple isoforms, the significance level of
their differential expression was generally overestimated
because different isoforms of circRNAs with a certain
BSJ cannot be distinguished from each other if they are
quantified at the BSJ level. After corrected for
isoform-level quantification, only 32% of them were still
significantly upregulated in tumor samples. The same
phenomenon was also observed in downregulated cir-
cRNAs, where only 35% of them were kept after correc-
tion. Notably, a small number of circRNAs were
recognized as differentially expressed isoforms only by
the isoform-level quantification, indicating that other
isoforms within the same BSJ may interfere with the per-
formance of differential expression analysis solely based
on the BSJ-level quantification.
To further investigate whether there were alternative

splicing isoform switches present between normal and
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tumor samples, we extracted the top 50 most highly
expressed circRNAs with multiple isoforms and calculated
the expression fold change for each isoform between
tumor and normal samples. We found that 10 out of 50
circRNAs underwent isoform switches, where the striking
expression changes occur in the most abundant isoform
(green and red circles, Fig. 6f). In contrast, the BSJ-level
differential expression analysis cannot distinguish such

scenario. For example, circRNA chr2:207144264|20
7162097 locating on the ZDBF2 gene could express four
circular isoforms (Fig. 6g). The alignments of BSJ reads on
the second and fourth cirexons, as well as the splicing
events between the fourth and sixth exons, exhibited dis-
tinct read supports between tumor and normal samples,
indicating the existence of alternative splicing isoform
switches. Indeed, the circular isoform with sequence
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length of 477 nt was the dominant isoform in normal sam-
ples, whereas its expression dropped rapidly in tumor
samples and the expression of this circRNA was domi-
nated by the circular isoform with sequence length of 334
nt. Moreover, eight circRNAs were illustrated to serve as
examples to detail the expression changes at both the BSJ
and isoform levels between normal and tumor tissues of
20 patients (Fig. 6h). Although four of these circRNAs
were found to be differentially expressed by the traditional
BSJ-level quantification, it could not distinguish the real
differentially expressed isoforms. In addition, there were
also a few cases that certain circular isoforms exhibited in-
creased expression levels across tumor samples, which
were missed by the BSJ-level differential expression ana-
lysis. Collectively, these results highlight the limitation of
BSJ-based quantification and the necessity of extending
differential circRNA expression to the isoform level.

Discussion
This study presents a novel experimental and bioinfor-
matic framework, CIRI-full, that can be used to effi-
ciently reconstruct full-length circRNAs and quantify
their expression at the isoform level from transcriptomic
data. The main advantage of CIRI-full is that it utilizes
an unfragmented library preparation approach to gener-
ate RO reads for circRNAs. To fully utilize these RO
reads, we developed a new computational algorithm with
the aim of reconstructing the complete sequences of cir-
cRNAs and circular isoforms within them and further
proposed a new Forward Splice Graph (FSG)-based algo-
rithm for isoform-level circRNA quantification. Through
extensive evaluations of both simulated and real data
sets from HeLa cells and from the human brain, we
demonstrated that CIRI-full offers excellent performance
in full-length circRNA reconstruction and isoform-level
quantification. By applying this tool to brain samples of
six vertebrate species, we demonstrated the reliability of
CIRI-full on exploring comprehensive circRNA reper-
toires across multiple species and unveiling their evolu-
tionary conservation and divergence. Further application
of CIRI-full on human normal and tumor tissues, we
systematically compared the difference between the
BSJ-level and isoform-level differential expression ana-
lyses. We have packed CIRI-full with our previous tools
(CIRI2 and CIRI-AS), and users can identify circRNAs,
detect alternative splicing events, and reconstruct circu-
lar isoforms from transcriptomic data using a single
command. The running time and peak memory usage of
CIRI-full under different conditions are shown in Fig. 7.
This tool will greatly accelerate our understanding the
diversity and function of circRNAs, which will undoubt-
edly contribute to the field of circRNA studies.
Most approaches to circRNA identification rely exclu-

sively on recognizing BSJs, and these methods are of

limited application in determining the internal structure
of circRNAs. In this study, for the first time, we propose
an RO feature-based method for circRNA detection.
This new approach is an important addition to the BSJ
feature-based method, with each approach having its
own advantages and limitations. Compared with the BSJ
feature-based method, the RO feature-based method has
the following distinct advantages. First, the RO feature
provides more solid evidence for identifying full-length
circRNAs. This greatly facilitates genome-wide full-
length circRNA identification and thereby offers an
indispensable advantage for downstream analyses, in-
cluding functional and evolutionary analyses. Second,
the RO feature facilitates the detection of weakly tran-
scribed circRNAs, and even extremely low-abundance
circRNAs could be efficiently and accurately identified.
For instance, in the HeLa cell dataset, 3887 circRNAs
were identified; 14.4% of these were supported by only
one read, and 92% were successfully identified by
CIRI-full. Considering that a vast majority of circRNAs
in various transcriptomes are in low expression levels,
the detection of such low-abundance transcripts is ex-
tremely important in exploring circRNA profiles. For ex-
ample, when detecting circRNAs from RNA-seq data
sets without RNase R treatment, most of the circRNAs
are in low abundance compared with their linear coun-
terparts. Therefore, the ability of identifying and recon-
structing low-abundance circRNAs is not trivial in
circRNA studies. Third, compared with BSJ reads, RO
reads produce a more uniform depth distribution along
the normalized circRNA transcript, which greatly facili-
tates quantification of circRNAs and determination of
their internal structures. Compared with the BSJ feature,
RO-based circRNA identification also has limitations.
First, the RO-based approach requires longer reads to
obtain an entire circRNA sequence. Considering that
most circRNAs are between 200 and 800 bp in length, it
should be possible to easily obtain RO reads as sequen-
cing technology continues to advance. Second, a large li-
brary size is required to produce high-quality RO reads
during library preparation.
Considering the potential significance of the biogenesis

and functions of full-length circRNAs, several computa-
tional algorithms have been developed to determine the
internal components of these circular transcripts. The
reference-based prediction method has been revealed to
be error-prone; up to 66% of the predicted full-length
circRNAs in our study were demonstrated to contain er-
rors, including false cirexons and missing ICFs. Despite
the fact that spliced junction signature-based methods
such as CIRI-AS represent an important step forward by
facilitating accurate cirexon identification, full-length
prediction of circular isoforms with complicated AS
events is still not feasible. An alternative approach
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involves utilization of new sequencing technologies such
as PacBio long read sequencing, which promises increases
in read length of several orders of magnitude, thereby
making full-length circRNA identification considerably
easier. However, this is achieved at the expense of higher
cost per base and lower throughput. Furthermore, it is not
cost-effective to use PacBio long reads to obtain the
complete sequences of circRNAs, especially considering
that their lengths range from 250 to 800 bp. In contrast,
CIRI-full generates high-throughput “long” reads that are
sufficient for determining the complete sequences of most
full-length circRNAs in an economical and practical man-
ner. Without the need for additional library preparation
and with bypassing of the fragmentation step, RO reads
are easily obtained using general paired-end sequencing,
greatly expanding the applicability of this method.
Besides circular transcript reconstruction, CIRI-full is

also the first tool to provide isoform-level quantification
for circRNAs. Previous studies revealed the prevalence
of AS events within circRNAs and the importance of ac-
curate quantification of circRNA expression to confirm
their crucial functions in many biological processes.
However, current state-of-the-art transcript quantifica-
tion approaches largely focus on linear RNAs, which es-
timate expression abundance at both gene and transcript
levels. Till now, there is no available method for
isoform-level circRNA quantification. In this study,
CIRI-full can successfully determine the abundance of
circRNAs at both BSJ and isoform levels by employing
the FSG-based algorithm, which reconstructs all

full-length isoforms within each assembled full-length
circRNA. By applying this approach to 40 RNA-seq data
sets of human HCC tumor tissues and their adjacent
normal tissues, we identified thousands of circRNAs of
which most were assembled into full-length, and we sys-
tematically explored the discrepancy between BSJ-level
and isoform-level differential expression analysis. We
found that the significance level for differential expres-
sion of most circRNAs that expressed multiple isoforms
was generally overestimated at the BSJ level. A large ma-
jority of differentially expressed circRNAs measured at
the BSJ level tended to be false positives, as BSJ-level
quantification cannot make a distinction among different
isoforms within a certain circRNA. Consequently, for
circRNAs with multiple isoforms, BSJ-level quantifica-
tion does not necessarily reflect the real expression
changes of certain circular isoforms between normal and
tumor samples. These findings not only provide more
accurate candidates for functional screening, but also
unveil the complexity of circRNA isoform expression.

Conclusion
This study, for the first time, presents a high-throughput
approach, CIRI-full, that employs a new feature for
full-length circRNA reconstruction and isoform-level
quantification. Extensive evaluations demonstrate that
CIRI-full exhibits excellent performance in circRNA
identification and whole-sequence assembly, as well as
isoform reconstruction and quantification. We applied
CIRI-full to investigate the evolutionary conservation of

Fig. 7 Time and memory usage of CIRI-full on human brain RNA-seq data sets. The CIRI-full pipeline consists two components, one is BSJ detection
using CIRI2/CIRI-AS, the other is RO detection, and both are executed simultaneously. Height of boxes represents the running time of each module in
this pipeline. Options “-t 5” was used for the last four datasets to activate the multithreading function of CIRI2 and BWA

Zheng et al. Genome Medicine            (2019) 11:2 Page 18 of 20



circRNAs in brain transcriptomes across six vertebrates.
In addition, we systematically compared the difference
between the BSJ-level and isoform-level differential ex-
pression analyses using human liver tumor and normal
tissues and found that a large majority of differentially
expressed circRNAs measured at the BSJ level tended to
be false positives. For circRNAs with multiple isoforms,
isoform-level quantification instead of BSJ-level quantifi-
cation can reflect the real expression changes of certain
circular isoforms between normal and tumor samples.
This study provides an indispensable approach for cir-
cRNA transcript reconstruction and quantification and
highlights the necessity of deepening circRNA studies to
the isoform-level resolution.

Availability and requirements
The availability and requirements are listed as follows:
Project name: CIRI-full.
Project home page: https://sourceforge.net/projects/ciri.
Operating system(s): Linux, Mac.
Programming language: Java, Perl.
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