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Abstract

While the cost of whole genome sequencing (WGS) is approaching the realm of routine medical tests, it
remains too tardy to help guide the management of many acute medical conditions. Rapid WGS is imperative
in light of growing evidence of its utility in acute care, such as in diagnosis of genetic diseases in very ill
infants, and genotype-guided choice of chemotherapy at cancer relapse. In such situations, delayed, empiric, or
phenotype-based clinical decisions may meet with substantial morbidity or mortality. We previously described
a rapid WGS method, STATseq, with a sensitivity of >96 % for nucleotide variants that allowed a provisional
diagnosis of a genetic disease in 50 h. Here improvements in sequencing run time, read alignment, and variant
calling are described that enable 26-h time to provisional molecular diagnosis with >99.5 % sensitivity and
specificity of genotypes. STATseq appears to be an appropriate strategy for acutely ill patients with potentially
actionable genetic diseases.

Background
Genomic medicine is a new discipline whereby an indi-
vidual’s genome information is used to guide personal
strategies for disease prevention, etiologic diagnosis, and
therapeutic selection [1, 2]. Despite its recent implemen-
tation into clinical care, genomic medicine is already
transforming the diagnosis, molecular staging, prognos-
tic determination, and management of patients with
symptoms suggestive of genetic diseases, particularly
Mendelian disorders (those caused by defects in single
genes) and recurrent cancers [3–11]. Genomic medicine
is transformative in these applications because it rapidly
and simultaneously tests nearly all genes potentially rele-
vant to that patient’s disease, largely irrespective of the
clinician’s differential diagnosis list or detailed know-
ledge of all of the conditions being tested [6, 11]. This is

particularly powerful for patients with very rare or newly
discovered diseases, atypical clinical presentations or re-
sponses to treatment, and actionable pharmacogenomic
findings. Timely molecular diagnosis, staging, and prog-
nosis along with pharmacogenomic-based guidance can
immediately engender a treatment shift from interim,
phenotype-driven, population-based management to
precision medicine with definitive, individualized ther-
apies, and management plans, as well as drug exposures
attuned to genotype and molecular prognosis [2]. In
particular, there is increasing evidence that rapid whole
genome sequencing (WGS) can be useful in the acute
care of infants with genetic diseases in neonatal and
pediatric intensive care units [6, 11–13].
While the cost of WGS has fallen dramatically, it re-

mains too slow to be suitable for guidance in the manage-
ment of many acute medical conditions. We previously
described diagnostic WGS for genetic diseases in 50 h
(WGS50), with 77–96 % sensitivity and approximately
99.5 % specificity for detection of nucleotide variants [12].
Fifty hours was the interval between receipt of a blood
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sample and identification of a provisional molecular diag-
nosis, provided that the diagnosis was readily apparent
upon variant filtering. WGS50 had two principal time
components: 2 × 100 cycles of sequencing-by-synthesis
(SBS) was approximately 25.5 h. The identification of
nucleotide variants by sequence alignment, variant calling,
and genotyping was approximately 17.5 h. Here we de-
scribe second generation STATseq, with improved timeli-
ness, sensitivity, and scalability.

Methods
Study design, setting, and participants
This study was approved by the Institutional Review
Board (IRB) at Children’s Mercy – Kansas City (CM-
KC). It conforms to the Declaration of Helsinki. Partici-
pants were principally parent–child trios enrolled in a
research biorepository who received WGS in addition to
standard diagnostic tests to diagnose monogenic disor-
ders of unknown etiology in affected infants [6, 11, 12].
Affected infants with suspected genetic disorders were
nominated by a treating physician, typically a neonatolo-
gist. A standard form requesting the primary signs and
symptoms, past diagnostic testing results, differential
diagnosis or candidate genes, pertinent family history,
availability of biologic parents for enrollment, and
whether rapid WGS would potentially affect treatment
was submitted for immediate evaluation by a team of
experts at the Center for Pediatric Genomic Medicine
(CPGM) at CM-KC. Infants received rapid WGS if the
likely diagnosis was of a type that was detectable by
next-generation sequencing and had any potential to
alter management or genetic counseling. Patients were
not required to undergo standardized clinical examina-
tions or diagnostic testing prior to referral; standard
etiologic testing was performed as clinically indicated.
Infants likely to have disorders associated with cytogen-
etic abnormalities were not accepted unless standard
testing for those disorders was negative. Informed writ-
ten consent was obtained from parents. Retrospective
samples, UDT103 and UDT173, were blinded validation
samples with known molecular diagnoses for a genetic
disease [12]. Reference sample NA12878 was obtained
from the Coriell Institute repository.

Ascertainment of clinical features
The clinical features of affected infants were ascer-
tained comprehensively by physician and family inter-
views and review of the medical record. Phenotypic
features were translated into Human Phenotype Ontol-
ogy (HPO) terms and mapped to 6,000 genetic diseases
with the clinicopathologic correlation tools Phenomi-
zer and/or SSAGA [6, 11, 14, 15]. Briefly, Phenomizer
uses term-similarity measures to calculate a similarity
score for query HPO terms entered by the user and

terms used to annotate diseases in HPO. It then assigns
a P value using statistical modeling to compare the
similarity score obtained for the specific set of phenotypic
terms entered into the distribution of similarity scores
obtained using randomly chosen HPO term combinations.
The P value was then used to rank diseases in the differen-
tial genetic diagnosis. The Phenomizer differential genetic
diagnosis is exported as a tab-separated value file. Diagno-
ses without known causative genes are removed. Where
the likely inheritance pattern is apparent, the Phenomizer
output is limited to the appropriate inheritance mode.
Where Phenomizer reports many equally scoring values,
the differential diagnosis is performed using several differ-
ent but overlapping term sets, for example with a key
feature being listed as mandatory rather than observed, or
with removal of clinical features that are felt to likely rep-
resent a second, unrelated disorder. Finally, the Phenomi-
zer list may be pruned to 100–250 entries, if necessary,
based on manual inspection of the fit of diseases to the
clinical features at various P value cutoffs.
Similarly, SSAGA is web-based software that facili-

tates entry of Human Phenotype Ontology (HPO)
terms related to the clinical features observed in an in-
dividual patient (Additional file 1: Figure S1). SSAGA
provides a differential diagnosis that is limited to all
Online Mendelian Inheritance in Man (OMIM), Orpha-
net, and DECIPHER (DatabasE of genomiC varIation and
Phenotype in Humans using Ensembl Resources) disease
entries that match at least one entered feature [16, 17].
Diseases in the differential genetic diagnosis can be ranked
by the number of matching terms entered.

Genome sequencing and quality control
DNA isolation from peripheral blood was automated util-
izing the MSMI Chemagen Instrument equipped with li-
quid dispensing manifolds (Perkin Elmer, Baesweiler,
Germany). Briefly, a 24-well head is used to isolate 1.8 mL
of blood per sample. The system is fully enclosed to com-
ply with biosafety standards, and isolation is completed in
approximately 2 h resulting in an average of approxi-
mately 40 μg of DNA/mL of blood.
For 18-h WGS performed in Essex, isolated genomic

DNA was prepared using a modification of the standard
Illumina TruSeq sample preparation. Briefly, DNA was
sheared using a Covaris S2 Biodisruptor, end-repaired,
A-tailed, and adaptor-ligated. PCR was omitted. Libraries
were purified using SPRI beads (Beckman Coulter). For
18-h WGS, the amount of DNA used was optimized,
based on experience of varying the input from represen-
tative DNA samples, and allowed a concentration to be
selected that produced a known cluster density after the
library was denatured using 0.1 M NaOH and presented
to the flowcell.
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At CM-KC, genomic DNA was prepared for WGS
using either TruSeq PCR Free (Illumina) or KAPA
HYPER (KAPA Biosystems) without PCR amplification
according to manufacturer’s protocols. HYPER library
preparation without PCR is completed in 90 min, with
an additional 90 min allotted for QC. Briefly, 2 μg of
DNA was sheared with a Covaris S2 Biodisruptor, end-
repaired, A-tailed, and adaptor-ligated. Quantitation of
libraries was carried out by real-time PCR.
Samples for rapid WGS were each loaded onto one or

two flowcells, followed by sequencing on Illumina
HiSeq2500 instruments using HiSeq Rapid SBS v1
chemistry that were set to rapid run mode (SBS26) or
with customized faster flowcell scanning times (SBS18).
Cluster generation, followed by 2 × 101 cycle sequen-
cing reads, separated by the paired-end turnaround,
were performed automatically on the instrument. Prior
to SBS18 optimization, tiles failing quality metrics were
manually excluded before further analysis. Genome se-
quencing was performed as research, largely in a man-
ner that complies with routine diagnostic tests, as
defined by the Clinical Laboratory Improvements Act
(CLIA) guidelines [18–21]. However, genome sequen-
cing was not performed herein as a CLIA laboratory
developed test.

Next generation sequencing analysis
Sequence data were generated with Illumina RTA
1.12.4.2 & CASAVA-1.8.2, aligned to the human refer-
ence GRCh37.p5 using GSNAP [22], and nucleotide
(nt) variants were detected and genotyped with the
Genome Analysis Tool Kit [23] (GATK, versions 1.6.
and 3.2). Sequence analysis used FASTQ, bam, and
VCF files. The largest deletion variant detected was
263 nt, and the largest insertion was 469 nt.
Variants were annotated with the Rapid Understand-

ing of Nucleotide variant Effect Software (RUNES,
v3.3.5) [6, 11, 12]. RUNES incorporates data from
ENSEMBL’s Variant Effect Predictor (VEP) software
[24], produces comparisons to NCBI dbSNP, known
disease variants from the Human Gene Mutation Data-
base [25], and performs additional in silico prediction
of variant consequences using RefSeq and ENSEMBL
gene annotations [26]. RUNES categorized each variant
according to ACMG recommendations for reporting
sequence variation [18–21] and with an allele frequency
(MAF) derived from CPGM’s Variant Warehouse data-
base of approximately 90 million variants and 3,900 indi-
viduals [6, 11, 12]. Category 1 variants had previously
been reported to be disease-causing. Category 2 variants
had not previously been reported to be disease-causing,
but were of types that were expected to be pathogenic
(loss of initiation, premature stop codon, disruption of
stop codon, whole gene deletion, frameshifting indel,

disruption of splicing). Category 3 were variants of un-
known significance that were potentially disease-causing
(non-synonymous substitution, in-frame indel, disruption
of polypyrimidine tract, overlap with 5’ exonic, 5’ flank or
3’ exonic splice contexts). Category 4 were variants that
were probably not causative of disease (synonymous vari-
ants that were unlikely to produce a cryptic splice site,
intronic variants >20 nt from the intron/exon boundary,
and variants commonly observed in unaffected individ-
uals). Category 5 variants were known to be benign. All
variants, together with their RUNES annotations, are
stored in a queriable warehouse database (Additional file
2: Figure S2). Inputs to the RUNES pipeline were a gen-
omic variant file (.vcf or .gvcf); the pipeline produces a
JSON document that is used as input to the VIKING in-
terpretation tool.

DRAGEN
The DRAGEN pipeline operates on a single-server hy-
brid hardware/software platform, with a dual Intel Xeon
central processing units (CPUs), and a custom Periph-
eral Component Interconnect Express (PCIe) board with
a field-programmable gate array (FPGA) and 32 GB of
Dynamic random-access memory (DRAM) attached dir-
ectly via four double data rate type three synchronous
dynamic random-access memory DDR3 SDRAM chan-
nels. Critical compute-intensive functions of the pipeline
are performed by custom massively parallel FPGA logic
for maximum speed, while other functions run in opti-
mized multi-threaded software on the Xeon cores, for
maximum flexibility. A parallel (redundant array of inde-
pendent disks, RAID 0) Solid State Drive (SSD) file sys-
tem provides the I/O bandwidth necessary to feed the
processing pipeline, and FPGA compress/decompress
engines maintain throughput to and from compressed
file formats.

DRAGEN read mapping/alignment
DRAGEN uses a hash table index of a reference genome
to map many overlapping seeds from each read to exact
matches in the reference. The hash table is constructed
from any chosen reference with a multi-threaded tool, in
as little as 6 min for a whole human genome, and loaded
into the FPGA-board DRAM prior to mapping opera-
tions. The entire read mapping process is performed by
custom FPGA logic, with software layers streaming un-
aligned reads from FASTQ (or Illumina BCL) files to the
PCIe board via DMA, and simultaneously streaming
aligned read records back into host memory, for BAM
output and/or variant calling.
DRAGEN’s hash-based mapping uses a novel dy-

namic seed extension method: when a primary seed
(default 21 nt) matches more than a maximum number
of reference locations (default 16), longer seeds from all
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these reference positions are populated into the hash
table, such that specific extended seed sequences will
match fewer reference locations. Seeds are extended
symmetrically, up to 64 nt in each direction, with a
maximum of 149 nt from a 21 nt primary seed. Long
seed extensions were done in multiple short incre-
ments, averaging 3–4 nt in each direction, with differ-
ent extended seed patterns terminating at different
extension lengths, as needed to match no more than
the maximum number of reference positions.
When a hash table query is made for a common pri-

mary seed, a single EXTEND record (merging the con-
tents of two or more objects together into the first
object) is retrieved, indicating the number of additional
read bases to join onto the seed in each direction. The
additional bases were hashed (along with a unique
identifier for the pre-extended seed), and another hash
table query was made, which may return yet another
EXTEND record, iteratively. When an adequate ex-
tended seed length was achieved, the next hash table
query retrieved a list of up to the maximum number of
matching reference positions and orientations. This it-
erative seed extension method yields similar results to
incremental suffix-tree or Burrows-Wheeler mapping
but with dramatically fewer index memory accesses,
which is critical to DRAGEN’s mapping speed.
In FPGA logic, read pairs are load-balanced over sev-

eral DRAGEN map/align engines. An engine extracts
many overlapping seeds from each read, by default
starting at every even offset (50 % density). These are
mapped by DRAM hash table queries, each to zero or
more reference positions, with forward or reverse-
complemented orientation determined for each match.
The several engines nearly saturate the four local DDR3
interfaces with hash bucket read bursts and reference
sequence fetches for alignment. Matches along similar
alignment diagonals are grouped into seed chains,
which are conservatively filtered; by default, a short
seed chain can be filtered out if another seed chain at
least four times longer mostly overlaps it in the read.
Lists of seed chains from paired end reads are exam-

ined to detect pairs with appropriate insert sizes and
orientations. For each unpaired seed chain, a rescue
scan may be executed to search for the mate within the
expected insert window; mate K-mer matches within a
configurable Hamming distance (the number of posi-
tions at which the corresponding nucleotides are differ-
ent) result in new candidate positions being added to
the list of seed chains. Each seed chain or rescue match
is then extended by gapless local alignment, permitting
single nucleotide variants (SNVs) and clipping but not
nucleotide insertions and deletions (indels). The collec-
tion of gapless alignment results for each read is analyzed
by heuristics, to judge for which ones Smith-Waterman

gapped alignment would have a non-trivial likelihood of
improving the overall read pair results.
Each Smith-Waterman aligner uses an array of 56 paral-

lel scoring cells, virtually arranged into an anti-diagonal
wavefront, which steps one position horizontally or verti-
cally each clock cycle. The wavefront scores a generally
diagonal swath of cells through the alignment rectangle
but steers automatically to re-center the best alignment
path after indel events. Back-trace from the maximum
scoring cell runs simultaneous with the following align-
ment operation, yielding a CIGAR string, which indicates
soft clipping and indel positions.
All gapped and gapless alignment results are compared

to obtain best and second-best scores. For paired ends,
pair scores are computed, each as the sum of the two
alignment scores minus a pairing penalty, based on the
deviation from the empirical mean insert; and the best
scoring pair is reported. The quality of read mapping
(MAPQ) is estimated primarily in proportion to the
difference between best and second best scores, the pro-
portionality coefficient varying by read length; second-
order factors such as the number of scores very close to
the second-best are also considered. When the best align-
ment does not cover a read, up to three supplementary
(chimeric) alignments are optionally reported for other
segments of the read.

DRAGEN sorting and duplicate marking
After mapping, reads are sorted by reference position;
PCR or optical duplicates are optionally flagged. An ini-
tial sorting phase operates on aligned reads returning
from the FPGA. Final sorting and duplicate marking
commences when mapping completes; these operations
overlap variant calling when the latter is requested, and
add almost zero time to the FASTQ-to-VCF pipeline.

DRAGEN variant calling
The DRAGEN variant caller runs mostly in highly opti-
mized software, for maximum flexibility of the algo-
rithms. Only stable, compute-intensive operations are
accelerated by FPGA engines. DRAGEN implements
multi-threaded parallelism in a single pass over the
whole reference genome, without launching multiple
caller processes on various subsets of the reference. A
single call to the DRAGEN executable runs the entire
pipeline from FASTQ to VCF, for the whole genome.
Mapping/alignment is done in one pass over the reads,
and all steps of variant calling (in addition to read sort-
ing and duplicate marking) run simultaneously in a
software/hardware pipeline emitting VCF results.
First, callable reference regions are identified, with

sufficiently aligned coverage. Within these, a fast scan
of the sorted reads identifies active regions, centered
around pileup columns with non-trivial evidence of a
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variant, and padded with enough context to cover signifi-
cant non-reference content nearby, extra wide where there
is evidence of indels.
Aligned reads are clipped within each active region

and assembled into a De Bruijn graph, edges weighted
by observation counts using the reference sequence as a
backbone. If the graph is degenerate, it is reconstructed
using longer K-mers. After some graph cleanup and sim-
plification, all source-to-sink paths are extracted as can-
didate haplotypes, up to a limit (default 128). If this cap
must be enforced, higher-weight paths are preferred.
Each haplotype is Smith-Waterman aligned back to the
reference genome to identify the variants it represents,
and re-synchronized with read alignments.
Then for each read-haplotype pair, the probability

P(r|H) of observing the read, assuming the haplotype
was the true starting sample, is estimated using a pair
hidden Markov model (HMM). Since the haplotype is
assumed true, only errors in sample preparation and se-
quencing are considered. Essentially, the probabilities
of all possible alignments (edit combinations) of the
read to the haplotype are calculated and summed, using
a dynamic programming matrix very similar to affine-
gap Smith-Waterman, except summing rather than
maximizing path probabilities. At each row (read pos-
ition) in the matrix, mismatch probabilities are taken
from base quality scores and MAPQ, and gap probabil-
ities are derived from a PCR error model sensitive to
repetitive sequence content.
This pair-HMM calculation is the most expensive

step, and, therefore, is accelerated in custom FPGA
logic. Reads and haplotypes to be compared are queued
up for HMM processing by software threads complet-
ing previous steps and sent to the FPGA by direct
memory access (DMA). A load balancer distributes
work over more than 100 small HMM engines, each of
which is pipelined to calculate all three probabilities
(for match, insert, and delete states) for one matrix cell
per clock cycle. Calculated P(r|H) values DMA back to
host memory, where they are picked up by downstream
software threads.
Scanning by reference position over the active region,

candidate genotypes are formed from diploid combina-
tions of variant events (SNVs or indels) observed in the
earlier Smith-Waterman alignments of the haplotypes
to the reference. For each event (including reference),
the conditional probability P(r|e) of observing each
overlapping read is estimated as the maximum P(r|H)
for haplotypes supporting the event. These are multi-
plied to yield the conditional probability P(R|e) of
observing the whole read pileup, and using Bayes’ for-
mula, the posterior probability P(e1e2|R) of each dip-
loid genotype (diplotype) is calculated, and the winner
is called.

VIKING
Causative variants were identified primarily with Variant
Integration and Knowledge INterpretation in Genomes
(VIKING) software (Additional file 2: Figure S2 and
Additional file 3: Figure S3) [6, 11]. Inputs for VIKING
were the annotated genomic variant file produced by the
RUNES pipeline and a SSAGA (Symptom and Sign
Associated Genome Analysis) or Phenomizer record,
comprising the clinical features of the affected patient,
corresponding diseases in the differential diagnosis, and
the respective disease genes (Additional file 1: Figure S1)
[6, 11, 14, 15]. The SSAGA or Phenomizer record was
created during the laboratory steps in WGS26. Alterna-
tively, a menu of pre-determined candidate gene lists
can be utilized to filter variants in VIKING, such as
genes with OMIM records, or genes previously associ-
ated with mitochondrial disorders. VIKING integrated
the superset of relevant disease mappings and anno-
tated variant genotypes. By allowing dynamic filtering
of variants based on variables such as individual clinical
features, diseases, genes, assigned ACMG-type patho-
genicity category, allele frequency, genotype, and inher-
itance pattern, VIKING assists in identification of a
differential diagnosis. VIKING settings can be saved,
which allows configuration in a manner that can enable
a provisional molecular diagnosis to be determined in
as little as seconds. VIKING also allowed data mark-up,
sessions to be saved, and export of fields in formats
suitable for inclusion in diagnostic reports.
In a typical interpretation session, variants were filtered

by limitation to ACMG Categories 1–3 and MAF <1 %,
<0.5 %, <0.1 %, or to those that are unique to the proband
or to the family, dependent on the clinical impression
(Additional file 3: Figure S3). All potential monogenetic
inheritance patterns were examined, including de novo, re-
cessive, dominant, X-linked, mitochondrial, and, where
possible, somatic variation. Where a single likely causative
heterozygous variant for a recessive disorder was identi-
fied, the entire coding domain was manually inspected
using the Integrated Genome Viewer (IGV) for coverage,
additional variants, as were variants for that locus
called in the appropriate parent that may have had low
coverage in the proband [27]. VIKING featured link-
outs to IGV that are refreshed in a trio on a variant-by-
variant basis allowing rapid examination of pattern of
inheritance, quality of alignment, and local sequence
features (such as simple sequence repeats). Expert in-
terpretation and literature curation were performed for
all likely causative variants with regard to evidence for
pathogenicity. VIKING featured link-outs to a warehouse
of approximately 90 million variants in approximately
3,900 individuals, OMIM, HGNC, HGMD, Entrez Gene,
ENSEMBL and pathways information, facilitating rapid lit-
erature curation (Additional file 2: Figure S2). Analysis
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was performed sequentially by two experts. Sanger se-
quencing was used for clinical confirmation of all diagnos-
tic genotypes. Reporting was performed by an ACMG
fellow laboratory director who was an expert in WGS ana-
lysis in single gene diseases. Additional expert consult-
ation and functional confirmation were performed when
the subject’s phenotype differed from previous mutation
reports for that disease gene.

Results
26-h whole genome sequencing
WGS with a 26-h time from blood sample to provisional
diagnosis (WGS26), was achieved by the acceleration of
several components. First, 2 × 100 cycles of SBS, includ-
ing on-board cluster generation, was reduced from
25.5 h to 18–21 h (SBS18). A total of 25.5 h was accom-
plished with the rapid run mode on the Illumina HiSeq
2500 sequencing instrument and 18–21 h was achieved
by the development of an ultra-rapid run mode on the
same instrument. In addition to recipe changes (faster cy-
cles of sequencing by synthesis, SBS), this necessitated
fine-tuning of ramping of heating and cooling during SBS,
optimization of temperature uniformity across the flow
cell, and adjustments to microfluidics. After optimization,
the quality, quantity, and precision of sequences obtained
with an 18–21-h run time was indistinguishable from that
with 25.5-h runs (Table 1, Fig. 1). Cluster density on flow
cells, not run time, was the major covariate for sequence
yield, sequence quality, and error rate with an 18–21 h
run time (Additional file 4: Table S1).
Second, the time taken for sequence alignment, vari-

ant detection, and genotyping was reduced from ap-
proximately 15 h in WGS50, gapped alignment, and
variant calling with CASAVA v1.8.2 (Illumina), to ap-
proximately 40 min for WGS26 with the novel DRA-
GEN aligner and variant caller (Table 1). DRAGEN
accelerated these steps by highly parallel alignments to a
sorted reference genome and customized high-memory
computer hardware with high IO throughput.
Third, in WGS50 variants were annotated for likely

functional consequence with Rapid Understanding of
Nucleotide variant Effect Software (RUNES) software in
2.5 h. In WGS26, RUNES was accelerated to 30 min by
software refactoring. Fourth, WGS50 utilized manual
manipulation of spreadsheets for analysis and interpret-
ation of variants. In WGS26, these steps were performed
with the interpretation software VIKING (Variant Inte-
gration and Knowledge INterpretation In Genomes).
VIKING facilitated genome analysis and interpretation
by allowing dynamic filtering of variants based on
variables such as individual clinical features, diseases,
genes, assigned ACMG-type pathogenicity category, al-
lele frequency, genotype, and inheritance pattern (Add-
itional file 2: Figure S2). For example, VIKING filtering to

display variants with: (1) an ACMG-type pathogenicity
category of 1–3; (2) an allele frequency of less than 0.1 %;
(3) that fit a recessive inheritance pattern (homozygous,
compound heterozygous, or hemizygous); and (4) that are
in OMIM monogenic disease-associated genes, yielded 16
variants in eight genes in WGS18 of sample UDT_103
(Additional file 2: Figure S2). Of these, only two variants
in one gene fit the clinical features of the patient and a
bona fide inheritance pattern. They were UNC13D
NM_199242.2 c.2955-2A > G in 16 of 31 reads with
quality score 99, which was inherited maternally, and
c.859-3C > A in 18 of 35 reads with quality score 99,
which was inherited paternally. These variants gave an
actionable, provisional diagnosis of Hemophagocytic lym-
phohistiocytosis type 3. In complex cases, where no
causative diplotype is identified by such semi-automated
analysis, a thorough manual analysis ensues that can take
many hours.

Analytic performance of 26-h WGS
The analytic performance of WGS26 was examined at
two sites (Illumina in Essex, Children’s Mercy Hospital,
Kansas City, MO, USA), with three SBS18 sequencing in-
struments over a period of 2 years (Table 2). There was
an evolution of sequencing instruments, software, com-
puter hardware, and reference standards during this
period. The alignment and variant calling algorithm of
the original WGS50, CASAVA, had excellent specificity
for detection of nucleotide variants (99.5 %), moderate
sensitivity (77–86 %), and had a computation time of
14.5 h [12]. The alternate method described at that time
was read alignment with GSNAP and variant detection
with GATK and best practices, providing a sensitivity of
96–97 %, but it incurred at least 8 additional hours of
computation (total time 58 h) [12]. Furthermore, the ori-
ginal WGS50 methods featured genotyping of variants,
rather than genotyping all genomic nucleotides. In par-
ticular, WGS50, did not distinguish reference genotypes
from missing (uncalled) nucleotides.
The analytic sensitivity of rapid WGS increased to ap-

proximately 99.5 %, together with genotyping of all nu-
cleotide positions, upon read alignment with GSNAP,
and variant detection with GATK 1.6 or 3.2, with omis-
sion of variant quality score recalibration (VQSR)
(Table 2, Fig. 2). The VQSR component of GATK reduced
type 2 errors (β, false positives) in batched analyses of
sequences in population research [28]. However, in single-
ton or trio diagnostic WGS, VQSR over-filtered novel, rare
variants (allele frequency <1 %) that commonly cause
monogenetic diseases (Fig. 2, Additional file 5: Figure S4).
Another rapid WGS variable we sought to optimize

was the depth of coverage. It is a determinant of ana-
lytic sensitivity, analytic specificity, cost, and choice of
sequencing instrument. The analytic sensitivity and
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Table 1 Breakdown of times of principal steps for rapid diagnostic whole genome sequencing

Method Sample Site DNA isolation, QC and
shearing

PCR-free library
prep

WGS library
QC

SBS Yield
(GB)

% >
Q30

Alignment Variant
calling

RUNES variant
annotation

Provisional
diagnosis

Total
time

Published WGS50 Multiplea Both 2:30 3:15 1:30 25:30 139 90 14:40 2:30 0:05 50:00

SBS18, GSNAP/GATK/
noVQSR

5006-01 CMH 2:30 3:15 1:30 19:45 128 91 22:30 0:29 n.a. 49:59

WGS26, SBS18, and
Dragen v1.2

UDT_173 Essex 2:30 3:02 1:30 17:58 106 92 0:15 0:15 0:34 0:04 26:08

WGS26, SBS18, and
Dragen v1.2

UDT_103 Essex 2:30 3:05 1:30 18:25 130 90 0:19 0:22 0:31 0:05 26:47

WGS26, SBS18, and
Dragen v1.2

NA12878 Essex 2:30 3:15 1:30 18:00 143 85b 0:19 0:22 0:33 n.a. 26:28

WGS26, SBS18, and
Dragen v1.2

NA12878 CMH 2:30 3:15 1:30 18:36 65c 85b 0:10 0:11 0:35 n.a. 26:47

GB, gigabases; Q, Phred-like quality score QC, quality control; SBS, 2 × 101 cycle sequencing-by-synthesis
aReference 12
bPrior to SBS18, after failing tiles were removed
cSingle flowcell
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Fig. 1 (See legend on next page.)
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specificity of the GSNAP/GATK-VQSR pipeline was
calculated with 10-fold (32GB) to 100-fold (316 GB)
coverage of sample NA12878 and compared with NIST
reference genotypes (Fig. 3). Analytic sensitivity and
specificity plateaued at approximately 40-fold (sensitiv-
ity 99.84 % and 99.85 %, and specificity 99.74 % and
99.85 %, for genotypes and variant calls, respectively).
Further increases in depth of coverage were of no bene-
fit for homozygous or heterozygous nucleotide variant
calls.

Optimizing the sensitivity and specificity of 26-h WGS
GSNAP/GATK-VQSR, while providing excellent sensi-
tivity and specificity, was both costly and insufficiently
rapid to be ideal for diagnosis in acutely ill neonates.
Compute time on a 608 Intel Xeon core Linux cluster
with 6 TB of DDR3 RAM and 20 TB SATA hard drives
was 22.5 h. A number of alternative alignment and vari-
ant detection algorithms and hardware were evaluated.
The most rapid and sensitive of these was DRAGEN
v1.2 (Edico Genomics, La Jolla, CA, USA). Compute time
on two 12-core Intel Xeon processors with hyper-threading
technology (with 128 GB of RAM and 8 × 400 GB RAID-0
SSD on the staging disk) was 41 min for 40X WGS
(Table 1). The analytic performance of DRAGEN and
GSNAP/GATK-VQSR were compared in three SBS18 runs
at two sites with varying sequence yield (Table 2). DRA-
GEN identified a similar number of genomic nucleotide
variants to GSNAP/GATK-VQSR (averages of 4,719,492
and 4,736,550, respectively, in the three Caucasian ge-
nomes), and similar number of rare, potentially patho-
genic variants (averages of 684 and 629 variants of
ACMG categories 1–3 with allele frequencies <1 %, re-
spectively, Table 2). However, DRAGEN provided both
very rapid alignment and variant calling and slightly
higher sensitivity and specificity than GSNAP/GATK
1.6 or 3.2 without VQSR (as high as 99.9 % for both;
Tables 1 and 2).
Recently, it has been recognized that various align-

ment and variant calling pipelines identify overlapping
but distinct sets of true-positive nucleotide positives [12,
29]. Therefore, the overlap of variants identified by
GSNAP/GATK-VQSR and DRAGEN was examined in
the three genome sequences (Fig. 4). GSNAP/GATK-

VQSR identified 89.3 % of the combined total 15,908,180
variants detected by the two pipelines, whereas DRAGEN
identified 89.0 %. Among the 10.7 % variants uniquely
identified by GSNAP/GATK-VQSR, 40.9 % of variants
that could be assessed through comparison to a truth set
were true positives, whereas 98.6 % of the 10.7 % uniquely
identified by DRAGEN were true positives. These findings
were reproduced both in the smaller CDC/GeT-RM clin-
ical validation dataset from reference sample NA12878
and in the full GIAB dataset (Table 2, Fig. 4). GATK ver-
sion 3.2 outperformed version 1.6 in this comparison
(97.3 % true positives with version 3.2, versus an average
of 27.3 % with version 1.6, Fig. 4). Thus, maximum ana-
lytic sensitivity was accomplished by combining variant
calls of the DRAGEN and GSNAP/GATK 3.2-VQSR pipe-
lines. However, where variant genotypes differed between
the two pipelines, the resolution would likely require
visual inspection of read alignments in diagnostic candi-
date genes.
These data support the use of multiple alignment and

calling algorithms for maximal sensitivity, and highlight
deficiencies in the NA12878 reference datasets.

Discussion
Here we have described methods for rapid, medical
WGS (version 2 STATseq), with greater analytic sensi-
tivity (99.5 % in a 40X genome), faster time to result,
and improved scalability. Twenty-six hours was the
shortest elapsed time from receipt of a blood sample to
diagnosis of a genetic disease. Twenty-six hours was
possible when readily apparent upon application of a
standardized set of variant filters using VIKING software
and integration of an automated differential diagnosis
based on SSAGA or Phenomizer software. It assumed no
time interval between steps in the protocol. Maximum
analytic sensitivity was achieved by combining variant
calls of the DRAGEN and GSNAP/GATK 3.2-VQSR
pipelines. The most significant innovations were as fol-
lows: First, approximately 18–21 h to generate 30–47-fold,
2 × 100 nt SBS with a modified Illumina HiSeq 2500. Sec-
ond, approximately 1 h for read alignment, variant calling,
annotation, and interpretation. Importantly, the methods
were replicated both in a research laboratory (Illumina,

(See figure on previous page.)
Fig. 1 Comparison of quality metrics of 18-h and 26-h 2 × 100 nt runs. The runs were WGS of sample UDT_173 [12]. a–d. Base composition
was not materially different in the 18-h and 26-h runs. However, the % non-AGTC reads was lower in the 18-h run. This may either reflect better
sequence quality or lower cluster density. e–h. Frequency distribution of GC content of 18-h and 26-h runs. While the number of reads (y-axis)
differed between runs, 18-h and 26-h runs had identical GC content distributions, with sequence representation between GC content of 15 %
and 75 %. GC content varies widely across the human genome ― the isochore structure of the human genome [24, 35]. The median genome
GC content estimated by 18-h and 26-h WGS (35–40 %) agreed with the estimated median from the 1,000 genomes project [36] (38.6 %), and is
slightly lower than estimates by cesium density gradient centrifugation [42, 43] (39.6–40.3 %). i–l. Quality scores of nucleotide calls as a function
of cycle were indistinguishable in 18-h and 26-h runs
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Table 2 Comparison of the analytic performance of a conventional alignment and variant calling pipeline (GSNAP with GATK minus VQSR), with a novel, extremely rapid
method (DRAGEN)

Sample SBS18
yield
(GB)

Site Pipeline Reads
aligned

Alignments
with mapping
quality >20

Variants
called

Mismatch
rate

Indel
rate

%
Paired
Reads

Strand
balance

%
Chimeric
Reads

Rare,
potentially
pathogenic
variants

Analytic
sensitivity
(GeT-RM or
SNP array)

Analytic
specificity
(GeT-RM or
SNP array)

Analytic
sensitivity
(full GIAB)

Analytic
specificity
(full GIAB)

NA12878 133 Essex DRAGEN 99.4 % 95.48 % 4,782,970 0.0029 0.00017 99.55 % 0.500 0.69 % 658 99.93 % 99.87 % 99.69 % 99.99 %

GSNAP/
GATK-
1.6/
noVQSR

98.5 % 96.33 % 5,343,988 0.0056 0.00017 98.55 % 0.496 0.82 % 783 99.54 % 98.57 % 98.21 % 99.99 %

NA12878 65a CMH DRAGEN 97.7 % 91.31 % 4,633,357 0.0060 0.00023 99.18 % 0.501 1.89 % 775 99.42 % 99.46 % 98.63 % 99.99 %

GSNAP/
GATK-
3.2/
noVQSR

96.2 % 92.86 % 4,571,157 0.0079 0.00021 97.55 % 0.499 1.75 % 593 97.29 % 95.35 % 95.74 % 99.99 %

UDT_173 106 Essex DRAGEN 99.5 % 94.92 % 4,742,150 0.0034 0.00020 99.80 % 0.500 1.12 % 620 96.13 % 97.74 % n.a. n.a.

GSNAP/
GATK-
1.6/
noVQSR

99.3 % 96.88 % 4,294,504 0.0034 0.00019 99.34 % 0.500 0.90 % 512 88.54 % 98.06 % n.a. n.a.

All runs were 18-h WGS. The NA12878 reference genotypes were NIST High Confidence calls from GeT-RM/NA12878.NIST-GIAB_v.2.18 (labeled ‘GeT-RM’) or the full GIAB dataset (labeled ‘full GIAB’). UDT_173 were
results of hybridization to the Omni4 SNP array. GSNAP was version 2012.07.12, with default parameters, and GATK was version 1.6.13 or 3.2, without VQSR. DRAGEN was version 1.2. % paired, percentage of reads
whose mate was also aligned; Strand balance, reads aligned to the forward strand divided by total reads aligned; % chimeric, percentage of chimeric alignments (mates >100 kb apart or on different
chromosomes). aSingle flowcell
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Fig. 3 Variation in the sensitivity and specificity of nucleotide variant calls and genotypes as a product of the depth of the sequence. Several
2 × 100 nt runs of WGS of sample NA12878 were generated and the sensitivity (red diamonds) and specificity (blue squares) of variant calls
(a) or genotypes (b) by GSNAP/GATK-VQSR were examined by comparison with a reference set (GeT-RM/NA12878.NIST-GIAB_v.2.18) at
depth of coverage of 10X to 100X

Fig. 2 Improving the sensitivity of nucleotide variant identification for diagnosis of rare genetic diseases in approximately 35X human WGS.
a. Venn diagram comparing nucleotide variants identified in WGS of sample UDT_173 (HiSeq 2500, 2 × 100 nt, 18-h run time) with previously
disclosed methods for 50-h diagnostic WGS (Published WGS50 pipeline) [12], or with parameters described herein to improve sensitivity
(GSNAP/GATK-VQSR). b. Pie charts showing the distribution of allele frequencies and pathogenicity of nucleotide variants reported by the
three pipelines (Published WGS50, GSNAP/GATK-VQSR, and DRAGEN) in WGS of the same sample. Rare variants had allele frequencies <0.01,
based on genomic sequences of approximately 3,000 internal samples. Previously reported disease causing variants are ACMG Category 1
mutations. Likely pathogenic variants are ACMG Category 2 variants (loss of initiation, premature stop codon, disruption of stop codon, whole gene
deletion, frameshifting indel, disruption of splicing). Possibly pathogenic variants are ACMG Category 3 (non-synonymous substitution, in-frame indel,
disruption of polypyrimidine tract, overlap with 5’ exonic, 5’ flank or 3’ exonic splice contexts, and intragenic mitochondrial variants). c Graphs of variant
density versus variant allele frequency. Values for the two pipelines are plotted. Results represent the sum of approximately 40X WGS in three samples.
Upper panel shows results for all variants. Lower panel shows results for ACMG Category 1–3 variants
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Essex) and in a genome center in a children’s hospital
(CM-KC).
In addition to speed, the methods described herein en-

able scaling of medical WGS to approximately 350 sam-
ples per year per sequencing instrument. The DRAGEN
alignment and variant calling hardware and software has
specifications which are likely to make genome sequen-
cing practicable in many hospital laboratories, such as
reducing the need for cloud computing or a large local
cluster. The VIKING software greatly alleviates the bur-
den of genome analysis and interpretation and allows
common inheritance modes to be rapidly examined.
When a diplotype of likely pathogenic variants is ob-
served in a gene that ranks high on the differential diag-
nosis, interpretation can be performed in minutes.
Ruling out a genetic diagnosis or making a diagnosis in
situations of novel phenotype expansion, however, is an

arduous process, involving hours of effort by a highly
experienced, laboratory geneticist, even when assisted by
software.

Optimizing sensitivity
Diagnostic sensitivity is the single most important attri-
bute for medical WGS. Here we examined a surrogate,
namely analytic sensitivity for nucleotide variants; 99.9 %
analytic sensitivity and specificity of genome-wide geno-
types was obtained with high quality, 47X genome se-
quence and the DRAGEN pipeline in a 26-h format.
Notably, this figure reflects both substitutions and indels
(of size up to 469 nt). Possibly more remarkable was
99.4 % analytic sensitivity and specificity with 20X genome
sequence and the same methods. Furthermore, analytic
sensitivity was further increased when two alignment algo-
rithms and variant callers are used, as has been suggested

Fig. 4 Comparison of the number and rate of true positive variant calls with GSNAP/GATK-VQSR and DRAGEN. The three samples and reference
datasets are as in Tables 1 and 2. Numbers are variant calls. TP: Variants in the NA12878 CDC/GeT-RM clinical validation set in which true positive
variant calls were made. %TP variants in the larger NIST/GIAB reference set were similar to those in the GeT-RM set (NA12878-essex, DRAGEN only
92.3 % of 143,385 TP, GATK only 19.8 % of 96,003 TP; NA12878-Gill, DRAGEN only 98.0 % of 1,335,504 TP, GATK only 91.8 % of 58,571 TP)
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[12, 29]. Herein, we achieved maximum analytic sensitivity
by combining variant calls of the DRAGEN and GSNAP/
GATK 3.2-VQSR pipelines. In a diagnostic use-case, the
issue of which two conflicting genotypes to retain at sites
where variant genotypes differ between the two pipelines
may be solved simply by retention of the more pathogenic
genotype. Greater sensitivity resulted in a remarkable in-
crease in rare variants, which were being over-filtered by
conventional pipelines. Thus, the approximately 2.8 billion
nucleotides of genomes that can be genotyped with paired,
short reads contain approximately 5 million nucleotide
variants in individuals of northern European ancestry, and
approximately 6 million in those of African ancestry. The
ultra-sensitive GSNAP/GATK-VQSR pipeline has been in
routine use in a clinical laboratory with Sanger confirm-
ation of hundreds of diagnostic genotypes [6, 11] (Saun-
ders et al., unpublished). This experience has confirmed
the results reported herein – namely that analytic specifi-
city remains adequate for clinical use despite such sensi-
tivity. In short, we believe that we, as a community, been
missing many variants due to the limitations of our soft-
ware algorithms. However, in contrast to analytic sensitiv-
ity, further work is needed to determine whether a two-
pipeline method improves diagnostic yield sufficiently to
be cost effective in light of decreased specificity.
For greatest usefulness as a clinical diagnostic tool,

WGS must genotype all genomic sites, whether refer-
ence or variant calls. In this manner, WGS can be used
both for diagnosis and to rule out treatable genetic diag-
noses. From a clinician perspective, ruling out treatable
genetic disease diagnoses or diseases with benign progno-
sis is paramount for clinical decision-making. In particu-
lar, in acutely ill infants in a NICU setting, end-of-life
decisions are common, with most deaths resulting from
withholding or withdrawing care after careful weighting
of the prognosis by the care team and family [11, 30].
Notably, the methods described here assign values to
approximately 2.8 billion nucleotides, whether variant
genotypes, reference genotypes, or no call. With further
software development, it should be possible to generate
an automatic report of the completeness of genotyping
of all protein coding nucleotides and intron-exon
boundaries of relevant disease genes with defined
coverage and quality scores, and, thereby, in the future,
to ‘rule out’ specific diagnoses.

Limitations of rapid WGS
While medical WGS is becoming increasingly robust, es-
pecially relative to exome sequencing, it is appropriate
to highlight its current analytic limitations for genetic
disease diagnosis. The analytic sensitivity for variants
other than nucleotide variants is too low for use as a
stand-alone clinical test. Notable deficiencies of paired,
short-read WGS are analytic sensitivity and specificity

for pathogenic structural variations and triplet repeat
expansions. Phenotype-associated genes with highly
homologous pseudogenes require custom software so-
lutions to disambiguate variants mapping to the gene
or pseudogene. The biggest limitation for medical WGS
and exome sequencing, however, is the interpretation
of variants of uncertain significance (VUS). For these
reasons, genetic disease diagnosis will continue to re-
quire multiple types of testing, including functional and
confirmatory testing, for the foreseeable future.
Another current limitation of WGS26 is that it is a

research method, and confirmatory testing of causative
genotypes, which is typically required for diagnostic
reporting, takes at least two days. Upon protocol valid-
ation to meet CLIA and CAP guidelines for laboratory
developed tests (LDTs), however, the requirement for
confirmatory testing will be decided on a case-by-case
basis by an accredited laboratory director. Over the
next several years, however, some type of FDA approval
will also be required for high complexity LDTs, such as
medical WGS. A pre-investigational device exemption
inquiry was made for clinical research use of WGS50
for diagnosis of genetic diseases in acutely ill infants in
our level IV (regional) NICU. Encouragingly, the FDA
conferred non-significant risk status for these methods
for research use in this setting.
A third limitation of current WGS is lack of compre-

hensive negative predictive value. On a gene-by-gene
basis, current WGS allows visual inspection for gaps in
exonic or intronic coverage. Thus, where a single diag-
nosis – such as MSUD – must be ruled out, this can
readily be accomplished. A significant advantage of
WGS over exome sequencing is more complete cover-
age. In particular, exome sequencing tends to suffer loss
of coverage for first exons. In addition to imperfect
analytic sensitivity, however, diagnostic sensitivity is
limited by lack of knowledge of all pathogenic variants.
In particular, pathogenic intronic and regulatory vari-
ants are under-represented in clinical databases, and, in
contrast to exonic variants of uncertain significance,
cannot not yet robustly assayed by in silico pathogen-
icity prediction tools.
It is interesting to speculate what the fastest time to

diagnostic result might be with current WGS technology.
Technically, a substantial reduction in sample preparation
time from 7.5 h should be possible. With customized
robotics, these pre-analytic steps should be feasible in 2 h.
SBS should be possible in approximately 10 h with 2 ×
50 cycles. In silico modeling suggests that analytic sen-
sitivity and specificity for nucleotide variants would re-
main >95 % with such read lengths. Stranneheim et al.
have described pulsed whole genome sequencing with
analysis of results iteratively at 35, 50, 75, and 100 cycles
[31]. When combined with the DRAGEN system, there
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is the possibility of near real-time analysis of results
whereby sequencing continues until a diagnosis is
achieved. While further reductions in time to result
may seem pedantic, sub-24 h time to result can be ma-
terial since medical rounds typically occur once a day.
Thus, return of results between 07:00–11:00 allows their
significance to be discussed by the whole medical team
when fresh. Off-hours results are returned to an on-duty
physician who is likely to need specialist consultation.
An unsolved need for medical WGS26 is sample multi-

plexing, both to lower the cost of testing and to allow trios
to be analyzed simultaneously. Sequencing of parent–in-
fant trios is necessary for genetic disease diagnosis since
the most common mechanism of causative mutations is
de novo. WGS26 is performed one sample at a time (dual
flowcells) at a reagent cost of $6,500, which is more than
eight-fold greater than WGS on a HiSeq X. WGS26 se-
quencer depreciation is approximately $714 per genome
at full capacity (350 genomes per year), compared with
$137 on a HiSeq X. Technician cost is similar (approxi-
mately $70 per genome). The cost of computation and
automated analysis varies widely with scale, but around a
median of approximately $100 per genome. Interpretation
and reporting is in the range of $70–$700 depending on
the number and types of variants identified in a trio. Thus,
cost is a significant barrier to broad adoption of WGS26,
particularly given the mark-ups in price that are com-
monly employed in the US medical system to offset ne-
gotiated discounts or lack of payment. An attractive
compromise between cost and speed is the HiSeq X con-
figured to perform approximately 450 GB of 2 × 75 nt se-
quencing in a trio in 33 h on a single flowcell, for a total
turnaround time of approximately 41 h. An alternative is
rapid exome sequencing (WES), using the WGS26 soft-
ware and hardware. With ongoing improvements in the
hybridization kinetics of exome capture probes, and in the
representation of all exons, a 36-h, 100X WES of three
trios per $6,500 run should be feasible.
Finally, it is worth briefly mentioning the medical

applications that currently may benefit from a 26-h, ra-
ther than a less costly 6-day, medical genome. These
are applications that have a relatively high likelihood of
guiding acute medical decisions in clinical situations
where a delay is likely to result in significant morbidity
or mortality. Currently, the best defined such applica-
tion is in the differential diagnosis of certain single gene
diseases. One example is maple syrup urine disease
(MSUD, OMIM #248600), in which irritability and poor
feeding typically occur within 48 h of delivery. Leth-
argy, intermittent apnea, opisthotonus, and stereotyped
movements are evident by day of life 4. Diagnosis and in-
stitution of treatment before the onset of these neurologic
signs significantly reduces the lifetime risk of mental
illness and global functional impairment [32, 33]. Mass

spectrometry of blood at 48 h of life is used to screen
infants for MSUD in newborn screening programs. While
typically positive in affected newborns, results may be de-
layed until after onset of neurologic signs or an initial
screen may be falsely negative if the newborn has not fed
appropriately after delivery.
Our initial clinical experience with rapid WGS in-

volved 35 parent–infant trios [6, 11, 12]. All infants were
acutely ill, aged less than 4 months at the time of enroll-
ment, had a suspected genetic cause of disease, and
lacked a molecular diagnosis. Clinical features in these
infants were typically apparent at birth. Rapid WGS pro-
vided a genetic diagnosis in 20 (57 %) infants. In nine
(45 %) infants receiving a diagnosis, the condition had
not been considered in the differential diagnosis at the
time of enrollment. Thirteen (65 %) diagnoses were
noted to have acute clinical utility, and four (20 %) diag-
noses had strongly favorable effects on management.
However, six (30 %) diagnosed infants were started on
palliative care and 120-day mortality was 57 %. A ran-
domized, prospective clinical study of rapid WGS is now
in progress to ascertain the extensibility of these results
to broad NICU populations. Clearly, while the applica-
tion of rapid WGS for NICU diagnosis of genetic disease
appears tremendously promising, translating diagnoses
into effective precision medicine is in its infancy.

Conclusions
Twenty-six-hour STATseq appears to be an appropriate
strategy for acutely ill patients with potentially action-
able genetic diseases. Having demonstrated improved
analytic performance of version 2 STATseq, and time to
result of 26 h, the next step is to retrospectively analyze
the diagnostic yield of these methods, particularly in
cases where no diagnostic diplotype was identified by
conventional WGS.

Data and materials
The genomic sequence data for this study have been de-
posited in the database dbGAP with accession number
phs000564. The CM-KC software described herein is in
development for availability as freeware for research use.

Additional files

Additional file 1: Figure S1. Screen-shots demonstrating the
functionality of SSAGA. A. The clinical feature entry page. Synonyms for
each feature are entered in the top left box. Upon entry, a list of
matching HPO terms is displayed. The appropriate HPO term is selected
and added to the patient’s feature list in the box on the right. This is
performed for each clinical feature. In this case, patient CMH672ref, the
patient had 11 clinical features that included neonatal seizures and a
characteristic facies. B. Upon clicking the ‘Get Diagnosis’ button, the list
of all matching diseases is generated. In this case, the differential
diagnosis had 1,136 rows, representing 597 genes, of which 222
matched two or more clinical features. (PDF 240 kb)
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Additional file 2: Figure S2. A screen-shot of the warehouse annotation
and curation data for a genomic variant. Right clicking a variant row in VIKING
opens a menu that includes a link-out to the CMH Variant Warehouse,
which contains automated annotation data from RUNES (ACMG-type variant
category, CM-KC allele frequency, homozygous and heterozygous status in
other samples, BLOSUM score, SIFT score, and PolyPhen2 score), Entrez Gene,
HGMD, ClinVar, COSMIC, and manual curation data for that variant
(if available). Highlighted values represent hyperlinks to additional information.
(PDF 210 kb)

Additional file 3: Figure S3. A screen-shot of VIKING showing variants
identified by DRAGEN in WGS26 of sample UDT_103, a patient with a
molecular diagnosis of familial hemophagocytic lymphohistiocytosis type 3.
Variants are displayed as rows in the right hand panel. The variant attributes
are displayed by columns in the right hand panel. The bottom left panel
permits selection of the variant attributes to be displayed. The following
filters have been applied to the UDT_103 variant set (top left panel): Filtering
to retain variants of ACMG-type categories 1–3, with an allele frequency in
the CM-KC database of <0.1 %, that fit a recessive inheritance pattern
(hemizygous, homozygous or compound heterozygous), and limited to
OMIM genes. Twenty-six variants meet these filters. Ten of these have been
manually interpreted and flagged as as ‘likely benign’ by the operator, by
highlighting in light blue. Two variants have been interpreted as ‘likely
pathogenic’ by the operator, by highlighting in light brown. The column
abbreviations are: Chr, Chromosome. Start, variant start genomic nucleotide.
HGVS_c, HGVS nomenclature for nucleotide variants in transcripts. HGVS_p,
HGVS nomenclature for corresponding amino acid changes in peptides.
ACMG, ACMG-type pathogenicity category. MAF, CM-KC allele frequency,
rsID, dbSNP accession number. dbSNP, dbSNP allele frequency. Zyg…,
Zygosity. Quality, read alignment quality. Read, number of reads calling
variant/number of reads aligned at that nucleotide. (PDF 164 kb)

Additional file 4: Table S1. Comparison of the metrics of sequence
yield and quality of 18-h and 26-h WGS (HiSeq 2500 2 × 100 nt rapid-run
mode). a, R2 refers to read 2. Eighteen-hour runs had marginally better
quality than 26-h runs, given slight differences in average cluster density.
This might have been due to the shorter time of slide exposure to laser
light and lesser loss in reagent stability. b. Comparison of 18-h and 26-h
WGS metrics (HiSeq 2500 2 × 100 nt rapid-run mode), showing
correlations between cluster density and metrics of sequence yield
and quality. Cluster density explained much of the variability in yield,
quality score, error rate, and % reads passing filter. (PDF 23 kb)

Additional file 5: Figure S4. Examination of the sensitivity and accuracy
of nucleotide variant genotype calls in WGS with the published WGS50 and
GSNAP/GATK-VQSR pipelines. A. Comparison of the sensitivity and accuracy
of all nucleotide variant calls. B. Comparison of the accuracy of variants that
were uniquely called by the GSNAP/GATK-VQSR. WGS was performed using
the HiSeq 2500 with 2 × 100 cycles and 18-h run time. The sample UDT_173
genotype “truth set” was from hybridization to the Omni4 SNP array. The
NA12878 ‘truth set’ was from ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/
NA12878/variant_calls/NIST26. (PDF 213 kb)
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