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Abstract 

Background:  Schistosomiasis and infection by soil-transmitted helminths are some of the world’s most prevalent 
neglected tropical diseases. Infection by more than one parasite (co-infection) is common and can contribute to clini-
cal morbidity in children. Geostatistical analyses of parasite infection data are key for developing mass drug adminis-
tration strategies, yet most methods ignore co-infections when estimating risk. Infection status for multiple parasites 
can act as a useful proxy for data-poor individual-level or environmental risk factors while avoiding regression dilution 
bias. Conditional random fields (CRF) is a multivariate graphical network method that opens new doors in parasite risk 
mapping by (i) predicting co-infections with high accuracy; (ii) isolating associations among parasites; and (iii) quanti-
fying how these associations change across landscapes.

Methods:  We built a spatial CRF to estimate infection risks for Ascaris lumbricoides, Trichuris trichiura, hookworms 
(Ancylostoma duodenale and Necator americanus) and Schistosoma mansoni using data from a national survey of 
Rwandan schoolchildren. We used an ensemble learning approach to generate spatial predictions by simulating from 
the CRF’s posterior distribution with a multivariate boosted regression tree that captured non-linear relationships 
between predictors and covariance in infection risks. This CRF ensemble was compared against single parasite gradi-
ent boosted machines to assess each model’s performance and prediction uncertainty.

Results:  Parasite co-infections were common, with 19.57% of children infected with at least two parasites. The CRF 
ensemble achieved higher predictive power than single-parasite models by improving estimates of co-infection 
prevalence at the individual level and classifying schools into World Health Organization treatment categories with 
greater accuracy. The CRF uncovered important environmental and demographic predictors of parasite infection 
probabilities. Yet even after capturing demographic and environmental risk factors, the presences or absences of 
other parasites were strong predictors of individual-level infection risk. Spatial predictions delineated high-risk regions 
in need of anthelminthic treatment interventions, including areas with higher than expected co-infection prevalence.

Conclusions:  Monitoring studies routinely screen for multiple parasites, yet statistical models generally ignore this 
multivariate data when assessing risk factors and designing treatment guidelines. Multivariate approaches can be 
instrumental in the global effort to reduce and eventually eliminate neglected helminth infections in developing 
countries.
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Background
Helminth parasites cause some of the world’s most 
important neglected tropical diseases [1–3]. Morbidity 
attributed to soil-transmitted helminths (STHs; Ascaris 
lumbricoides, Trichuris trichiura, Ancylostoma duode-
nale and Necator americanus) and trematodes (genus 
Schistosoma) is widespread in impoverished areas with 
limited access to clean water and sanitation [4, 5]. Some 
of the world’s highest helminth burdens occur in Africa 
[6], where up to 300,000 people die from schistosomiasis 
each year [7] and up to two in three children are infected 
with an STH [8, 9]. Concomitant infection with multiple 
parasites (co-infection) is ubiquitous, with parasites often 
overlapping in distributions and sharing risk factors [10, 
11]. Co-infections have important public health implica-
tions, as infection by multiple parasites can increase the 
progression and magnify the severity of parasite-related 
disease [12, 13].

The pharmaceutical industry, the World Health Organ-
ization (WHO) and the scientific community all recog-
nise reduction of helminth-related morbidity as a global 
priority and work to identify regions in need of anthel-
mintics [14]. Their goal is to deliver mass drug adminis-
tration (MDA), which alleviates helminth-related health 
burdens by reducing prevalence and associated morbid-
ity [15, 16]. Geostatistical models are key for designing 
MDA programmes by providing decision-support tools 
to aid delivery to areas of high prevalence [10, 17]. These 
models are also crucial for deciding between programmes 
geared towards either sustained control or parasite elimi-
nation [18].

Data used to build geostatistical models often comes 
from national surveys of infections for multiple hel-
minth species deployed over a number of years. Such an 
approach was recently conducted in Rwanda, a densely 
populated agriculture-based country in sub-Saharan 
Africa exhibiting some of the world’s highest helminth 
burdens [6, 19]. While these surveys often gather infor-
mation on multiple parasites, identification of high-risk 
areas typically relies on single-species models [20, 21]. 
This limits capacity to delineate communities at risk of 
morbidity due to co-infections and hampers multi-para-
site treatment regimens.

The health impacts of parasite co-infections are widely 
recognised. But while studies have begun accounting 
for multiple parasites in models, such investigations are 
few and are limited to either classifying infections into 
multinomial categories [11, 12, 22, 23] or aggregating 

total numbers of detected parasite species as counts in a 
Poisson regression [24]. Unfortunately, neither of these 
approaches provides insights into possible associations 
among parasite infection risks. Effects of each parasite’s 
presence on one another’s infection risk are not meas-
ured or are not comparable to other predictors, mean-
ing important questions such as “Does infection with one 
parasite decrease risk of infection with another?” and “Do 
parasite associations have predictive utility for forecast-
ing geographical disease risk?” are not fully explored (but 
see [25]). In ecology, the study of how and when species 
co-occur has long been recognised as important to our 
understanding of biodiversity generation, predator-prey 
interactions and community assembly [26–28]. So-called 
‘Joint Species Distribution Models’ (JSDMs) have become 
a popular class of tools to gain insights into species co-
occurrences by moving beyond single-species correla-
tive distribution models to explicitly capture covariance 
relationships among species using multivariate residual 
matrices [27, 29]. While most parasite epidemiology 
studies still focus on detecting environmental or demo-
graphic correlates of infection risk for individual parasite 
species, studies that use JSDMs to draw biological con-
clusions about relationships among parasite infection 
probabilities are becoming increasingly relevant to our 
understanding of multi-parasite epidemiology [30–32]. 
Yet despite the advanced insights that can be gained from 
JSDMs, a common drawback is that they generally lack 
capacity to explore how parasite associations change 
across scales. Both the strength and direction of interspe-
cific associations can vary along environmental gradients 
[33]. This is a problem that is encountered in many fields 
of multivariate analysis. For example, the increasingly-
important task of accurately quantifying levels of land-
scape change using high-resolution satellite images is 
reliant on the underlying model’s ability to capture how 
interactions among neighbouring image pixels change 
over time [34].

Addressing these issues requires multivariate 
approaches that (i) isolate associations among co-occur-
ring variables and (ii) estimate how associations change 
by allowing them to be conditional upon external covari-
ates [33]. A type of machine learning graphical network 
model known as conditional random fields (CRFs) is an 
approach that allows for such inference [35, 36]. CRFs 
incorporate the type of multivariate data that is routinely 
gathered using diagnostic tests but is commonly ignored 
when modelling risk. Rather than aggregating infections, 
CRFs parameterize interactions between network nodes 
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to gain insights into predictors of each node’s occurrence. 
CRFs can also identify how co-infection risks might 
change across landscapes, an attractive property that 
could improve our understanding of how infection risks 
are locally shaped and ultimately lead to better man-
agement strategies. Translated to helminths, CRFs can 
answer questions such as “What is the risk that an indi-
vidual will carry a particular parasite, and how is this risk 
related to both environmental conditions and to the pres-
ence of other parasites?” By applying CRFs to infection 
data in Rwandan schoolchildren, we showcase how these 
models are powerful tools for predictive analyses and for 
identification of populations in need of intervention.

Methods
A national survey of helminth parasite infections 
in Rwanda
We used data from a survey designed to detect hel-
minth infection prevalence in Rwandan schoolchildren. 
A national prevalence mapping effort was designed by 
considering groups of administrative mapping units 
[37]. Schools were chosen to ensure sample sizes in each 
unit were representative of the population sizes in their 
respective geographical areas. The survey was admin-
istered in June–July 2014 across 186 schools. For each 
child, age and sex were recorded and the presence-
absence of helminth infections assessed by examination 
of duplicate 41.7 mg smears prepared from a single stool 
using the Kato-Katz (KK) method [38]. Faecal egg counts 
were estimated to calculate eggs per gram of faeces (epg). 
KK smears were assessed by two technicians, with infec-
tion denoted as positive if at least one egg was detected. 
Two experts randomly re-assessed 10% of smears for 
quality control.

Environmental variables
Helminth parasite distributions can be influenced by 
both climatic and environmental heterogeneity [39, 40]. 
Detecting environmental correlates is an important step 
for developing interventions aimed at reducing burdens 
[41–43]. We extracted remote-sensed measurements for 
six variables that reflect variation in temperature, veg-
etation, moisture and the presence of water bodies, all 
of which can impact survival of STH larvae [44] or dis-
tributions of molluscs that act as intermediate hosts 
for Schistosoma parasites [45]. These were: land surface 
temperature (LST); the normalized difference vegeta-
tion index (NDVI); the normalized difference water index 
(NDWI); elevation; surface soil moisture; and the  pro-
portion of cells classified as cropland (variable sources 
and spatial resolutions are shown in Table 1). Time-vari-
ant variables (LST, NDVI, NDWI and soil moisture) were 
calculated as mean post-rainy season variables.

Demographic variables
Differences in access to and use of sanitation can also 
lead to wide variability in environmental contamina-
tion by infective parasite stages [15]. Indices of poverty 
and sanitation/hygiene are important for modelling hel-
minth infection risk [46, 47]. We used household ques-
tionnaire data from the Demographic and Health Survey 
(DHS) Programme’s 2017 Rwandan Malaria Indicator 
Survey [48] to calculate three district-level variables cap-
turing variation in poverty/sanitation access. These were 
the proportion of households in the district reported to 
have: electricity; access to a flushable toilet; and access to 
clean drinking water. We included two variables reflect-
ing human population sizes to adjust for differences in 

Table 1  Environmental and demographic predictor variables used in analysis

Notes: NDVI, NDWI, LST and surface soil moisture were calculated as post-rainy season averages (December to February). Other predictors included in analysis were 
the child’s age and sex

Predictor variable Analysis resolution Source

Net difference vegetation index (NDVI) 10 km MODIS

Net difference water index (NDWI) 10 km MODIS

Land surface temperature (LST) 10 km MODIS

Elevation 10 km Amazon web services

Surface soil moisture 10 km NASA SMAP

Proportion of landcover classified as cropland (Categories 11 and 12) 10 km MODIS

Human population density 10 km Facebook Connectivity Labora-
tory and CIESIN

Proportion of human settlements classified as rural (Category 1) 10 km Global human settlement layer

Proportion of households with electricity District DHS Malaria Indicator Survey

Proportion of households with access to flushable toilet District DHS Malaria Indicator Survey

Proportion of households with access to clean drinking water District DHS Malaria Indicator Survey



Page 4 of 16Clark et al. Parasites Vectors          (2020) 13:138 

environmental contamination that may occur in areas 
with dense populations of at-risk people. These were: 
human population density and the proportion of cells 
classified as ‘rural’ settlements (Table  1). All predictors 
apart from DHS variables were calculated as 10 km aver-
ages around school centroids to maintain consistent cov-
erage and allow for the fact that some children may travel 
to school.

Conditional random fields to model infection risk
Undirected graphical networks offer flexible tools for 
estimating direct and indirect associations between co-
occurring organisms and for disentangling influences 
of interspecific associations and environment on spe-
cies’ distributions. We used one such approach to assess 
whether inclusion of co-infection information can aid 
managers in the design of treatment regimes. Markov 
random fields (MRFs) are an important subgroup of 
statistical network models called probabilistic graphi-
cal models [49]. The term ‘graphical’ refers to a property 
of these models whereby they can effectively represent 
complex distributions as compact network graphs that 
consist of two primary types of elements: nodes, which 
correspond to the observed variables within the data; and 
the edges between the nodes, which correspond to the 
probabilistic interactions between variables that need to 
be estimated. In MRFs, these interaction edges are con-
sidered undirected, meaning that the effect of one node 
on another is reciprocal. The absence of an edge between 
two nodes in the estimated graph indicates that the two 
variables are conditionally independent of one another, 
while the presence of an edge indicates that the two con-
nected nodes are conditionally dependent after account-
ing for possible effects of all other nodes in the graph 
[36, 50]. In binary MRFs, as is this case with our parasite 
presence-absence data, these conditional dependencies 
are typically estimated using a joint probability function 
that defines the relative probability of observing a given 
vector of node presences (1s) and absences (0s) condi-
tional on the presences and absences of all other nodes. 
A crucial property of the CRF, which is an extension of 
MRFs, is that it allows these dependencies among node 
variables to be conditional on external covariates, where 
values for the edges that connect nodes in the graph can 
change in the presence of covariates [33, 36].

A major challenge of maximizing the joint likelihood 
in a CRF is that this requires the simultaneous estima-
tion of a large number of coefficients in addition to a 
complex normalizing constant that grows exponen-
tially with the number of nodes in the graph [36]. Using 
separate models to maximize the conditional likelihood 
of each node given the remaining nodes and covariates, 
rather than attempting to maximize the joint likelihood, 

is a lucrative approximation option that has been widely 
adopted throughout the statistical literature [36, 51]. For 
binary CRFs, a number of statistical investigations have 
shown that an appropriate node-wise approximation is 
to formulate the graph as a collection of separate logis-
tic regressions [36, 50]. This is advantageous as multi-
variable logistic regressions yield conditional coefficients 
that closely relate to a fully specified CRF and can easily 
be estimated using widely available software and compu-
tational resources. In each regression, the binary node of 
interest is the outcome variable and all other variables in 
the graph, along with all covariates, are included as pre-
dictor variables. Once each nodewise regression has been 
fit, approximation of the graph can be achieved by sym-
metrising the corresponding coefficients (i.e. the effect 
of parasite 1 on parasite 2 must be the same as the effect 
of parasite 2 on parasite 1). If the number of parameters 
in each separate regression is large, it is often useful to 
employ variable selection routines that can induce spar-
sity by penalizing some of the coefficients toward zero 
[50].

In our CRF model, we used as input data for the nodes 
a matrix of individual-level parasite presence-absence 
vectors (1s and 0s for each parasite in each child that was 
surveyed). The model design matrix for each separate 
regression was constructed by cross-multiplying all com-
binations of co-occurring parasites (binary vectors) and 
covariates, meaning that each parasite-specific regression 
included terms for the presence-absence of other para-
sites, all covariates, and interaction effects among other 
parasites and the covariates. In other words, if our model 
contained two parasites and one covariate, the regression 
for parasite 1 would estimate coefficients for the effects of 
‘parasite 2’, the ‘covariate’ and the ‘parasite 2 × covariate’ 
interaction. For the covariates, we included a matrix that 
captured values for the environmental and demographic 
covariates listed above. Because cross-multiplication for 
all of these covariates resulted in a large number of coef-
ficients, estimating all of these coefficients in a typical 
logistic regression would lead to problems of overfitting. 
Parameterization of each parasite’s likelihood was there-
fore estimated using a regularized logistic regression that 
employed the Least Absolute Shrinkage and Selection 
Operator (LASSO) to force coefficients to zero if their 
effects were minimal. This was done via a supervised 
machine-learning procedure that used 10-fold cross-
validation to minimise cross-validated error [52]. Coef-
ficients representing conditional dependence for each 
pair of parasites, and coefficients representing effects 
of covariates on this dependence, were symmetrised by 
taking means of the corresponding estimates. All coef-
ficients can be interpreted as effects on a parasite’s log 
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odds, exactly as they would be from a standard logistic 
regression.

A total of 9251 faecal samples were taken across 186 
schools. However, a number of observations were miss-
ing age and/or infection information for at least one 
parasite. These were excluded, resulting in parasite 
binary presence/absence data for 8786 children sam-
pled across 177 schools (4387 boys; 4399 girls), with 
the number of children per school ranging from 43 to 
50. Ages ranged 8 to 18 years (mean = 13.35; standard 
deviation = 0.77). Initial predictors tested for inclu-
sion were: age, sex and the environmental/demographic 
geographical variables listed in Table  1. Continuous 
predictors were standardized to unit variance. Multi-
collinearity was accounted for by eliminating the most 
highly correlated continuous predictor (i.e. the pre-
dictor that showed a higher number of strong correla-
tions) from those pairs whose Pearsonʼs correlations 
were > 0.7 following recommendations by Dormann 
et al. [53] that correlations above this value can severely 
distort model estimation and resulting prediction. Two 
variables, NDWI and LST, were removed during this 
process. Because spatial autocorrelation is a common 
feature of helminth risk [11, 17, 21] and has been dem-
onstrated for STH risk in Rwanda [37], we accounted 
for spatial effects by including Gaussian process spatial 
regression splines in the linear predictor of each regu-
larized regression.

This cyclic CRF approach is a strongly justified tool 
for investigating co-infections as it relies on the same 
underlying assumptions of common logistic regressions 
but can tackle the crucial, neglected aim of detect-
ing whether any pair of parasites is associated after 
accounting for each parasite’s associations with all 
other parasites. In addition, CRFs allow one to explore 
these coefficients further by asking whether these asso-
ciations among parasites change as covariates increase 
or decrease. Importantly, datasets such as the one we 
used here are commonly generated by many multi-
pathogen surveillance and multi-species monitoring 
programmes, and so our method can be easily applied 
to a variety of contexts. Indeed, other critical examples 
of our methodology have already demonstrated that 
viral co-infections provide insights into the timing of 
Hendra virus emergence events [54] and that the com-
positions of avian blood parasite communities, marsh-
land arthropod communities and wildlife microbiome 
profiles are the products of complex factors including 
biotic associations and environmental variation [33, 
55]. However, a drawback of the CRF approach is that 
prediction of infection risk for unsampled areas is chal-
lenging due to the requirement that at least some para-
site presence-absence information needs to be available 

for the unsampled area. The machine learning litera-
ture offers many examples of ‘ensemble’ learning meth-
ods that combine predictions from multiple supervised 
algorithms to take advantage of the fact that many dif-
ferent data-adaptive computational methods perform 
differently under different data-generating scenarios 
[56–58].

In this study, prediction for unsampled areas was 
accomplished using one such ensemble approach. We 
simulated from the CRF’s posterior distribution with a 
multivariate boosted regression tree that was designed 
to maximise the importance of predictors that influence 
covariance in outcomes [59], which were parasite infec-
tion risks in our case. Training a multivariate boosted 
regression tree using environmental and demographic 
features as covariates and CRF probability predictions as 
outcomes capitalised on the CRF’s primary purpose of 
detecting conditional infection risks as well as the regres-
sion tree’s primary purpose of learning complex, non-lin-
ear covariate interactions to generate accurate spatial risk 
predictions for unsampled areas [60]. Learning param-
eters were: maximum trees = 1000, learning rate = 0.01 
and interaction depth = 3. CRF fits and diagnostics were 
performed using functions in the open-source MRFcov R 
package [61].

Assessing model fit and conducting a sensitivity analysis
Our CRF ensemble was compared against single parasite 
boosted regression trees, also known as gradient boosted 
machines (GBMs), as part of an in-depth sensitivity anal-
ysis to assess performance, quantify prediction uncer-
tainty and assess at which stage of the methodology chain 
the highest uncertainties occurred. GBMs have been used 
in a range of disease mapping studies and are growing in 
popularity due to their ability to capture nonlinear asso-
ciations and higher-order interactions in computation-
ally-efficient, user-friendly algorithms [62, 63]. GBMs 
used the same environmental and demographic predic-
tors as the CRF ensemble and were tuned using identical 
learning parameters, ensuring the only major difference 
between approaches was the absence of additional para-
site co-infection information in the GBM. We used cross-
validation to assess model fit and quantify prediction 
uncertainty. Models were trained on the same random 
subset of 80% of children, with resulting equations used 
to predict infections for the remaining 20% (5-fold cross-
validation). We tested the sensitivity of our results to the 
choice of data subset by repeating this cross-validation 
20 times. This process meant that each model was fit to 
100 different subsets of the original data, allowing us to 
adequately account for variation arising from the fold 
selection procedure and to calculate robust prediction 
intervals for presenting uncertainty in spatial risk maps.
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We scrutinised each model’s ability to capture infor-
mation relevant to managers tasked with outlining poli-
cies to reduce parasite infection burdens and progress 
towards elimination. In addition to estimating out-of-
sample prediction accuracy, we estimated school-wide 
area under the curve of the receiver operating char-
acteristics (AUCs) using two probability cut-offs that 
directly matched to WHO treatment categories (for 
details of guidelines, see https​://www.who.int/news-
room/fact-sheet​s/detai​l/soil-trans​mitte​d-helmi​nth-
infec​tions​ and page 35 in [14]). These cut-offs were 0.50 
to denote whether schools that  would be  considered 
‘high-risk’ under WHO guidelines (i.e. schools requir-
ing bi-annual treatment) were identified by the models, 
and 0.20 to represent schools that would be in need 
of annual treatment according to WHO. AUCs from 
0.70–0.89 indicate reasonable discriminatory power, 
while values > 0.90 reflect good power. Because Schisto-
soma and Ancylostoma parasites were rare, we only cal-
culated AUCs for A. lumbricoides and T. trichiura. We 
also calculated an A. lumbricoides + T. trichiura stand-
ardised co-infection ratio (SCR) for each school by 
dividing the expected number of co-infections (based 
on the mean national rate) by the observed number. To 
summarize, translational performances were judged by 
assessing each model’s (i) out-of-sample classification 
accuracy for individual children; (ii) ability to discrimi-
nate schools into the WHO treatment guideline catego-
ries for A. lumbricoides and T. trichiura (using 50 and 
20% prevalence thresholds); and (iii) ability to classify 
A. lumbricoides + T. trichiura co-infections and rank 
schools based on their relative co-infection frequencies.

Producing smoothed prevalence maps
To produce infection prevalence maps, we divided 
Rwanda into a spatial grid representing 80,258 cells. 
Interpolated surfaces for each of our point-based pre-
dictors were smoothed onto this grid using generalized 
additive models that included Gaussian process spatial 
regression splines. Interpolated surfaces were used for 
producing spatially smoothed predictions. We con-
structed 100 conditional prevalence maps for each par-
asite using the cross-validation procedure specified in 
Assessing model fit and sensitivity to present uncertain-
ties in prevalence projections. For projecting burden of 
A. lumbricoides + T. trichiura co-infections in Rwandan 
schoolchildren, we multiplied the estimated probability 
of co-infection in each cell by the estimated population 
size in each cell using the gridded human density raster. 
These values were multiplied by the proportion of peo-
ple estimated to be school age (37%; [64]).

Exploring effects of parasite burdens on risk 
of co‑occurring parasites
We identified a number of positive parasite associa-
tions, raising questions about possible underlying bio-
logical mechanisms. One question of interest is whether 
increased within-host burden with one parasite corre-
lates with increased probability of co-infection, either 
by leaving a child more susceptible to acquiring infec-
tions or by stimulating parasite egg production [25]. We 
addressed this by fitting additional models. For each par-
asite, we generated separate datasets by filtering observa-
tions to only include children infected with that parasite. 
We then fitted a spatial CRF that did not include this 
parasite as a binary outcome, but instead included its epg 
as a predictor. We asked whether epg of focal parasites 
correlated with changing infection risks for other para-
sites or with changing parasite associations. As above, 
100 models were fit to random subsets containing 80% 
of observations to capture uncertainty. For CRF models, 
predictors were considered significant if the 95% cred-
ible interval (CI) of their estimated coefficients did not 
include zero. P-values are only reported for the results 
of Pearsonʼs correlations. All data and R code used to fit 
CRF and GBM models are included in Additional file 1.

Results
CRFs improve prediction of infection and co‑infection
We fit CRFs to infection data for four parasites (Ascaris 
lumbricoides, Trichuris trichiura, hookworms (Ancylos-
toma duodenale and Necator americanus) and Schistosoma 
mansoni) from 8786 children sampled across 177 schools 
(Additional file 2: Figure S1). Prevalences were as follows: 
A. lumbricoides, 37.54%; T. trichiura, 23.16%; hookworm, 
4.54%; and S. mansoni, 2.07% (Additional file 2: Figure S2). 
A total of 4212 children were infected with at least one 
parasite (47.02%). Co-infections were common, with 1753 
children infected with at least two parasites (19.57%) and 
123 harbouring at least three parasites (1.37%). The spa-
tial CRF showed good fit to the observed data. Across all 
100 cross-validation runs, binary predictions were correct 
for 89–91% of the 35,144 total observations (four parasites 
across 8786 children) and positive predictive values (the 
proportion of positive infections that were correctly pre-
dicted as positive) ranged from 0.71–0.80.

For each parasite, classification accuracy at the individual 
child level was similar for the CRF ensemble and single-
parasite GBMs (Additional file 2: Figure S3). Both models 
achieved higher accuracy for predicting the rarer parasites 
(Schistosoma and hookworm; accuracies ranging 0.95–
0.98), while accuracies for A. lumbricoides and T. trichiura 
were lower but still reflective of good performance (accu-
racies ranging 0.79–0.87 for these parasites; Additional 
file 2: Figure S3). When tasked with identifying school-wide 

https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections
https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections
https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections
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prevalence to inform WHO treatment guidelines, the CRF 
ensemble was superior. For A. lumbricoides, AUCs pre-
dicted by the CRF and GBMs were similar at a 0.50 cut-off, 
with both models achieving good discriminatory power 
(AUCs: 0.90–0.97), but the CRF outperformed the GBM at 
a 0.20 cut-off (Additional file 2: Figure S4). For T. trichiura, 
the CRF outperformed the GBM at both prevalence thresh-
olds, achieving good discriminatory power at 0.50 and rea-
sonable power at 0.20 (Additional file 2: Figure S4).

The CRF ensemble was also better at predicting A. 
lumbricoides + T. trichiura co-infections. At the indi-
vidual level, the CRF correctly predicted 60–65% of 
co-infections, compared to 46–54% for GBMs (Addi-
tional file  2: Figure S5). This pattern held at the school 
level, with Pearsonʼs correlations between predicted 
and observed SCRs showing a stronger positive rela-
tionship for the CRF (Correlation r(177) = 0.85, 95% CI: 
0.84–0.87, P < 0.0001) compared to the GBM (Correlation 
r(177) = 0.82, 95% CI: 0.81–0.83, P < 0.0001; Additional 
file  2: Figure S6). Nevertheless, both models missed 
some high-burden schools, although the CRF fared bet-
ter in this regard. In total, 46 schools had substantially 
increased frequencies of co-infections compared to 
the average (harbouring 1.9–5.6 times the background 

co-infection prevalence and accounting for the top 25% 
of observed SCRs). The CRF consistently identified 31 
(67%) of these as high-risk, compared to 24 (53%) for the 
GBMs. Most high-burden schools missed by the CRF 
were in central and northern regions, primarily around 
Lake Kivu and along the northern border with Uganda 
(Karongi, Rutsiro, Burera and Gicumbi; see Additional 
file  2: Figure S7 for locations of districts). In addition, 
three schools in Rwanda’s south (Nyamagabe and Nyaru-
guru) were high-burden schools that were missed by 
the CRF. In contrast, both models accurately identified 
low-burden schools. Sixty-six schools had no observed 
co-infections (SCR = 0); none of these were incorrectly 
classified by either model.

Parasite associations as indicators of shared infection risk
We identified important demographic and environmen-
tal correlates of infection risk. Males were more likely to 
be infected with S. mansoni than were females (odds ratio 
(OR) 95% CI: 1.09–1.67). Infection by hookworms and by 
A. lumbricoides were both less likely to occur in districts 
with wider accessibility to household electricity (effect 
size 95% CIs: 0.67–0.83 and 0.83–0.97, respectively; 
Table  2). However, these parasites showed contrasting 

Table 2  CRF regression coefficients for predictors of each parasite’s infection probability

Notes: Only predictors whose 95% credible intervals (CIs) did not include zero are shown. Interaction effect between a co-occurring parasite and an environmental/
demographic covariate is indicated by “×”

Abbreviation: NDVI, normalized difference vegetation index

Parasite Predictor β coefficient (95% CI)

Ascaris lumbricoides T. trichiura occurrence 1.15 (1.07–1.25)

Elevation 0.57 (0.47–0.65)

Proportion of human settlements classified as rural × T. trichiura occurrence − 0.15 (− 0.29– − 0.03)

NDVI − 0.14 (− 0.23– − 0.05)

Proportion of households with electricity − 0.11 (− 0.19– − 0.03)

Age 0.05 (0.02–0.08)

Hookworm spp. S. mansoni occurrence 0.69 (0.24–1.06)

T. trichiura occurrence 0.66 (0.49–0.82)

Elevation − 0.47 (− 0.56– − 0.37)

Proportion of households with electricity − 0.27 (− 0.39– − 0.19)

Proportion of households with electricity × T. trichiura occurrence − 0.22 (− 0.41– − 0.06)

Schistosoma mansoni Hookworm occurrence 0.69 (0.24–1.06)

T. trichiura occurrence 0.42 (0.05–0.72)

Male 0.27 (0.09–0.51)

Trichuris trichiura A. lumbricoides occurrence 1.15 (1.07–1.25)

Hookworm occurrence 0.66 (0.49–0.82)

NDVI − 0.43 (− 0.53– − 0.30)

S. mansoni occurrence 0.42 (0.05–0.72)

Proportion of landcover classified as cropland − 0.28 (− 0.37– − 0.20)

Proportion of households with electricity × Hookworm spp. occurrence − 0.22 (− 0.41– − 0.06)

Surface soil moisture 0.15 (0.06–0.21)

Proportion of human settlements classified as rural × A. lumbricoides occurrence − 0.15 (− 0.29– − 0.03)
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elevational gradients, with hookworm infection more 
likely in lower elevations and A. lumbricoides infec-
tion more likely at higher elevations (effect size 95% CIs: 
0.57–0.69 and 1.60–1.92, respectively; Table 2). In addi-
tion, A. lumbricoides infection was more likely in older 
children (effect size 95% CI: 1.02–1.08) and less likely in 
areas with high vegetation density (effect size 95% CI: 
0.79–0.95; Table  2). Infection by T. trichiura was less 
likely in croplands and areas with high NDVI (effect size 
95% CI: 0.69–0.82) but more likely in areas with higher 
soil moisture (effect size 95% CI: 1.0–1.23; Table 2).

Even after capturing effects of demographic and envi-
ronmental covariates, associations with other parasites 
were strong predictors of risk (Table  2). For example, 
infection with T. trichiura was positively associated with 
the infection probabilities for each of the other parasites 
(Table  2). Co-infection between A. lumbricoides and 
T. trichiura was common, occurring in 1562 children 
(17.78%; Additional file 2: Figures S1, S2). Infection with 
one of these parasites led to a threefold increase in risk 
that a child would carry the other (OR: 2.92–3.49). ORs 
were 1.63–2.27 for the hookworm + T. trichiura asso-
ciation (found in 104 children) and 1.05–2.05 for the S. 
mansoni + T. trichiura association (found in 87 chil-
dren). Even the two rarest parasites, hookworms and S. 
mansoni, were positively associated (Table 2; Additional 
file 2: Figure S2). Infection with one of these parasites led 
to more than a twofold increase in risk for the other (OR: 
1.27–2.87).

A key finding was that some parasite co-infection prev-
alences showed marked variation across environmental 
or demographic gradients. For example, the most abun-
dant co-infection, between A. lumbricoides and T. trichi-
ura, was less likely to occur in areas encompassed by 
rural or undeveloped settlements than in urban/subur-
ban areas (effect size 95% CI: 0.75–0.97; Table 2). In addi-
tion, co-infection between hookworms and T. trichiura 
were less likely to occur in districts with wider accessibil-
ity to electricity (effect size 95% CI: 0.66–0.94; Table 2).

Delineating geographical areas with at‑risk populations
Conditional prevalence predictions for the two most 
common helminths (A. lumbricoides and T. trichiura) 
delineated large spatial clusters that were generally robust 
to prediction uncertainty and would be considered ‘high 
risk’ according to WHO guidelines (areas with at least 
50% infection prevalence; [65]). For A. lumbricoides, 
this at-risk cluster encompassed most of the country’s 
western districts, as well as many areas in the central-
north and central-south (ranging from Nyaruguru in the 
south around the border to Gicumbi in the north; Fig. 1). 
High-risk clusters for T. trichiura were less extensive but 
occurred across similar geographical areas, with districts 

such as Rutsiro, Rubavu, Nyabihu and Musanze particu-
larly impacted (Fig. 2). In fact, our models estimated that 
the burden of A. lumbricoides + T. trichiura co-infections 
strongly reflected the risk map for T. trichiura, with up 
to 300 or more children (aged 8–18 years) per km2 esti-
mated to be co-infected in some western/northwestern 
districts (Fig.  3). In contrast, predicted prevalence for 
hookworms and S. mansoni was less than 20% across the 
country (Additional file 2: Figures S8, S9), corresponding 
to recommendations of two treatments per child during 
primary school years [65]. Hookworms were the only 
parasites that showed highest risk in eastern areas, but 
these regions did not reach > 20% even when using high-
est credible estimates (Additional file 2: Figure S8).

Exploring parasite associations: faecal egg counts correlate 
with infection risk
Higher values for A. lumbricoides epg were associated 
with an increase in the probability that a child would 
also be infected with T. trichiura (an increase of 4280 
A. lumbricoides epg correlated with a 11.54% relative 
increase in T. trichiura infection risk). The effect of T. 
trichiura epg on A. lumbricoides infection probabil-
ity was also positive, though this effect was weaker (an 
increase of 470 T. trichiura epg correlated with a 4.87% 
relative increase in A. lumbricoides infection risk). 
Other notable correlations were a relative decrease of 
3.25% in T. trichiura infection risk with every 50 addi-
tional A. duodenale epg and a relative increase of 3.25% 
in A. lumbricoides/T. trichiura co-infection probability 
with every 20 additional S. mansoni epg.

Discussion
Infection by more than one helminth parasite is a major 
problem across much of the world’s tropical and sub-
tropical regions [11, 12, 14, 22, 23]. Monitoring studies 
screen for multiple parasites, yet models generally ignore 
this multivariate data when designing treatment guide-
lines. We developed a model-based approach for incor-
porating co-infection data to carry out predictive risk 
modelling. Helminth co-infections are common in Rwan-
dan schoolchildren, and we demonstrated how CRFs out-
perform single-parasite models by using this information 
to produce prediction maps. We argue that our approach 
is especially useful when information on individual-level 
upstream risk factors is missing, and that such pipelines 
should be continuously updated to refine estimates and 
critique the effectiveness of treatment programmes [39, 
41, 42].

Uncovering demographic and environmental correlates 
of infection is a central goal of disease modelling. Despite 
the public health threats that helminth parasites consti-
tute in Rwanda [66], knowledge of local risk factors and 
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spatial variation in prevalence is poor [8, 9]. The avail-
ability of remote sensing databases has expanded capac-
ity to address these drawbacks by predicting infectious 
disease distributions [39, 43], and these data layers are 
commonly coupled with surveys of local demograph-
ics, sanitation practices and access to healthcare [15, 16, 
67]. Our findings reinforced earlier studies regarding the 
factors that influence the distributions of these impor-
tant parasites. For example, reliable access to electricity 
is expected to reflect improved sanitation practices and 
possibly a reduction in environmental contamination 
by infective parasite stages [15]. Our findings supported 
this hypothesis by showing that increased household 

electricity access correlated with decreased risk of infec-
tion for both hookworms and A. lumbricoides. Male chil-
dren were more likely to be infected with S. mansoni, a 
result that was also found in a study comparing different 
diagnostic methods for detecting this parasite in Rwan-
dan children [68]. Whether this reflects increased risky 
behaviour by male children, or perhaps different cultural 
expectations regarding contributions to household farm-
ing, requires further investigation. In addition, we found 
that T. trichiura infection was more likely in areas with 
higher soil moisture, reflecting that the infectious stages 
of these parasites thrive in tropical and subtropical areas 
with moist soil conditions [69]. We also found that A. 

Infection prevalence

>50%

41−50%

31−40%

21−30%

11−20%

5−10%

<5%

Ascaris lumbricoides
Median predictions

Lower 95% CI Upper 95% CI

Fig. 1  Predicted prevalence of Ascaris lumbricoides in Rwandan schoolchildren. 100 iterations of a spatial conditional random fields model 
were used to generate 95% credible prediction intervals (CIs). This figure was produced in R 3.5 using a shapefile representing Rwanda’s current 
administrative units [obtained from the data warehouse DIVA GIS (https​://www.diva-gis.org/Data)]

https://www.diva-gis.org/Data


Page 10 of 16Clark et al. Parasites Vectors          (2020) 13:138 

lumbricoides infection was more likely in high elevation 
areas, supporting similar findings from studies in nearby 
East African countries [70] and reflecting this parasite’s 
common infection occurrence in high-elevation areas 
around Lake Kivu in the country’s Northwest. An unex-
pected finding was the lower infection risk for the two 
most common parasites (T. trichiura and A. lumbricoides) 
in areas with higher post-rainy season vegetation density 
(NDVI). Large at-risk clusters for both of these parasites 
encompassed most of the country’s western districts 
around Lake Kivu, which are high-elevation areas char-
acterised by low precipitation. Our results could reflect 
previous evidence that low NDVI values are indicative of 

areas with increased survival and transmission rates for 
T. trichiura and A. lumbricoides [10], or perhaps could 
demonstrate how parasite-parasite associations at the 
individual level can capture large proportions of variance 
in infection probability and make it more challenging to 
detect comparatively weak environmental associations. 
Further adaptation of our methods to other host-parasite 
contexts will be helpful for understanding these potential 
trade-offs.

Yet while we identified important environmental/
demographic predictors of helminth infection, the 
stronger performance of the CRF compared to single-
parasite models suggests that information on other 
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Fig. 2  Predicted prevalence of Trichuris trichiura in Rwandan schoolchildren. 100 iterations of a spatial conditional random fields model were used 
to generate 95% credible prediction intervals (CIs). This figure was produced in R 3.5 using a shapefile representing Rwanda’s current administrative 
units [obtained from the data warehouse DIVA GIS (https​://www.diva-gis.org/Data)]

https://www.diva-gis.org/Data
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parasites can increase accuracy of risk estimates even 
when remote sensing data are available. The CRF out-
performed single-parasite GBM models for classify-
ing schools into treatment categories and for predicting 
levels of co-infection, without sacrificing performance 
of predictions for each parasite separately. Moreover, 
parasite effects were more strongly predictive of indi-
vidual infection risk than were environmental or demo-
graphic variables for each of the four studied parasite 
species. Several studies note that soil-transmitted and 

water-related helminths share common transmission 
pathways, exposure routes and overlapping risk fac-
tors [2, 41, 71, 72]. Our study extends this knowledge by 
demonstrating that, in the absence of more robust indi-
cators of upstream exposure, multi-parasite data can 
act as a reliable proxy for data-poor individual-level risk 
factors such as water, sanitation and hygiene (WaSH) 
access, nutrition, defecation practices, poverty indices 
or occupational variation. Risk-mapping studies have not 
yet recognised this rich information, instead relying on 
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101−150

51−100

6−50
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A. lumbricoides + T. trichiura co−infection
Median predictions

Lower 95% CI Upper 95% CI

Fig. 3  Predicted number of Rwandan children (aged 8–18 years-old) harbouring A. lumbricoides/T. trichiura co-infections. 100 iterations of a spatial 
conditional random fields model were used to generate 95% credible prediction intervals (CIs). This figure was produced in R 3.5 using a shapefile 
representing Rwanda’s current administrative units (obtained from the data warehouse DIVA GIS (https​://www.diva-gis.org/Data))

https://www.diva-gis.org/Data
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remote-sensing data for which concerns have been raised 
over temporal mismatch, incomplete coverage or areal 
unit problems [73, 74].

In addition to the improved accuracy our model 
achieved when delineating schools into treatment cat-
egories, a primary advantage of the CRF ensemble over 
single-parasite models was its superior ability to predict 
A. lumbricoides + T. trichiura co-infections. This is an 
attractive property when considering health risks of co-
infections and that co-infection prevalence could serve 
as useful indicators of disadvantage or environmental 
contamination. We identified robust multi-parasite asso-
ciations that were not predicted to vary much across 
environmental gradients, suggesting these associations 
represent true biological phenomena that can be used 
to gain deeper insights into (i) which pathophysiological 
factors underpin multiple parasite infections or (ii) the 
ecology of multiparasitism. Our evidence that presence 
of some parasites correlated with variation in epg for 
co-occurring parasites could support the latter. Parasite 
co-infections can have multiplicative impacts on clini-
cal outcomes, and previous evidence has suggested that 
parasite ‘community’ compositions can alter fertilities 
or shedding rates of competing parasites [72]. Rwandan 
children infected with A. lumbricoides were more likely 
to carry T. trichiura, which could be evidence of syn-
chronous shedding driven by a synergistic within-host 
interaction [75]. However, determining whether our find-
ings represent a true parasite interaction, as opposed to 
reflecting shared upstream risk factors but no biological 
interaction among parasite species per se, requires fur-
ther study.

Rwanda has a population of over 10.7 million and an 
area of 26,338 km2, making it one of Africa’s most densely 
populated countries [67]. Determining how to efficiently 
reduce parasite infections in this agricultural region is 
a priority, as helminth infection is a common cause of 
anaemia and subsequent hospitalization [67]. Current 
WHO treatment guidelines state that decisions around 
how often to deworm children should rely on estimates 
of infection prevalence within school catchments [65]. 
Under these guidelines, our results suggest decisions 
around when and where to treat for STH infections in 
Rwanda will be dominated by classifying schools using 
estimates of A. lumbricoides and T. trichiura prevalence. 
These common parasites had observed prevalence of 
37.54 and 23.16%, suggesting STH parasites are persist-
ing despite the delivery of 18 million doses of anthelmin-
tics to over 4 million Rwandans following a 2008 survey 
[8]. However, infection risks were not spatially homoge-
neous. Districts such as Rubavu, Rutsiro and Musanze, 

along the country’s western and north-western borders, 
were predicted to harbour the most A. lumbricoides + T. 
trichiura co-infections, affecting up to 300 or more chil-
dren per km2. Moreover, prevalence of A. lumbricoides 
and T. trichiura single infections was predicted to be 
above 50% in most of these areas, placing schools in those 
districts within the ‘high risk’ WHO category requiring 
twice-yearly treatment [65].

In contrast to A. lumbricoides and T. trichiura, hook-
worm and schistosome (S. mansoni) infections were rare. 
In fact, S. mansoni was so rare that its infection prob-
ability was relatively insensitive to our tested covari-
ates, apart from the sex of the child. Considering that 
broad-spectrum, multi-parasite benzimidazole-based 
anthelmintics are the primary drugs used to reduce STH 
burdens [76], our findings suggest that hookworm esti-
mates are unlikely to make substantial contributions to 
management decisions in Rwanda. While we did iden-
tify areas with moderate risk of hookworm that did not 
overlap with A. lumbricoides and T. trichiura high-risk 
zones, these areas did not reach the ‘high risk’ threshold 
of 50% [65]. Our S. mansoni maps likewise did not delin-
eate high-risk areas. Guidelines for reducing schistoso-
miasis are similar to STH, albeit with different thresholds 
[65, 77]. In our case, predictions suggest that schools 
in Rwanda are ‘low risk’ for S. mansoni, with treatment 
occurring once on entry to primary school and again on 
exit.

The proliferation of network methods in epidemiology 
has led to exponential increases in the discovery of asso-
ciations between co-occurring organisms [78, 79]. Our 
approach integrates multiple data sources to disentangle 
biotic and environmental effects on infection risk. This 
represents a step forward for disease modelling for two 
reasons. First, the ‘big data’ era has seen an explosion in 
the availability of complex, multi-structured databases. 
Developing likelihood-based pipelines to analyse these 
datasets is an emerging field that has only begun to be 
explored by epidemiologists [80]. The models applied 
here can process datasets with hundreds of parasites and 
substantially more covariates, allowing for greater effi-
ciency during crucial stages of model exploration than 
can be achieved with competing approaches. Secondly, 
graphical network models, particularly for binary data, 
have been refined across a diversity of areas ranging from 
gene association studies to network relationships among 
language passages [35]. Because they are used in many 
disciplines and their properties are understood, graphi-
cal network models represent an ideal area that can see 
exciting developments in disease mapping applications.
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A number of aspects of our analysis could be improved 
in future work. The KK method presents well-known 
challenges associated with helminth detection [81]. 
Hookworm eggs may not survive long periods following 
collection, and detection using KK screening is limited to 
people harbouring infections with egg-producing female 
worms or perhaps people harbouring high burdens [82]. 
Multiple diagnostics may be needed to rectify these 
issues. The circulating cathodic antigen test, detected in 
urine, is more sensitive for detecting Schistosoma para-
sites, and can lead to dramatically different estimates of 
prevalence [81]. In addition, open-access remote-sensed 
environmental variables such as those we used in our 
models can contain particular uncertainties that are com-
monly ignored when producing high-resolution raster 
maps [10, 43]. Detection of environmental risk factors 
may be hampered by spatial or temporal variation in san-
itation procedures, which we were unable to account for 
in our study. While surveys of schoolchildren are the pri-
mary method for analysing helminth infections, surveys 
that include adults would provide additional information 
that could improve insights into population-level risk 
factors [76]. Exploration of outputs at key points along 
our model chain gives insights into limitations that can 
be tackled with future work. Our CRF achieved good fit 
to the observed data and correctly predicted up to 80% 
of positive infections, suggesting our risk maps can be 
highly useful for managers. However, a poorer fit from 
the CRF would not necessarily increase the uncertainty 
envelopes in our risk-maps, as our framework does not 
fully propagate uncertainties from the CRF through 
to the posterior simulation. Adapting particle filter or 
Kalman filter routines that are commonly used in fore-
casting to propagate uncertainty [83, 84] may be a viable 
option that is worth exploring in future efforts to improve 
our approach.

Conclusions
Monitoring studies are essential for understanding how 
parasites are distributed across the landscape and for 
detecting factors that can be reliably used to predict 
infection risk. These surveys routinely screen individu-
als for the presence of multiple parasites, many of which 
share important facets of their epidemiological cycles, 
yet statistical models generally ignore this rich multivari-
ate data when assessing risk factors and designing treat-
ment guidelines. Our CRF ensemble approach showcases 
how multivariate computational approaches can improve 
predictions of infection and co-infection prevalence 
by leveraging this type of data in efficient algorithms. 
Approaches such as ours can be instrumental in the 

global effort to reduce and eventually eliminate neglected 
helminth infections in the world’s developing countries.
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