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Abstract 

Background:  Giardiasis is a common diarrhoeal disease caused by the protozoan Giardia duodenalis. It is prevalent in 
low-income countries in the context of inadequate access to water, sanitation and hygiene (WASH), and is frequently 
co-endemic with neglected tropical diseases such as soil-transmitted helminth (STH) infections. Large-scale periodic 
deworming programmes are often implemented in these settings; however, there is limited evidence for the impact 
of regular anthelminthic treatment on G. duodenalis infection. Additionally, few studies have examined the impact of 
WASH interventions on G. duodenalis.

Methods:  The WASH for WORMS cluster randomised controlled trial was conducted in remote communities in 
Manufahi municipality, Timor-Leste, between 2012 and 2016. All study communities received four rounds of deworm-
ing with albendazole at six-monthly intervals. Half were randomised to additionally receive a community-level WASH 
intervention following study baseline. We measured G. duodenalis infection in study participants every six months 
for two years, immediately prior to deworming, as a pre-specified secondary outcome of the trial. WASH access and 
behaviours were measured using questionnaires.

Results:  There was no significant change in G. duodenalis prevalence in either study arm between baseline and the final 
study follow-up. We found no additional benefit of the community-level WASH intervention on G. duodenalis infection 
(relative risk: 1.05, 95% CI: 0.72–1.54). Risk factors for G. duodenalis infection included living in a household with a child 
under five years of age (adjusted odds ratio, aOR: 1.35, 95% CI: 1.04–1.75), living in a household with more than six people 
(aOR: 1.32, 95% CI: 1.02–1.72), and sampling during the rainy season (aOR: 1.23, 95% CI: 1.04–1.45). Individuals infected 
with the hookworm Necator americanus were less likely to have G. duodenalis infection (aOR: 0.71, 95% CI: 0.57–0.88).

Conclusions:  Prevalence of G. duodenalis was not affected by a community WASH intervention or by two years of 
regular deworming with albendazole. Direct household contacts appear to play a dominant role in driving transmis-
sion. We found evidence of antagonistic effects between G. duodenalis and hookworm infection, which warrants 
further investigation in the context of global deworming efforts.

Trial registration Australian New Zealand Clinical Trials Registry, ACTRN12614000680662. Registered 27 June 2014, 
retrospectively registered. https​://anzct​r.org.au/Trial​/Regis​trati​on/Trial​Revie​w.aspx?id=36654​0.
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Background
Giardiasis is a parasitic enteric disease caused by the 
protozoan Giardia duodenalis. It is one of the most fre-
quent enteric protozoan infections worldwide, with a 
global disease burden of approximately 280 million cases 
annually. Giardia duodenalis is most prevalent in low-
resource settings [1], where prevalence between 20 and 
40% is common [2–8], with prevalences approaching 
70% also reported [9–11]. The health impact of giardiasis 
ranges from asymptomatic carriage, to acute self-limit-
ing diarrhoeal disease, to chronic gastrointestinal illness 
accompanied by malabsorption [1]. Chronic giardiasis in 
childhood has been associated with poor growth, mal-
nutrition, and decreased cognitive function [10, 12–15]. 
Giardiasis is transmitted by the faecal-oral route, directly 
from person to person, or indirectly through contami-
nated water or food [1]. Zoonotic transmission is also 
possible, with dogs and cats posing greatest risk of trans-
mitting Giardia to humans [16–19].

Giardia duodenalis is frequently co-endemic with other 
parasitic diseases that are common in low-resource set-
tings, of which soil-transmitted helminth (STH) infection 
is one of the most prevalent [20, 21]. STHs are parasitic 
intestinal helminths, including roundworm (Ascaris lum-
bricoides), hookworms (Necator americanus, Ancylostoma 
duodenale and Ancylostoma ceylanicum), whipworm 
(Trichuris trichiura), and threadworm (Strongyloides ster-
coralis). While G. duodenalis control relies on treatment 
with antimicrobial agents following diagnosis, control of 
STH infections in endemic settings occurs mainly through 
large-scale mass deworming programmes, as recom-
mended by the World Health Organization (WHO) [22]. 
In the context of a global commitment to controlling STH 
infections and other neglected tropical diseases, more 
than 700 million children were treated with the anthel-
minthic agents albendazole or mebendazole in deworm-
ing campaigns in 2017 [23].

There is limited literature regarding the impact of 
regular deworming on G. duodenalis infection. Alben-
dazole is efficacious in treating giardiasis when repeated 
doses are given over several days [24]; however, reported 
efficacy of single dose albendazole, as used in deworm-
ing programmes, is variable [25–27]. Several cross-sec-
tional studies in areas receiving regular deworming have 
noted ongoing high prevalence of G. duodenalis [3, 8], 
and a small randomised controlled trial (RCT) in Bang-
ladesh described an increase in G. duodenalis infection 
in the context of regular deworming with mebendazole 
[28, 29]. Some studies have shown that STH infections 
are associated with a decreased risk of G. duodena-
lis infection [30], while others have conversely noted 
an increased risk of protozoan infections among those 
infected with STHs [9, 31].

Given transmission of giardiasis by the faecal-oral 
route and the role of environmental contamination, 
interventions aimed at improving water, sanitation and 
hygiene (WASH) may play a role in reducing G. duode-
nalis transmission. A systematic review and meta-anal-
ysis of mainly observational studies found that latrine 
access, latrine use, and treating household drinking 
water were all associated with lower odds of G. duode-
nalis infection [32]. The effect of WASH interventions 
on G. duodenalis infection has been examined in small 
number of intervention studies, with mixed findings. In 
a longitudinal study in Ethiopia, a significant reduction 
in G. duodenalis prevalence was observed following a 
school-based WASH intervention [33], while in sev-
eral small RCTs, household water treatment interven-
tions showed no effect on Giardia infections [34–36]. 
An RCT conducted in the context of the Indian Total 
Sanitation Campaign reported a slightly lower Giardia 
prevalence among children who lived in villages where 
a community-based sanitation intervention was imple-
mented [37]. In the recent WASH Benefits RCTs, con-
ducted in Kenya and Bangladesh, the impact of WASH 
and nutrition interventions on child growth, diarrhoea, 
and enteric infections was studied. In Bangladesh, a sig-
nificantly lower prevalence of G. duodenalis was found 
following sanitation, handwashing, and combined 
WASH interventions [5]. However, in Kenya, no inter-
ventions reduced G. duodenalis prevalence [6]. In the 
Sanitation Hygiene Infant Nutrition Efficacy (SHINE) 
trial, conducted in rural Zimbabwe, a household-level 
WASH intervention had no impact on the prevalence 
of giardiasis among infants in the first 12 months of life, 
though there was evidence of reduced prevalence fol-
lowing a combined WASH and nutrition intervention 
[38].

The WASH for WORMS cluster RCT was conducted 
in Timor-Leste to investigate the impact of a commu-
nity WASH and deworming intervention, compared to 
deworming alone, on intestinal parasite infections. The 
impact of the study intervention on the primary out-
come (STH infections) has been published separately 
[39]. Prevalence of the protozoan infections G. duodena-
lis, Entamoeba histolytica and Cryptosporidum spp. were 
pre-specified secondary outcomes of the trial [40]. Base-
line data indicated that G. duodenalis infection was rela-
tively common, with an overall prevalence of 13%, while 
E. histolytica and Cryptosporidium spp. were present in 
less than 0.1% of the study population [41].

In this paper, we aimed to determine the impact of a 
community-based WASH intervention on G. duodenalis 
infection; examine the prevalence of G. duodenalis over 
time in the context of regular deworming; and identify 
risk factors for G. duodenalis infection.
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Methods
Study design
WASH for WORMS was a two-arm cluster RCT con-
ducted between 2012 and 2016 in the Manufahi munici-
pality of Timor-Leste [40]. Communities in the control 
arm received regular community-wide deworming, 
while communities in the intervention arm addition-
ally received an integrated community-based WASH 
intervention. Informed by initial sample size require-
ments based on the primary outcomes (hookworm and 
Ascaris spp. infections), 24 communities were enrolled 
in the study and randomly allocated to a study arm. Five 
communities (two intervention and three control) were 

deemed ineligible prior to trial commencement and were 
replaced sequentially, rather than randomly, from a pre-
generated list of replacement communities. It was not 
feasible to implement randomisation for the additional 
communities due to factors related to implementation 
of the WASH intervention by the partner organisation, 
including timing and community expectations. One com-
munity in the intervention arm was subsequently lost to 
follow-up after study baseline. Therefore, a total of 23 
communities completed the study, and 18 communities 
(nine intervention and nine control) followed the ran-
domisation protocol [40]. A flow diagram of the study is 
shown in Fig. 1.

24 communities (clusters) initially enrolled in study

12 clusters randomly allocated 
to intervention arm

12 clusters randomly allocated 
to control arm

2 clusters deemed 
no longer suitable

Baseline data collection (stool samples and questionnaires)

Community WASH intervention

1 cluster lost to 
follow-up

Community-wide deworming with albendazole

Community WASH intervention

Follow-up data collection (stool samples & questionnaires)
4 rounds at 6-month intervals

2 replacement 
clusters allocated 

sequentially

3 clusters deemed 
no longer suitable

3 replacement 
clusters allocated 

sequentially

Community-wide deworming with albendazole
4 rounds at 6-month intervals

Fig. 1  Flow diagram of the WASH for WORMS trial
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Study intervention
The deworming intervention, delivered in both study 
arms, involved distributing a single 400 mg dose of alben-
dazole to all eligible community members (those older 
than one year of age, excluding pregnant women in the 
first trimester). Children aged 12–23 months were given 
half a dose. Four deworming rounds, conducted at six-
monthly intervals, were delivered, with a fifth round 
given following completion of data collection. Albenda-
zole was delivered by members of the research team and 
taken under direct observation.

The WASH intervention, implemented following study 
baseline and prior to the first deworming round, con-
sisted of providing access to a protected community 
water supply, promoting improved sanitation through 
encouraging household latrine construction [42], and 
conducting hygiene education, focused on handwash-
ing before eating and after defecating. The WASH inter-
vention was implemented by WaterAid Australia, an 
international non-governmental organisation (NGO) in 
conjunction with local partner NGOs. Further details 
regarding the WASH and deworming interventions are 
available in the published study protocol [40].

Data collection
Sociodemographic data (age, sex, education, employ-
ment, household income and assets), clinical information 
(current and recent diarrhoea), and WASH information 
(handwashing behaviours, shoe-wearing, defecation 
practices, presence and type of household latrine, house-
hold garbage disposal, and household water supply) were 
collected through individual and household-level ques-
tionnaires at baseline and four follow-up time points, 
at six-monthly intervals. Stool samples were collected 
from all willing community members over one year 
of age, at baseline and each of the four follow-up time 
points, immediately prior to deworming. Samples were 
preserved in 5% potassium dichromate and sent to the 
QIMR Berghofer Medical Research Institute (Brisbane, 
Australia) for analysis. DNA extractions were performed 
using the PowerSoil DNA Isolation Kit (Mo Bio, Carls-
bad, CA, USA) and subjected to two multiplex real-
time PCR reactions: one for detection of G. duodenalis, 
Cryptosporidium spp., Entamoeba histolytica and Stron-
gyloides spp., and the other for detection of Ascaris spp., 
N. americanus, Ancylostomaspp. and Trichuris spp. An 
Equine Herpes Virus target was spiked into each sample 
as an extraction and internal qPCR control [43].

Statistical analysis
Prevalence of G. duodenalis infection along with 95% 
confidence intervals (CI) was calculated for each study 
arm at each time point using logistic regression models 

that accounted for community-level clustering using 
robust standard errors. The impact of the community-
level WASH intervention on G. duodenalis infection 
was evaluated in the 18 communities that followed the 
randomisation protocol, across all four follow-up time 
points. We constructed a generalised linear mixed model, 
with community, household, and individual entered as 
random effects, to account for repeated observations on 
the same individuals over time, nested within households 
and communities. We used Poisson regression to model 
relative risk (RR), incorporating an interaction term 
between study arm and follow-up time point, and adjust-
ing for age group and sex. We calculated RR (and 95% CI) 
of infection for the study intervention, compared to the 
control arm, at each follow-up time point, by calculating 
a post-estimation linear combination of coefficients and 
standard errors, using Wald-type methods [39].

To explore individual and household-level risk factors 
for G. duodenalis infection, we conducted an observa-
tional analysis of all individuals in the study cohort (i.e. 
in the 23 communities that completed the study), across 
all five study time points (baseline and four follow-ups). 
We again constructed generalised linear mixed models to 
account for clustering at the community, household, and 
individual level. We used Bernoulli logistic regression to 
model odds ratio (OR) for each predictor variable. Predic-
tor variables included sociodemographic factors, WASH 
access and behaviours, household animal ownership, STH 
infections and season. Socioeconomic status was deter-
mined using principal component analysis as described 
previously [41, 44]. A full list of variables examined is pro-
vided in Additional file  1: Text S1. Univariable analyses 
were conducted for each potential risk factor, with vari-
ables retained if P < 0.2. Multivariable models were then 
constructed using a two-stage approach. “Within-domain” 
multivariable models were built for groups of related 
variables: demographic, individual socioeconomic, indi-
vidual hygiene, individual sanitation, school sanitation, 
household socioeconomic, household hygiene, household 
water, household sanitation, environmental, and infec-
tion-related (see Additional file 1: Text S1). These models 
were built using variables retained from the univariable 
analysis, adjusted for age, sex, and study time point. A full 
model was then constructed with variables significant at 
P < 0.1 in the “within-domain” models, adjusted for age, 
sex and study time point. The final multivariable model 
was produced using backward stepwise regression such 
that age, sex, study time point, and covariates significant 
at P < 0.05 remained.

Finally, we examined the impact of previous G. duo-
denalis infections on risk of infection in the entire study 
cohort. For this model, the outcome variable was G. duo-
denalis infection at the final study time point, and the 
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predictor variable was the number of infections at pre-
vious study time points, adjusted for age and sex, and 
clustering at the community and household levels. All 
statistical analyses were conducted using Stata version 15 
(College Station, TX, USA).

Results
At study baseline, among the 23 communities that com-
pleted the trial, 2448 participants provided informed 
consent to participate in the study. Of these, 1971 
(80.5%) provided a stool sample that was analysed for 
G. duodenalis infection. Baseline characteristics of 
this study population are shown in Additional file  2: 
Table  S1. Participation rates across the course of the 
study, including those for the subset of 18 communities 
that followed the randomisation protocol, are summa-
rised in Additional file 2: Table S2. Treatment coverage 
of eligible community members with albendazole was 
high, above 90% at each study time point [39].

Giardia duodenalis infections over time
Prevalence of G. duodenalis infection across the study 
period in each arm, overall and disaggregated by age, 
is shown in Table  1. Intensity of infection, measured 
as qPCR cycle threshold (Cq) values, across the study 
period is depicted in Additional file  2: Table  S3. At 
baseline, G. duodenalis prevalence in the intervention 
arm was 14.5% (95% CI: 10.1–17.6%) and in the control 

arm was 12.3% (95% CI: 9.6–16.3%). At the end of the 
study, G. duodenalis prevalence in the intervention 
and control arms was 17.4% (95% CI: 12.9–21.6%) and 
14.0% (95% CI: 10.3–18.0%), respectively. As depicted 
in Table  1, in both study arms, G. duodenalis preva-
lence was highest among children aged 1–5 years of 
age, ranging between 23.7% (95% CI: 14.4–30.1%) and 
34.3% (95% CI: 25.2–43.4%) in the intervention arm, 
and between 14.4% (95% CI: 5.5–23.1%) and 38.1% 
(95% CI: 27.7–48.5%) in the control arm. There was no 
significant difference in risk of G. duodenalis infection 
at the end of the study compared to baseline, in either 
the intervention arm (RR: 1.17, 95% CI: 0.87–1.86, 
P = 0.222) or the control arm (RR: 1.16, 95% CI: 0.90–
1.48, P = 0.252).

Across all age groups and study time points, the prev-
alence of self-reported diarrhoea (at the time of survey 
or within the previous 2 weeks) among those infected 
with G. duodenalis was 11.5% (95% CI: 7.4–17.5%). This 
was not significantly different between the intervention 
arm (14.1%, 95% CI: 7.7–24.5%) and the control arm 
(8.6%, 95% CI: 5.4–13.7%, P = 0.206), and was also not 
significantly different to the prevalence of diarrhoea 
reported among those not infected with G. duodenalis 
(11.5%, 95% CI: 9.7–13.7%, P = 0.768). Among those 
infected with G. duodenalis, the highest diarrhoea 
prevalence was observed in children aged 1–5 years in 
both the intervention arm (15.9%, 95% CI: 8.5–28.0%) 
and the control arm (11.9%, 95% CI: 6.5–20.6%).

Table 1  Prevalence of G. duodenalis in the study population over time

Note: The table includes participants in the 18 communities that were randomly allocated

Abbreviation: CI, confidence interval

Overall 1–5 years 6–11 years 12–17 years 18–64 years 65+ years

n Prevalence
(95% CI)

N Prevalence
(95% CI)

N Prevalence
(95% CI)

N Prevalence
(95% CI)

N Prevalence
(95% CI)

n Prevalence
(95% CI)

Baseline

 Intervention 710 14.5 (10.1–17.6) 131 23.7 (14.4–30.1) 157 25.5 (18.6–32.4) 65 13.9 (4.4–22.8) 306 6.9 (3.0–10.1) 51 3.9 (0–8.7)

 Control 888 12.3 (9.6–16.3) 127 29.9 (20.9–39.6) 175 19.4 (13.4–25.4) 118 12.7 (5.7–21.0) 395 5.1 (2.4–8.5) 73 4.1 (0–9.2)

Follow-up 1

 Intervention 584 15.4 (8.8–22.3) 128 30.5 (18.2–42.0) 133 24.1 (15.1–32.0) 44 11.4 (1.0–22.6) 240 5.4 (1.8–8.9) 39 2.6 (0–7.5)

 Control 689 10.2 (4.7–14.2) 104 14.4 (5.5–23.1) 151 20.5 (11.2–26.9) 72 9.7 (1.6–16.9) 290 5.5 (2.1–8.9) 72 1.4 (0–4.1)

Follow-up 2

 Intervention 552 16.5 (11.8–20.8) 113 26.5 (17.9–35.0) 134 19.4 (12.7–26.1) 51 9.8 (1.6–18.0) 210 12.9 (6.5–18.3) 44 6.8 (0–14.6)

 Control 624 11.2 (7.7–14.8) 98 25.5 (16.5–34.6) 147 12.9 (7.5–18.4) 62 19.4 (9.5–29.2) 253 4.3 (1.2–7.2) 64 4.7 (0–9.9)

Follow-up 3

 Intervention 531 19.6 (12.5–24.4) 119 32.8 (18.9–42.3) 123 26.0 (18.3–33.8) 44 22.7 (9.8–36.2) 194 10.8 (4.1–16.3) 51 3.9 (0–9.2)

 Control 609 11.7 (7.2–16.0) 92 28.3 (16.1–40.6) 131 16.8 (10.4–23.2) 66 10.6 (2.0–18.5) 256 5.9 (2.0–1.06) 64 1.6 (0–4.6)

Follow-up 4

 Intervention 553 17.4 (12.9–21.6) 105 34.3 (25.2–43.4) 136 26.5 (19.1–33.9) 68 14.7 (6.3–23.1) 197 6.6 (3.1–10.1) 47 2.1 (0–7.0)

 Control 623 14.0 (10.3–18.0) 84 38.1 (27.7–48.5) 135 19.3 (12.6–25.9) 65 16.9 (7.8–26.0) 261 5.4 (2.6–8.1) 78 5.1 (0–11.0)
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Impact of WASH intervention
The results of the generalised linear mixed model exam-
ining the impact of the study intervention are shown in 
Table  2. These results demonstrate no significant dif-
ference in risk of G. duodenalis infection between the 
intervention or control arm at any time point. At the 
completion of the trial, the RR of G. duodenalis infec-
tion in the intervention arm, compared to the control 
arm, was 1.05 (95% CI: 0.72–1.54, P = 0.787).

Risk factors for G. duodenalis infection
Univariable analyses found various WASH, demographic 
and socioeconomic variables significantly associated with 
G. duodenalis infection at P < 0.2; full results of univari-
able analyses are provided in Additional file  2: Table  S4. 
In the final adjusted multivariable model (Table  3), the 
odds of G. duodenalis infection decreased significantly 
with increasing age. People who lived in a household 
with a child under five years of age had significantly 
increased odds of infection compared to those who did 
not (adjusted odds ratio, aOR: 1.35, 95% CI: 1.04–1.75, 
P = 0.023). Similarly, those living in a household of more 
than six people had higher odds of infection compared to 
those living in households of six or fewer people (aOR: 
1.32, 95% CI: 1.02–1.72, P  =  0.035). Odds of infection 
were higher in the wet season compared to the dry sea-
son (aOR: 1.23, 95% CI: 1.04–1.45, P = 0.015). Infection 
with Necator americanus was associated with lower odds 
of G. duodenalis infection (aOR: 0.71, 95% CI: 0.57–0.88, 
P =  0.002). No WASH variables remained as significant 
predictors of infection in the final model.

Repeated infections in individuals over time
Table  4 shows the impact of G. duodenalis infections at 
previous study time points on the risk of infection with G. 
duodenalis at the final follow-up. The risk of G. duodenalis 

infection at the end of the trial was significantly greater 
among those with a history of infection diagnosed at 
previous study time points, with relative risk of infection 
increasing with the number of time points.

Discussion
To our knowledge, this is the first study to examine G. 
duodenalis infection in the context of a community-
based WASH and deworming RCT. In our study setting 
in rural Timor-Leste, we observed a moderate overall 
prevalence of G. duodenalis in both study arms, ranging 
between 10.2 and 19.6% over the study period. Preva-
lence was highest (up to 38.1%) among children aged 1–5 
years. This is consistent with the known epidemiology 
of Giardia infection that tends to predominate among 
young children [1, 45, 46]. Most infections appeared to 
be subclinical; only 11.5% of individuals infected with G. 
duodenalis reported diarrhoea, which was similar to the 
background diarrhoea prevalence among the study popu-
lation. Over four rounds of community-wide deworm-
ing with albendazole, we observed no significant change 
in G. duodenalis prevalence in either study arm. This 
supports previous findings that a single 400 mg dose of 
albendazole is not efficacious against G. duodenalis [25].

We found no impact of the community-based WASH 
intervention in terms of reducing G. duodenalis preva-
lence, compared to the control arm that did not receive a 
WASH intervention. This is consistent with the findings 
of the primary outcome of the WASH for WORMS trial, 
where no additional impact of the WASH intervention 
on STH infections was identified [39]. Our findings are 
also consistent with several previous intervention stud-
ies, including the recent SHINE trial and WASH Benefits 
Kenya, that identified no impact of household-level WASH 
interventions on Giardia infection [6, 38]. However, 
other studies, including WASH Benefits Bangladesh, have 

Table 2  Impact of the study intervention on G. duodenalis infection

Notes: aAdjusted RR obtained from generalised linear mixed model, adjusted for age group and sex (fixed effects) and clustering at the community, household, and 
individual levels (random effects). The model included 1878 participants in 456 households in 18 clusters (those randomly allocated to intervention and control arms)

Abbreviations: CI, confidence interval; RR, relative risk

Study time point Study arm n Infection prevalence

Prevalence
(95% CI)

Adjusted RRa

(95% CI)
P-value

Follow-up 1 Intervention 584 15.4 (8.8–22.3) 1.28 (0.77–2.14) 0.341

Control 689 10.2 (4.7–14.2)

Follow-up 2 Intervention 552 16.5 (11.8–20.8) 1.26 (0.83–1.94) 0.277

Control 624 11.2 (7.7–14.8)

Follow-up 3 Intervention 531 19.6 (12.5–24.4) 1.38 (0.91–2.10) 0.124

Control 609 11.7 (7.2–16.0)

Follow-up 4 Intervention 553 17.4 (12.9–21.6) 1.05 (0.72–1.54) 0.787

Control 623 14.0 (10.3–18.0)
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detected lower risk of G. duodenalis infection among par-
ticipants who received WASH interventions [5, 37]. A pos-
sible explanation for our findings is suboptimal coverage of 
the WASH intervention. As previously reported, although 
initial household latrine coverage was high following the 
WASH intervention, this decreased over time, and at the 
end of the trial, 40% participants in the intervention arm 
were practising open defecation [39]. This would facili-
tate environmental contamination, likely leading to ongo-
ing transmission of G. duodenalis. Additionally, although 
rates of reported handwashing with soap were high among 
study participants at the end of the trial, this was self-
reported and may therefore overestimate true handwash-
ing behaviours [47]. Other potential sources of ongoing G. 

duodenalis transmission following the WASH intervention 
include zoonotic transmission and contaminated drinking 
water. Given that protected water sources were provided as 
part of the study intervention, contamination occurring at 
the main source of community drinking water is unlikely. 
However, it is possible that individuals obtained drink-
ing water from other (unprotected) sources, or that water 
contamination occurred during or after collection. WASH 
interventions may require higher coverage, over a longer 
duration of time, to achieve any impact on transmission of 
intestinal protozoa in areas with significant environmental 
contamination.

Our risk factor analysis provides further insight into 
the individual-level factors associated with G. duodenalis 

Table 3  Results of final generalised linear mixed model of risk factors for G. duodenalis infection

Notes: Results in bold text are those significant at P < 0.05. Reference groups are as follows: aage 1–5 years; bstudy baseline; cdry season (June through November). The 
model includes 2694 people in 604 households in 23 communities

Abbreviations: aOR, adjusted odds ratio; CI, confidence interval

Covariate aOR 95% CI P-value

Age group (years)a

 6–11 0.74 0.57–0.95 0.017

 12–17 0.42 0.30–0.60 < 0.001

 18–64 0.13 0.10–0.78 < 0.001

 65+ 0.10 0.06–0.16 < 0.001

Male sex 0.97 0.80–1.19 0.802

Study time pointb

 Follow-up 1 0.77 0.60–0.98 0.037

 Follow-up 2 0.88 0.68–1.13 0.318

 Follow-up 3 0.97 0.75–1.25 0.820

 Follow-up 4 1.05 0.81–1.37 0.689

Lives in a household with at least one child under 5 years old 1.35 1.04–1.75 0.023

Lives in a household with more than 6 people 1.32 1.02–1.72 0.035

Infection with Necator americanus 0.71 0.57–0.88 0.002

Wet season (December through May)c 1.23 1.04–1.45 0.015

Random effects variance (95% CI)

 Community 0.26 (0.11–0.65)

 Household 1.20 (0.88–1.63)

 Participant 1.20 (0.88–1.65)

Table 4  Impact of previous infections on G. duodenalis infection at the end of the trial

Notes: Effect estimates obtained using generalised linear mixed models, adjusted for age group and sex (fixed effects) and clustering at the community and household 
levels (random effects). The model included 1464 individuals in 438 households in 23 communities. Results in bold text are those significant at P < 0.05

Abbreviation: CI, confidence interval

n Prevalence at final follow-up 
(95% CI)

Relative risk 95% CI P-value

No infection at previous time points 1082 8.5 (7.0–10.3) reference

Infection at one previous time point 254 26.3 (21.3–32.1) 2.05 1.47–2.86 < 0.001

Infection at two previous time points 90 53.3 (43.0–63.3) 3.81 2.62–5.56 < 0.001

Infection at three previous time points 26 53.8 (35.0–71.6) 3.88 2.13–7.07 < 0.001

Infection at four previous time points 12 66.7 (37.6–86.9) 5.55 2.55–12.10 < 0.001
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infection. We examined a wide range of factors includ-
ing WASH access and behaviours, animal ownership, 
STH infections, and socioeconomic variables. However, 
relatively few predictors remained in our final model. 
Age group was a major predictor of infection, and N. 
americanus infection was associated with reduced odds 
of G. duodenalis infection. This potential antagonism 
between hookworm and G. duodenalis has been identi-
fied previously [30], with potential explanations includ-
ing competitive inhibition within the small intestine, 
or cross-immunity due to helminth-induced Th2 cell 
response [30]. However, these findings are not con-
sistent across the literature, with other studies report-
ing increased risk of protozoan infections among those 
infected with STH [9, 31].

Other factors that significantly affected the odds of G. 
duodenalis infection included living in a household with 
a child under five years of age, and living in a household 
with more than six people. This demonstrates that direct 
household contacts likely play a dominant role in trans-
mission. Additionally, infection was significantly more 
likely during the wet season, consistent with previous 
findings of increased transmission during rainy seasons 
[11, 48].

We identified that previous infection with G. duode-
nalis was associated with significantly increased odds of 
infection at the end of the study, with a dose-response 
observed with increasing number of previous infections. 
Although there is some evidence that people may develop 
a degree of acquired immunity to G. duodenalis [49], it 
has also been shown that reinfections occur commonly 
and rapidly after successful treatment [50]. Furthermore, 
it is known that giardiasis can become chronic and per-
sist for more than six months following initial infection 
[14, 51]. Therefore, repeated infections within individuals 
in this study could represent either chronic infections, or 
reinfections occurring after clearing Giardia, potentially 
driven by persistent environmental exposure or repeated 
risk behaviours.

This analysis was conducted in the context of a 
robustly-designed RCT, using a highly-sensitive diag-
nostic technique; however, there are several important 
limitations. The community-based WASH intervention, 
although delivered in accordance with national sanitation 
policy by local NGOs in a culturally-appropriate man-
ner, did not achieve its aims of 100% household latrine 
coverage and “open-defecation free” communities. This 
made detecting any impact of the WASH intervention 
less likely. As mentioned above, data relating to WASH 
access and behaviours were derived predominantly 
from self-report, which could be biased towards report-
ing safer WASH behaviours [47], leading to difficulty in 
detecting true associations between WASH behaviours 

and infection. Finally, despite including a wide range 
of potential predictors in the analysis of risk factors for 
G. duodenalis infection, residual confounding due to 
unmeasured factors remains likely.

A number of key priorities for ongoing research arise 
from this study. First, additional research examining the 
impact of WASH risk factors and WASH interventions 
on protozoan infections is required. Most previous stud-
ies on risk factors have focused on children [32]. Given 
that we identified infection across all age groups and that 
many households are intergenerational, more research 
into G. duodenalis infection across the entire community 
should be undertaken. Identifying improved mechanisms 
to measure WASH behaviours in a research context is 
also required, to allow accurate determination of key 
risk factors and inform the optimal design of interven-
tions. Food-borne transmission is an important source 
of G. duodenalis infection [52, 53] and Giardia also has 
potential for zoonotic transmission [17–19]; therefore, 
WASH interventions may be improved by incorporating 
education about safe food handling practice, and hygiene 
around animals, tailored to local contexts.

Additional studies are required to investigate the poten-
tial antagonistic relationship between G. duodenalis and 
hookworm infections, and to identify ways to mitigate this 
potentially antagonistic effect. This is particularly impor-
tant given the high burden of both STH and Giardia 
infections in low-resource settings, especially among 
children, and the large-scale global deworming efforts 
currently underway. It may be necessary for STH control 
guidelines to include recommendations for undertaking 
diagnosis and treatment of G. duodenalis infections dur-
ing monitoring efforts, and for educating communities 
about the symptoms of giardiasis and the importance of 
seeking additional treatment given that deworming is 
unlikely to be effective. Strengthening the understanding 
of the role of both WASH and deworming in the epidemi-
ology and control of G. duodenalis is crucial, in order to 
inform the design and delivery of interventions tailored to 
the communities that will benefit from them most.

Conclusions
This study demonstrates the ongoing burden of G. duo-
denalis across all age groups, but particularly among 
children, in communities receiving regular deworm-
ing for STH control. It also demonstrates some of the 
challenges involved in implementing and evaluating 
WASH interventions in low-income settings, and the 
complexities in generating evidence to demonstrate the 
impact of WASH on health outcomes. This study pro-
vides important evidence to inform the understanding 
of G. duodenalis epidemiology in the context of regular 
deworming and WASH interventions, and highlights 
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important areas for future research, including further 
investigation of a potentially antagonistic relationship 
between hookworm and G. duodenalis infections.
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