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The antioxidants resveratrol 
and N-acetylcysteine enhance anthelmintic 
activity of praziquantel and artesunate 
against Schistosoma mansoni
Maria João Gouveia1,2,3, Paul J. Brindley4, Carlos Azevedo5, Fátima Gärtner1,3,6, José M. C. da Costa1,7 
and Nuno Vale2,3,6,8*

Abstract 

Background: Treatment of schistosomiasis has relied on the anthelmintic drug praziquantel (PZQ) for more than a 
generation. Despite its celebrated performance for treatment and control of schistosomiasis and other platyhelminth 
infections, praziquantel has some shortcomings and the inability of this drug to counteract disease sequelae prompts 
the need for novel therapeutic strategies.

Methods: Using a host-parasite model involving Biomphalaria glabrata and Schistosoma mansoni we established 
mechanical transformation of S. mansoni cercariae into newly transformed schistosomula (NTS) and characterized 
optimal culture conditions. Thereafter, we investigated the antischistosomal activity and ability of the antioxidants 
N-acetylcysteine (NAC) and resveratrol (RESV) to augment the performance of praziquantel and/or artesunate (AS) 
against larval stages of the parasite. Drug effects were evaluated by using an automated microscopical system to 
study live and fixed parasites and by transmission electron microscopy (TEM).

Results: Transformation rates of cercariae to schistosomula reached ~ 70% when the manipulation process was opti-
mized. Several culture media were tested, with M199 supplemented with HEPES found to be suitable for S. mansoni 
NTS. Among the antioxidants studied, RESV alone or combined with anthelminthic drugs achieved better results 
rather N-acetylcysteine (NAC). TEM observations demonstrated that the combination of AS + RESV induced severe, 
extensive alterations to the tegument and subtegument of NTS when compared to the constituent compounds 
alone. Two anthelmintic–antioxidant combinations, praziquantel-resveratrol [combination index (CI) = 0.74] and 
artesunate-resveratrol (CI = 0.34) displayed moderate and strong synergy, respectively.

Conclusions: The use of viability markers including staining with propidium iodide increased the accuracy of drug 
screening assays against S. mansoni NTS. The synergies observed might be the consequence of increased action by 
RESV on targets of AS and PZQ and/or they may act through concomitantly on discrete targets to enhance overall 
antischistosomal action. Combinations of active agents, preferably with discrete modes of action including activity 
against developmental stages and/or the potential to ameliorate infection-associated pathology, might be pursued in 
order to identify novel therapeutic interventions.
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Background
Schistosomiasis is considered the most important hel-
minthic disease of humanity in terms of morbidity and 
mortality; more than 240 million people are infected 
with schistosomes, and another 700 million are at risk of 
infection [1–4]. Despite the fact that control strategies 
have been employed to block transmission and reduce 
the disease burden, including mass and targeted chemo-
therapy, improvements to sanitation and modification of 
the environment, and the use of molluscides [5], schisto-
somiasis remains a major public health problem in sub-
Saharan Africa [3, 6]. Historically considered restricted 
to the tropics and subtropics where suitable intermediate 
host snails also are endemic, transmission of schistoso-
miasis has recently re-emerged in southern Europe [7]. 
Currently, chemotherapy is the first-line tool to mini-
mize the prevalence and incidence of schistosomiasis 
[8–10]. Indeed, for the past 40 years praziquantel (PZQ) 
has been recommended by the World Health Organiza-
tion for the treatment of all forms of schistosomiasis [11]. 
PZQ is inexpensive, given by mouth, readily available and 
well-tolerated, and hence suitable for mass drug treat-
ment campaigns [11]. However, whereas PZQ is active 
against the adult developmental stages and against young 
schistosomula within a day or so of infection, it displays 
poor efficacy against schistosome eggs and the develop-
ing and migrating immature schistosomula and young 
adult forms [12]. This likely explains and contributes to 
low cure rates and rapid re-infection where residents of 
endemic sites are frequently infected with both juvenile 
and adult parasites concurrently. For effective treatment 
and sustainable control, PZQ retreatment must be main-
tained on a regular basis.

On the other hand, the dependence on PZQ raises 
legitimate concerns about the appearance of drug resist-
ance [12–14]. Although widespread resistance has not 
been convincingly demonstrated, field and experimental 
isolates displaying reduced sensitivity to PZQ have been 
described from several countries [15]. The discovery and 
development of novel effective drugs, and also new drug 
targets, has been considered a research priority. PZQ 
derivatives do not improve antischistosomal activity. 
Frequently, the promising in vitro activity of a candidate 
PZQ-derivative has not been translated into antischisto-
somal activity in vivo [10]. There is a reawakening of the 
need and value to search for alternative chemotherapeu-
tic tactics, such as combinations of drugs and drug repur-
posing [16–18].

PZQ alone cannot capably reverse pathological seque-
lae of schistosomiasis [19], and new therapies against 
schistosomiasis should focus also on this problem in 
addition to anthelmintic performance. During the past 
30 years, artemisinin derivatives, such as artesunate 

(AS), have been shown to have antischistosomal activ-
ity both in vitro and in animal models. In marked con-
trast to PZQ, AS exhibits potent activity against juveniles 
whereas the invasive stages and adult worm are less sus-
ceptible. Moreover, adult female worms are somewhat 
more susceptible than the males. Although the mecha-
nism of action of AS against schistosomes is not well 
understood, the glycogen content of worms is reduced 
by a reduction in glucose uptake, an increase in glyco-
gen phosphorylase activity, and by inhibition of enzymes 
involved in glucose metabolism [20, 21].

During schistosomiasis, alterations occur in organs 
and tissues including disturbance to cellular antioxidant 
systems, which likely degrade the detoxification process 
of exogenous or endogenous free radical liberation, e.g. 
reactive oxygen species (ROS), which originate during 
the immunological response [22, 23]. On the other hand, 
reactive electrophilic compounds, e.g. estrogen-like 
metabolites, capable of reaction with DNA to form DNA-
adducts and liberation of ROS, have been implicated as 
initiators of squamous cell carcinoma during urogenital 
schistosomiasis caused by infection with Schistosoma 
haematobium [24]. In this situation, the need for antioxi-
dants increases to counteract reactive xenobiotics arising 
from oxidation [25–27], and in support of immunological 
and inflammatory responses directed at schistosome eggs 
in tissues [26]. Moreover, antioxidants might prevent 
DNA damage [28] and block the initiation of carcinogen-
esis [29].

Antioxidants such as N-acetylcysteine (NAC) and res-
veratrol (RESV) might ameliorate hepatic redox homeo-
stasis during schistosomiasis. In addition, their protective 
effects against liver fibrosis induced by granuloma forma-
tion during infection may account partially for the ability 
of these antioxidants to inhibit or ameliorate the for-
mation of schistosomal toxic products and render their 
impact reversible [26, 30]. NAC is an acetyl derivative of 
l-cysteine containing a thiol group, which participates in 
known biochemical pathways including its role as a pre-
cursor of cysteine, which is the rate-limiting component 
of glutathione (GSH). Moreover, NAC itself serves as an 
antioxidant by reacting directly with free radicals [31]. 
RESV is a 3,4,5-trihydroxylstilbene, a naturally occur-
ring polyphenol occurs in flowering plants where it plays 
a role in homeostasis during environmental stress [32]. 
RESV exhibits neuroprotective and cardio-protective 
benefits [33, 34]. Not only is RESV an antioxidant, it also 
induces others intracellular antioxidant activities [34].

It has been emphasized that more research should 
be undertaken to investigate whether combinations 
with active compounds would reveal synergistic effects 
that could contribute to enhanced anthelmintic out-
comes [35]. Despite having the above-described positive 
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attributes, both and PZQ and AS present some draw-
backs. We speculated that combinations of these anthel-
mintic drugs with antioxidant biomolecules might 
enhance the antischistosomal performance of PZQ and 
AS. We investigated the schistosomicidal activity in vitro 
of combinations of PZQ and AS with the antioxidants 
NAC and RESV against newly transformed schistoso-
mula (NTS) of S. mansoni.

Methods
Drugs and media
PZQ, NAC, Medium 199, HEPES (4-(2-hydroxyethyl)-
1-piperazine ethane sulfonic acid) (1M), l-glutamine, 
penicillin and streptomycin, Hank’s balanced salt solu-
tion (HBSS), and amphotericin B were purchased from 
Sigma-Aldrich (Lisboa, Portugal); heat inactivated fetal 
bovine serum (iFBS) from Lonza (Basel, Switzerland); 
RESV from Santa Cruz Biotechnology (Dallas, TX, USA); 
and AS from Bertin Pharma (Montigny-le-Bretonneux, 
France). For in vitro assays, stock solutions of test com-
pounds (2–4 mg/ml) were prepared in 100% dimethylsul-
foxide (DMSO; Sigma-Aldrich) and stored at 4 °C.

Transformation of cercariae into newly transformed 
schistosomula (NTS)
To evaluate the schistosomicidal activity of antioxi-
dants and whether or not they might augment the activ-
ity of anthelmintic drugs, cercariae of S. mansoni were 
mechanically transformed into schistosomula by vortex-
ing transformation. NTS were obtained by mechanical 
transformation of S. mansoni cercariae shed from Biom-
phalaria glabrata for 2–3 h after exposure to light, with 
mechanical transformation performed as described [36]. 
Some parameters including duration of cercarial suspen-
sion on ice (30 to 60 min), centrifugation time (5 to 10 
min), centrifugal force (800 to 1000× rpm) and steps dur-
ing purification (3 to 5) were modified to enhance con-
version rates of cercariae into schistosomula. The final 
step consisted of chilling the cercarial suspension on ice 
for 60 min, after which cercariae were pelleted by cen-
trifugation at 1000× rpm at 4 °C for 10 min. The cercarial 
pellet was resuspended in 2 ml of cold HBSS containing 
2% amphotericin B, mixed vigorously through a pipette, 
vortexed for 4 min to induce tail shedding, and incubated 
on ice for 10 min to concentrate the NTS. The tail-rich 
supernatant was decanted and discarded, and the pel-
leted schistosomula re-suspended in 7 ml of cold HBSS, 
with this step repeated five times. The conversion rate 
was calculated by counting the total number of cercariae 
before transformation in relation to the total number of 
schistosomula obtained after purification (Table 1).

Optimizing the culture conditions
After transformation of cercariae into NTS, optimal 
culture conditions were established iteratively. Due to 
microbial contamination from the schistosome-infected 
snails and snail excrement, culture media for NTS were 
supplemented with 100 U/ml penicillin and 100 μg/ml 
streptomycin [37]. NTS were incubated in supplemented 
media M199 at 37  °C in 5%  CO2 in air [37]. NTS were 
placed in 96-well flat-bottom plates (Nunclon, Roskilde, 
Denmark) and incubated with M199 supplemented with 
20 mM HEPES or 7.5% sodium bicarbonate and increas-
ing concentrations of heat inactivated fetal bovine serum 
(iFBS), 5–15%, 37  °C in 5%  CO2 in air. The viability of 
NTS, at 50–100 larvae per well, was assessed daily based 
on morphology and motility using a semi-quantitative 
grading, where a score of 3 indicated normal activity 
without morphological changes; 2 indicated activity with 
some morphological changes and/or granularity; 1 indi-
cated minimal activity, severe morphological changes 
and granularity; and 0 indicated no movement seen, 
severe granularity, non-viable [37–39] as observed under 
bright field at 10–40× magnification with an inverted 
microscope (Nikon Phase Contrast 2, LDW 0.52; Nikon, 
Tokyo, Japan). Schistosomula were considered to have 
died when movement was not evident after 90 s [38]. 
Micrographs were captured using a camera (PowerShot 
A360; Canon, Maryland, USA).

Antischistosomal activity
A concentration of 50–100 NTS per 100 μl in pre-heated 
(37 °C) optimal culture media was placed in 96-well flat-
bottom plates (Nunclon) and incubated for 24 h at 37 °C 
in 5%  CO2 in air [38]. Culture media, 250 μl final vol-
ume per well, were supplemented with test compounds 
at increasing concentrations. NTS incubated in medium 
containing the maximum DMSO concentration, 2% v/v, 
served as the vehicle control. In a first screening, NTS 
were incubated for 72 h at the highest concentration (100 
μM) of PZQ, AS, NAC and RESV alone and combined 
(e.g. PZQ-NAC) 1:1 (v/v). Secondary screening was per-
formed iteratively based on antioxidant concentration 
performance during the initial screen. At the second 
screen, serial dilutions from 10 to 100 μM were tested. 
Initially, viability and morphological alterations 1, 17, 
24 and 48 h post-exposure were assessed using inverted 
microscopy. After 72 h, NTS viability was assessed with 
the assistance of automated microscopy (LionHeart 
FX, BioTek, Winooski, VT, USA) fitted with Gen5 v.3.0 
software to process and analyze data, to capture color 
bright field and fluorescence Texas Red channel (586 nm) 
images. Propidium iodide [PI; 0.5 mg/ml in sodium cit-
rate (1%)] was added to each well and NTS incubated for 
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15 min a 37 °C [40, 41]. The principle is based on the dif-
ferent membrane permeability to the membrane-imper-
meable fluorescent DNA intercalating agent PI which 
stains membrane-compromised cells (red fluorescence) 
[40]. The performance of each combination was charac-
terized using a combination index (CI), where CI > 0.1 
indicates very strong synergism, CI: 0.1–0.3 strong syner-
gism, CI: 0.3–0.7 synergism, CI: 0.7–0.85 moderate syn-
ergism, CI: 0.85–0.9 slight synergism, CI: 0.9–1.1 nearly 
additive and CI > 1.1 antagonist, as previously described 
[42, 43]. This was calculated with CompuSyn v.1.0 (Com-
boSyn, Inc., Paramus, NJ, USA). Each concentration of 
anthelmintic drug, antioxidant alone and in combina-
tion was tested in duplicate; the assays were performed 
at least twice.

Transmission electron microscopy (TEM)
For evaluation of ultrastructural alterations induced by 
AS, RESV or AS + RESV (1:1) at 100 μM and post-expo-
sure of 72 h, the NTS treated and untreated (controls) 
were fixed with 2.5% glutaraldehyde in 0.2 M sodium 
cacodylate, pH 7.4 for 4 h. After fixation, the worms were 
washed overnight in the same buffer and post-fixed in 
1% osmium tetraoxide  (OsO4). Subsequently, fixed NTS 
were dehydrated in an ascending, graded ethanol series 
and embedded in Epon epoxy resin. Semi-thin sections 
were stained with methylene blue-Azur II. Ultrathin sec-
tions were double-contrasted with aqueous uranyl ace-
tate and lead citrate. Ultrastructural features of NTS in 
the sections were observed and images documented with 
TEM using a JEOL 100CXII microscope (JEOL, Massa-
chusetts, USA) operated at 60 kV and equipped with a 
Gatan digital camera (Gatan, California, USA).

Results
Mechanical transformation
The mechanical transformation of cercariae of S. man-
soni into NTS using the revised protocol yielded an aver-
age conversion rate of 68.6 ± 4.8% (mean ± SE) compared 
to 47% using an earlier method [36], as well as fewer 
cercarial tails in the culture plates during the down-
stream assays (Table  1, 12 experiments). Low conver-
sion rates seen in Experiments 1 and 2 likely were related 
to the shorter time on ice; hence, the larvae were more 
mobile. Centrifugation at 800× rpm for 5 min might be 
insufficient to pellet the larvae, so that cercariae may be 
inadvertently discarded with the supernatant. During 
Experiment 3, the conversion rate was higher than in 
Experiments 2 and 4 which may be related to the lower 
number of cercariae in the initial suspension. Thus, the 
time on ice might be sufficient to reduce motility and/
or the reduction of the volume of initial suspension may 
favor a fast sedimentation and formation of solid pellet 

of cercariae after centrifugation. During the mechani-
cal transformation, it is necessary to consider additional 
parameters that may vary from assay to assay, including 
numbers of infected snails, numbers of cercariae, and 
volume of cercarial suspension. We observed that steps 
needed to be adjusted during transformation in order to 
improve the conversion rates. For example, if the initial 
number of cercariae in suspension was higher (~ 10,000 
per 50 ml), more time on ice to reduce parasite motil-
ity and more vortexing time to induce removal of the 
tail were both required. However, it is necessary to cau-
tion that increased vortexing can injure the larvae [37]. 
Several checkpoints were performed in order to assess 
parasite fitness and tail-loss during transformation. It 
should be noted that the number of cercariae obtained in 
initial suspensions was variable (Table  1) since it varied 
between snails, and was dependent upon additional fac-
tors including number of infected snails and number of 
times the cercariae had been shed from the snails.

Optimal culture conditions for S. mansoni NTS
NTS cultured in medium M199, supplemented with 
7.5% sodium bicarbonate and 5% iFBS, died after 72 h. 
Parasites incubated in M199 supplemented with 20 mM 
HEPES and 10% iFBS, remained viable for at least 96 h 
without membrane disruption and/or marked morpho-
logical changes (Additional file 1: Figure S1). These NTS 
displayed an average viability value of about 2.5 (not 
shown). Increasing the concentration of iFBS to 15% did 
not enhance viability. Therefore, M199 supplemented 
with 20 mM HEPES and 10% iFBS appeared to be suit-
able for incubation of NTS by vortex transformation and 
was used for the drug sensitivity assays.

In vitro S. mansoni NTS drug sensitivity assay
Antischistosomal activity of antioxidants (NAC and 
RESV) and their ability to enhance antiparasitic activ-
ity of anthelmintic drugs (PZQ and AS) was assessed on 
NTS derived from successful mechanical transforma-
tion. As previously described [38], in the absence of test 
compounds, NTS showed normal viability without any 
morphological changes for up to 24 h. Mild changes in 
granularity and motility were apparent following 48 h of 
incubation. NTS remained viable for at least 96 h [38]. 
Generally, incubation in PZQ and AS at the highest con-
centration (100 µM) caused severe deformity and granu-
larity scores of 1 (slow activity and severe granulation) on 
the viability scale of NTS (Additional file 1: Figures S2 and 
S3). However, none of the drugs alone were capable of 
inducing the death of all NTS (Additional file 1: Table S1). 
Following 24 h in AS, NTS did not show significant mor-
phological alterations in comparison to controls. How-
ever, after 48 h the larvae were granular in appearance, 
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some markedly, irregular in shape, and movement was 
reduced. By 72 h, most NTS were dead (Additional file 1: 
Table  S1). PZQ strongly decreased viability but did not 
cause the death of NTS. Initially, PZQ elicited an over-
active phenotype progressing to overactive/degenerate 
but motile, i.e. NTS were motile yet severely disrupted in 
morphology. In addition, we observed spheroid-shaped 
worms (rather than vermiform), which were markedly 
granulated, as described by other investigators [44, 45]. 
Although PZQ inflicted more damage, AS was more 
active than PZQ inducing more mortality among NTS 
(Additional file 1: Table S1), consistent with other reports 
that indicated that AS was more effective against larval 
and young stages of S. mansoni [20]. The antioxidants 
NAC and RESV were tested at up to 100 µM for anthel-
mintic activity. Neither NAC nor RESV killed NTS after 
72 h of incubation (Additional file 1: Figure S2). Never-
theless, the percentage of dead NTS induced by the Resv 
compound was higher rather than NAC (Additional 
file  1: Table  S1). NAC induced only slight morphologi-
cal alterations, specifically an increase in granularity at 
the highest concentration tested (Additional file  1: Fig-
ure S3). RESV induced an increase in granularity, and 
reduced motility (Additional file 1: Figure S3). To inves-
tigate synergism between PZQ or AS and the antioxi-
dants, NTS were incubated with a constant dose ratio 
(1:1) of the highest concentration (100 μM) of a combi-
nation of each anthelmintic and antioxidant (Additional 
file 1: Table S1). Combinations of PZQ or AS with NAC 
achieved the same viability score and similar percentage 
of death as the anthelmintic drug alone (Additional file 1: 
Figures S2, S3 and Table S1). The morphological altera-
tions and mortality of NTS incubated with PZQ + NAC 
were generally identical with those induced by drug alone 
(Additional file  1: Table  S1 and Figure S5). The NTS 
exhibited less granularity and rounded shape than seen 
in larvae incubated in PZQ alone. Similarly, incubation 

with AS + NAC led to severe granularity, loss of motility 
and changes in shape identical with changes induced by 
AS alone (Additional file 1: Figures S2 and S3). Curiously, 
the number of dead NTS was lower in combination in 
comparison to the drug alone (Additional file 1: Table S1 
and Figure S5). In contrast, combinations of PZQ or AS 
with RESV markedly enhanced the in vitro effects as 
compared with the anthelmintic alone. Indeed, the per-
centage of effects achieved by combinations was higher 
in comparison to compounds alone (Additional file  1: 
Table  S1). Notably, only AS + RESV killed all NTS after 
72 h, indicating that RESV enhanced the anthelmintic 
performance of AS (Additional file 1: Table S1 and Figure 
S5). Figure  1 depicts the temporal effect of AS + RESV 
at constant dose ratio (1:1) at the highest concentration 
used. Notably, RESV achieved better results than NAC in 
all combinations examined (data not shown).

Figure  2 illustrates the alterations in morphology 
induced by the anthelmintic drugs PZQ or AS and 
RESV alone as well as their combination at the high-
est concentration, after incubation for 72 h. Real time 
morphological alterations of the schistosomula were 
assessed with an inverted microscope and with the 
Biotek LionHeart FX automated imaging micros-
copy platform. Images demonstrating relevant dif-
ferences among the morphology of NTS incubated 
with AS, PZQ and RESV, alone and in combinations, 
were captured. Despite several morphological altera-
tions induced by 100 µM RESV, the NTS maintained 
membrane integrity (red arrow) and showed minimal 
activity while PZQ induced the rounded shape effect 
and severe granularity, although the NTS remained 
motile, as previously described [44, 45]. The combi-
nation of PZQ + RESV induced significant morpho-
logical alterations, notably blebbing (black arrow). 
In the assays with AS, the anthelmintic alone or the 
combination AS + RESV induced severe granularity, 

Fig. 1 Temporal effect of exposure of schistosomula of Schistosoma mansoni for 72 h to anthelmintic drugs and antioxidants (drugs AS + RESV 1:1, 
100 μM)
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alterations in shape and inactivated the NTS. Note that 
NTS incubated with AS + RESV suffered membrane 
disruption (white arrow), indicating the death of the 
schistosomulum.

Since RESV at maximum concentration (100 μM) 
showed antischistosomal effects alone and also potenti-
ated the effects of the anthelmintic, combinations with 
lower concentrations of RESV were tested in the same 
(1:1) or in different concentration ratios in a secondary 
screen (Table  2). Combinations at a constant ratio (1:1) 
at different concentrations (10–100 μM) achieved better 
activity than the other constant ratios tested. As depicted 
in Table 2, all combinations induced higher NTS mortal-
ity compared to compounds alone (see also Additional 
file 1: Figure S5). At lower concentrations (< 100 μM) of 
anthelmintic and RESV (alone) or combined, only low 
to moderate activity was seen (Table  2). None killed all 
the NTS by 72 h and morphological alterations were less 

obvious. Accordingly, the highest percentage of dead 
NTS, about 30%, was induced by RESV at higher concen-
tration (Table 2). However, similar to what was observed 
above, following incubation in 10–100 μM PZQ for 1 h, 
the NTS were overactive and showed visible granularity 
while those incubated for 72 h showed severe damage, 
although the worms remained motile. Despite the severe 
damage induced by PZQ, about 50% of NTS remained 
alive (Table  2). Nonetheless, NTS incubated with the 
combined anthelmintic and RESV showed more mor-
phological alterations at all concentrations, in terms of 
granularity, minimal movement, and alteration in shape, 
in comparison to NTS incubated with the same com-
pounds alone (Additional file 1: Figure S4).

In addition to the bright-field microscopical-based 
assessment, NTS viability was also assessed incorporat-
ing a red-fluorescent dye that objectively detects para-
site survival during in vitro culture. Following 72 h, dead 

Fig. 2 Morphological alterations manifested by schistosomula of S. mansoni following exposure to anthelmintic drugs and RESV and their 
combinations. Newly transformed schistosomula were exposed for 72 h to PZQ, AS, RESV, PZQ + RESV and AS + RESV in a dose ratio of 1:1 at highest 
concentration (100 μM) and compared to controls. Generally, NTS showed dark granularity and alterations in shape that were more pronounced 
after exposure to combinations of anthelmintics and antioxidants that to anthelmintics or antioxidants alone. PZQ induced a round/oval shaped 
phenotype and severely disrupted morphology. Although RESV induced some morphological alterations, the tegmental integrity of NTS larvae 
remained intact (red arrow). PZQ + RESV induced not only severe granularity but also blebbing (black arrows). With AS + RESV, NTS showed 
membrane disruption (white arrow) followed by death. Images were captured using a BioTek LionHeart FX Automated Live Cell microscope 
(magnification of 20×)

Table 2 Percentage (mean ± SD) of dead NTS induced by compounds alone and its combinations for different concentrations 
obtained by staining with iodide propidium

Concentration (μM) Control PZQ AS RESV PZQ + RESV AS + RESV

10 0.38 ± 0.18 45.7 ± 2.1 18.0 ± 3.5 12.3 ± 2.0 38.2 ± 3.7 23.7 ± 4.0

50 1.50 ± 0.71 52.7 ± 0.7 37.0 ± 3.4 28.1 ± 3.1 69.2 ± 2.8 35.5 ± 5.4

100 1.38 ± 0.88 56.9 ± 2.5 70.0 ± 3.8 30.0 ± 1.6 81.0 ± 5.2 99.9 ± 0.1
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NTS were stained with PI and the plate examined was 
readout using the Texas Red filter at 586 nm on a BioTek 
LionHeart Automated Live Cell microscope (Fig.  3). As 
expected, all NTS incubated with AS-RESV were stained 
and were even brighter than others indicating that they 
were dead (Table 2). It is noteworthy that the number of 
dead schistosomula was lowest in control, followed by 
RESV, PZQ, AS and PZQ + RESV (Table  2). All combi-
nations of anthelmintic drugs with RESV yielded syner-
gistic antischistosomal effects. Based on these findings, 
we conclude that the combination of AS + RESV was 
identified as synergistic (CI = 0.34), near to strong syn-
ergism; and moderate synergism was observed for PZQ 
and RESV (CI = 0.74). These findings conformed with the 
microscopical observations: the combination of AS with 
RESV was more active against S. mansoni NTS in vitro 
than PZQ + RESV (Table 2, Fig. 4).

Transmission electron micrographs revealed 
that combination induces significative internal damage
TEM analysis was employed to investigate and compare 
ultrastructural damages induced by AS, RESV alone or 
in combination (AS + RESV) (Fig. 5). The ultrastructural 
features of NTS in the control group remained normal 
and were similar to that in reported earlier [46]. The anal-
ysis of NTS treated with AS, RESV alone or combined 
(AS + RESV) at 100 μM revealed marked alteration of 
ultrastructural features of tegument and subtegumental 
structures (Fig. 5). Following exposure to RESV, vesicles 
were present on the tegument and there was irregularity 
in the appearance of the membrane. TEM evaluation of 
NTS treated with AS revealed the loss of matrix integrity 

diffusely through subtegumental regions and the pres-
ence of vacuoles on the interior of organelles, which 
probably resulted from cytoplasmic processes. Nonethe-
less, there was no evidence of significant alterations of the 
tegument. By contrast, for NTS treated with AS + RESV, 
tegumental disruption and disappearance of basal mem-
brane were apparent. In addition, lysis of the tegumental 
matrix was usually revealed close to the basal membrane 
leading to the formation of large vacuoles above the 

Fig. 3 In vitro effects of AS, RESV and AS + RESV (highest concentration) on viability of Schistosoma mansoni NTS assessed by propidium iodide 
(PI) incorporation following exposure for 72 h. Notably, NTS exposed to AS + RESV showed stronger fluorescence than schistosomula cultured 
in AS or RESV alone, indicating that the former was dead. Images were captured using the BioTek LionHeart FX Automated Live Cell microscope 
(magnification of 20×) fitted with a 586 nm (Texas Red) filter. Scale-bars: 100 µm

Fig. 4 Combination indices (CI) obtained for combinations 
of anthelmintic drugs and RESV against newly transformed 
schistosomula of S. mansoni. The combination of AS + RESV was 
synergistically active against the schistosomula. High synergism is 
indicated in gray
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basal membrane. The subsequent dysfunction or leakage 
of internal contents might be involved upon cytoplas-
mic lysis. It seems likely that disruption of the tegument 
might be directly linked to death of NTS treated with 
AS + RESV. Upon comparison of the ultrastructure of 
NTS treated with these compounds alone or in combina-
tion, it was possible observe that the damage was more 
prominent following combination treatment, reinforcing 
the notion that that RESV enhanced the antischistosomal 
activity of AS. The TEM micrographs were consistent 
with the findings obtained by light microscopy where it 
was possible to observe the presence of membrane dis-
ruption in the NTS treated with AS + RESV and exten-
sive morphological alterations in contrast to the effects of 
AS or RESV alone (Fig. 2).

Discussion
Schistosomiasis is a major public health and economic 
burden in the tropical developing world [6, 47, 48]. Cur-
rently, there is one drug available as the core treatment 
of schistosomiasis, and it has been used extensively in 
mass administration for transmission control [49]. Prob-
lematically, emergence of PZQ-resistance is not unlikely, 
and indeed low cure rates with PZQ have been repeat-
edly reported [10, 15]. There is a pressing need for new 
therapeutic approaches that combine different modes of 
action and/or repurposing of drugs [17]. Combination 
chemotherapy is common in medicine, including treat-
ment for cancer, bacterial infections, HIV and malaria, as 
well as in the veterinary and agricultural arenas [50, 51].

Here, after establishing tractable transformation and 
culture conditions for NTS, drug sensitivity screen-
ings were undertaken using bright field, visual inspec-
tion with an inverted microscope and also by automated 

microscopy using a BioTek LionHeart system. AS was 
more active than PZQ on NTS, which is consistent 
with earlier findings that showed that AS is more effec-
tive against larval and immature mammalian stages of S. 
mansoni due to the presence of the endoperoxide bridge 
that induces the production of ROS. By contrast, PZQ is 
more active against adult schistosomes [20]. Alone, NAC 
and RESV demonstrated modest activity against NTS. 
Although NAC did not exhibit antischistosomal activity 
against NTS in vitro, it might ameliorate redox homeo-
stasis and host morbidity by downregulating oxidative 
stress caused by infection [26]. RESV induced more 
marked morphological changes than NAC on schistoso-
mula; perhaps RESV acted on neuromotor activity, based 
on its effects on motility, which in turn could degrade 
its ability to migrate and acquire nutrients. Indeed, in S. 
mansoni infected mice, the administration of RESV ame-
liorates oxidative stress and organ dysfunction [30]. These 
effects likely are not only related to biological properties 
of RESV but also host antischistosomal activity. RESV 
might promote a combined action by both harming the 
schistosome while also ameliorating host oxidative stress.

With respect to the combinations, NAC did not 
enhance the activity of AS or PZQ. By contrast, AS or 
PZQ in combination with RESV improved performance 
in terms of antischistosomal effect, more than the sin-
gle compound. This finding indicated that RESV pos-
sesses and enhances antischistosomal activity of both 
these anthelmintics. These outcomes were evident fol-
lowing serial dilution of AS, PZQ and RESV (alone) and 
combined. At dilute concentration, augmented activ-
ity against NTS was evident. Indeed, combinations of 
PZQ or AS with RESV presented a moderate (CI = 0.74) 
and marked (CI = 0.34) synergistic effect, respectively. 

Fig. 5 Ultrastructural level micrographs of schistosomula of S. mansoni at 72 h after exposure to AS, to RESV and to the combination of AS + RESV. 
In the control group, schistosomula exhibits intact tegument (T), spines (S), circular and longitudinal muscle (CM, LM) with a regular morphology. 
For NTS exposed to RESV, vesicles were seen in the tegument (arrows) along with some disorganization; no apparent damage occurred in 
subtegumental regions. In contrast, for schistosomula exposed to AS, loss of matrix integrity but without alterations to the tegument was apparent. 
The most prominent damage was seen on NTS treated with the combination of AS + RESV. Here, NTS displayed disruption and lysis of internal 
structures (arrowheads) and swelling of parenchyma tissues, disruption of tegument and disappearance of basal membrane (arrow), and the 
appearance of large vacuoles (asterisks). Abbreviations: T, tegument; S, spine; LM, longitudinal muscle; CM, circular muscle; Cb, cytoplasmatic bridge. 
Scale-bars: 1 µm (Control and Resv); 2 µm (AS and AS + Resv)
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Synergy in antischistosomal action might result from 
increasing the action on anthelmintic drugs targets or 
acting concomitantly on different targets [52].

The ultrastructural analysis demonstrated that NTS 
treated with AS + RESV suffered extensive and severe 
damage in comparison to controls and NTS treated with 
AS or RESV. The tegumental and subtegumental regions 
of these NTS showed alterations including disruption 
of tegument, extensive lysis of subtegumental regions 
with presence of numerous and vacuoles with diverse 
sizes, and loss of the basal membrane. Nonetheless, NTS 
treated with AS or PZQ alone also showed ultrastruc-
tural alterations, including loss of integrity of the matrix 
in the case of AS, and presence of vesicles on the tegu-
ment and some tegument disorder of larvae treated with 
RESV. With regard to controls, these presented regular 
morphology. Taken together, the light microscopic and 
TEM micrographs revealed that RESV not only induced 
alterations on the tegument of NTS but also augmented 
the antischistosomal activity of AS, leading to disruption 
of tegument and extensive lysis of subtegumental regions. 
The tegumental damage might lead might to disappear-
ance of the immunological camouflage of the parasite 
which, in turn, would expose immunogens and immuno-
genic epitopes. These kinds of damage and immunologi-
cal reactions represent a key process in the action of PZQ 
in vivo [53–56]. The schistosome tegument represents 
the frontline interface between host and parasite and 
plays a pivotal role in defence function to escape the host 
immune response. Additionally, it has essential secretory 
and nutrient absorption functions [57, 58]. Accordingly, 
tegumental disruption induced by AS + RESV would 
be anticipated to negatively affect the parasite’s capac-
ity to support its nutrition and to thwart host immune 
responses.

The assessment of parasite viability microscopically 
in vitro is based on regular lack of movement of larvae 
(motility) and morphological changes such as granular-
ity and shape alterations [37] that might be subjective 
and inaccurate [41]. Accordingly, it is crucial to com-
plement microscopic examination with fluorometric or 
staining approaches. We used a simple method based on 
the incorporation of PI for red fluorescence staining that 
does not require an extensive knowledge of schistosome 
biology [40]. A good correlation was observed between 
light and fluorescence microscopic readouts after expos-
ing schistosomula to anthelmintics and RESV (alone) 
and combined, indicating that microscopic readout com-
plemented with fluorometric methods represented an 
accurate and tractable technique to assess viability. Other 
methods to objectively quantify the activity of antischis-
tosomal drugs also are available, including the xCELLi-
gence approach [59, 60].

RESV and AS exhibited antischistosomal activity 
against schistosomula and synergism of antischistosomal 
effect was seen RESV or AS was combined with AS or 
PZQ. This synergistic effect was most pronounced with 
AS + RESV. Based on these findings, a combination of 
active agents, preferably with discrete modes of action 
including activity against developmental stages and to 
ameliorate infection associated pathology, might be pur-
sued in order to identify novel therapeutic interventions. 
Investigation also should be undertaken to assess the syn-
ergies of these combinations against adult forms, other 
schistosome species, and schistosome infections in labo-
ratory rodents. Indeed, we intend to evaluate these com-
binations in the S. haematobium-hamster model [24, 61] 
and for related trematodes responsible for hepatobiliary 
tract disease including cholangiocarcinoma [24, 62–66].

Conclusions
To conclude, RESV appeared to exhibit antischistosomal 
activity against schistosomula and also to induce syner-
gism in combination with AS or PZQ. Based on these 
findings, we suggest that novel therapeutic interventions 
should be sought that involve the combination of active 
agents, preferably agents with discrete modes of action, 
and which also exhibit activity against developmental 
stages, and/or which also ameliorate infection-associated 
pathology.
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