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Abstract 

Background: The recent situation of dengue infection in Cirebon district is concerning due to an upsurge trend 
since the year 2010. The largest dengue outbreak was reported in 2016 which has affected more than 1600 children. 
A study was conducted to explore the temporal variability of dengue outbreak in Cirebon’s child population in during 
2011–2017, and to assess the short-term effects of climatic and environmental factor on dengue incidence. In addi-
tion, the spatial pattern of dengue incidence in children and high-risk villages were investigated.

Methods: A total of 4597 confirmed dengue cases in children notified from January 2011 to December 2017 were 
analysed. Seasonal decomposition analysis was carried out to examine the annual seasonality. A generalized linear 
model (GLM) was applied to assess the short-term effect of climate and normalized difference vegetation index 
(NDVI) on dengue incidence. The incidence rate ratio (IRR) of the final model was reported. Spatial analyses were con-
ducted by using Moran’s I and local indicator of spatial association (LISA) analyses to explore geographical clustering 
in incidence and to identify high-risk villages for dengue, respectively.

Results: An annual dengue epidemic period was observed with peaks occurring every January/February. Based on 
the GLM, temperature at a lag 4 months (IRR = 1.27; 95% confidence interval, 95% CI: 1.22–1.31, P < 0.001), rainfall at a 
lag 2 months (IRR = 0.99, 95% CI: 0.99–0.99, P < 0.001), humidity at lag 0 month (IRR = 1.05, 95% CI: 1.04–1.06, P < 0.001) 
and NDVI at a lag 1 month (IRR = 3.07, 95% CI: 1.94–4.86, P < 0.001) were associated with dengue incidence in chil-
dren. The dengue incidence in children was spatially varied and clustered at the village level across Cirebon. During 
2011–2017, a total of 38 high-risk villages for dengue were identified, which were mainly located in the northern part 
of Cirebon.

Conclusions: Seasonal patterns of dengue incidence in children in Cirebon were strongly associated with rainfall, 
temperature, humidity and NDVI variability, suggesting that climatic and environmental data could be used to help 
predict dengue outbreaks. Our spatial analysis revealed a clustered pattern in dengue incidence and high-risk villages 
for dengue across Cirebon, suggesting that effective interventions such as vector surveillance and school-based 
campaigns should be prioritized around the identified high-risk villages. Temporal and spatial analytical tools could be 
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Background
Dengue fever (DF) is a serious mosquito-borne viral 
infection worldwide and it is estimated that 50 million 
of dengue infections occur each year [1, 2]. Infection is 
caused by four distinct viruses (DENV 1 to 4) belonging 
to the family Flaviviridae and is transmitted to humans 
by Aedes aegypti and Ae. albopictus mosquitoes [3]. 
Annually, at least four billion people are at risk of acquir-
ing dengue infection [4] and approximately 214,000 
(120,000–299,000) disability-adjusted life-years (DALYs) 
are lost per year due to DF [5]. The burden is predicted to 
escalate in the future due to an increase in global human 
mobility, goods transportation and urbanization rates 
[6, 7]. Furthermore, climate change is thought to inten-
sify dengue outbreaks and expand the spatial dispersion 
of the vectors, which could bring DENV from endemic 
regions to non-endemic regions [8].

The occurrence and behavior of Aedes spp. is highly 
dependent on climatic and environmental conditions, 
which in turn influence the temporal and geographical 
distributions of DF [9–12]. It is well known that the life-
cycle and population dynamics of Aedes spp. are greatly 
influenced by rainfall and temperature [11, 13, 14]. Rain-
fall provides abundant waterbodies that allow mosquitoes 
to breed and complete their immature stages. However, 
heavy rainfall can wash out the breeding sites and thus 
impact vector population dynamics [15, 16]. Temperature 
affects the reproductive cycles of mosquitoes and ovipo-
sition rates as well as the incubation periods of viruses 
[14, 17]. Higher temperatures shorten the duration of 
extrinsic incubation periods (EIP) and thus can escalate 
the risk of dengue transmission [12, 18]. Moreover, the 
distribution and movement of Aedes mosquitoes is highly 
affected by the availability and density of larval breeding 
sites, built-up environments and vegetated areas close to 
the human settlement [19, 20].

Dengue in Indonesia was first reported in two major 
cities on the island of Java in 1968 [21]. Since then, local 
dengue outbreaks have been reported in all 34 provinces 
and 514 districts across the archipelago [22], placing DF 
as an important arboviral disease threat. Indonesia is 
one of the dengue hyper-endemic countries in South-
east Asia where all four dengue serotypes are circulat-
ing, thus leading to a greater risk of infection and higher 
burdens of disease [2, 5]. In particular, most hospitaliza-
tions and mortalities among Indonesian children are pri-
marily caused by DF [23]. More than 80% of Indonesian 

children aged ten years or more who live in the cities 
have acquired DF at least once in their lifetime [24]. This 
highlights the need for better surveillance systems as well 
as preventive and disease control strategies. Currently, 
the core of dengue control and prevention programs in 
Indonesia primarily depends on vector control such as 
community-based vector monitoring, spraying and pub-
lic health campaigns.

West Java Province is the most populated province 
in Indonesia, and dengue is also highly endemic in this 
province. Since the 2000s, the incidence has dramati-
cally increased from 13/100,000 in 2000 to 79/100,000 in 
2016 [25]. All the districts and cities in this province are 
at high risk for dengue transmission, including Cirebon 
district. Cirebon district is one of the dengue endemic 
areas situated in coastal lowland areas in northeast West 
Java and it serves as one of the major economic hubs for 
West Java and Central Java. Since 2010, dengue incidence 
in Cirebon district has been continuously increasing. The 
largest outbreak hit the district in 2016, which affected 
more than 1600 children [26]. Despite its public health 
importance, knowledge regarding the temporal pattern 
of dengue epidemics as well as the geographical distribu-
tion of dengue incidence among children across Cirebon 
district is lacking. Moreover, a full understanding of the 
factors that influence the temporal and spatial dynamics 
of dengue among children in this region is far from clear.

Several studies have used spatial analytical approaches 
to understand the distribution and to identify the areas 
most affected by dengue infection [27–29]. These studies 
have shown that geographical information systems (GIS) 
techniques could provide helpful evidence for design-
ing and implementing surveillance and targeted control 
measures. A recent study demonstrated evidence for 
spatial variation in dengue seroprevalence among Indo-
nesian children at the national level [30]. However, this 
study did not clearly visualize and capture the variation 
within districts and was limited to urban settings. In this 
study, we extended knowledge regarding the geographi-
cal variability in dengue infection in children at the vil-
lage level in Cirebon district. This evidence is nonetheless 
crucial to develop coordinated and evidence-based inter-
vention strategies.

The present study had the following objectives: first, 
we used temporal modelling approaches to explore 
the seasonality of dengue incidence among children 
and to examine the short-term effects of climate and 

utilized to support local health authorities to apply timely and targeted public health interventions and help better 
planning and decision-making in order to minimize the impact of dengue outbreaks.
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environmental factors on dengue incidence. Secondly, we 
used spatial analytical tools to investigate the spatial pat-
tern of dengue incidence in children and to identify high-
risk villages across the Cirebon district. The results of this 
study will be beneficial for better informing local health 
authorities in anticipating dengue outbreaks as well as 
planning and implementing timely targeted intervention 
programs (e.g. health promotions and vector control).

Methods
Study area
The district of Cirebon is one of 114 districts/cities in 
the Java islands and is located in the northwest West Java 
province about 200 km from the capital Bandung (Fig. 1). 
The district encompasses 40 ‘kecamatans’ (administrative 

level-2) and 424 villages (administrative level-3), with 
a total population of approximately 2.3 million people 
and covering an area of 990  km2. Cirebon has a tropi-
cal climate with annual mean precipitation of 2575 mm, 
temperatures ranging between 22–32 °C and a relatively 
short dry season (June to October) [31]. About 90% of 
the area is lowland (11–130 m above sea level); the higher 
altitudes are located in the southwest of the district 
(Additional file 1: Figure S1).

Data collection
Dengue data
Our analysis was restricted to all confirmed dengue 
infection [including dengue fever (DF), dengue haemor-
rhagic fever (DHF) and dengue shock syndrome (DSS)] 

Fig. 1 Study site. Satellite image was obtained from Sentinel-2 satellite (https ://lands atloo k.usgs.gov/senti nel2/viewe r.html). Visualization was 
created in ArcGIS v.10.5 software (Environmental Systems Research Institute, Inc., Redlands, CA, USA)

https://landsatlook.usgs.gov/sentinel2/viewer.html
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data in children aged 0–19  years-old that were notified 
during the period January 1st 2011 to December 31st 
2017. We obtained the dataset as an electronic spread-
sheet from the Cirebon District Health Office. Since 
1968, dengue infection has been a notifiable disease in 
Indonesia, which means that all dengue cases captured 
by hospitals must be reported to the District Health 
Office (DHO) within 24 h of diagnosis using a standard-
ized reporting form. These notified cases are validated 
through epidemiological investigations by local health 
authorities. These data contained information including 
patient age, patient gender, date of onset, patient address 
(village and subdistrict ID), and diagnosis (suspected, DF, 
DHF or DSS). All cases of dengue infection were diag-
nosed according to the nationally standardized diagnos-
tic criteria issued by the Ministry of Health of Indonesia. 
DF is defined when the patient presents with fever and 
with two or more of the following symptoms: headache, 
retro-orbital pain, myalgia, arthralgia, rash, haemor-
rhagic manifestations and no evidence of plasma leakage 
with positive leucopenia [≤ 5000 cells/mm3, thrombocy-
topenia (platelet count < 150,000 cells/mm3)], an increase 
in haematocrit (5–10%) and no evidence of plasma loss. 
DHF is defined as having at least the first two of the fol-
lowing four clinical manifestations: sudden onset acute 
fever of 2–7  days duration, spontaneous haemorrhagic 
manifestations or a positive tourniquet test, hepatomeg-
aly, and circulatory failure, in combination with haema-
tological criteria of thrombocytopenia (< 100,000 cells/
mm3) and ≥  20% increased haematocrit. DSS is defined 
as DHF plus a rapid, weak pulse with narrow pulse pres-
sure (≤ 20 mmHg), hypotension with cold, clammy skin, 
and restlessness [2, 32, 33]. The confirmation of dengue 
infection was based either on a positive anti-dengue virus 
IgM in acute or convalescent serum samples and/or a 
4-fold increase in specific IgG antibody titres between 
the acute and the convalescent samples or virus by isola-
tion or detection of dengue antigen or RNA in serum [32, 
33]. For the purpose of analysis, we aggregated cases for 
all three outcomes (DF, DHF and DSS) by month.

Social, environmental and climate data
Village-level population and population density data were 
collected from the Cirebon Bureau of Statistics (https ://
cireb onkab .bps.go.id/publi catio n.html). Environmental 
data including elevation and normalized difference vege-
tation index (NDVI) were obtained from satellite imagery 
data. Elevation data was extracted from the Shuttle Radar 
Topography Mission (SRTM) at ~ 30 m spatial resolution 
from the USGS EROS Archive (https ://eros.usgs.gov/). 
Monthly MODIS 13A1 NDVI raster data with a 16-day 
composite and 500-m spatial resolution for the period 
January 2011 to December 2017 were also collected. 

NDVI indicates vegetation greenness and is frequently 
used as a proxy for the presence of mosquito-favoured 
habitat [34–36]. Additionally, daily meteorological meas-
ures (precipitation, humidity and temperature) for the 
same period were obtained from the Meteorological, 
Climatological and Geophysical Bureau database (http://
datao nline .bmkg.go.id/). Prior to the analysis, these 
daily meteorological data were averaged into monthly 
windows.

Data analysis
Temporal distribution of dengue
Monthly numbers of confirmed dengue infection (aggre-
gated numbers for DF, DHF and DSS) in children by 
age-group (categorized as either under 5  years or ado-
lescent aged 5 to 19 years old), gender, and season were 
summarized. Boxplots of seasonal distributions of den-
gue incidence was also produced. In addition, a seasonal 
decomposition analysis with Loess (STL) smoothing [37] 
was performed to explore seasonal patterns and trends 
in dengue incidence in children using functions from 
the stlplus package in the R statistical project (R v.3.5.0, 
R Development Core Team, 2017). This analysis decom-
poses time-series data to generate the trend component 
 (Tt) at time t, a cyclical component  (Ct) at time t, a sea-
sonal component  (St) at time t [which we herein refer to 
as a seasonal factor (SAF)] and an irregular (remainder) 
 (It) component at time t [37].

Associations between environmental factors (climate, NDVI) 
and dengue incidence
The relationships between monthly dengue incidence 
and environmental factors were examined. Monthly den-
gue counts were defined as dependent variables. Four 
independent variables including mean temperature, 
humidity, rainfall and NDVI were included. A Spearman’s 
correlation test was performed to examine possible asso-
ciations between covariates. Strongly correlated variables 
(Spearman’s rho |≥ |0.9|) were excluded to avoid collin-
earity issues. Associations were considered statistically 
significant at P < 0.05. A cross-correlation analysis was 
then performed to investigate significant temporal lags (0 
to 7 months) between dengue incidence and the remain-
ing covariates. Variables that did not show a significant 
temporal lag were not included in the final model. We 
included all covariates that reached positive and nega-
tive significant lag values in the model selection pro-
cesses with a maximum lag of seven months, according 
to previous findings [9, 38] and the biological and epide-
miological plausibility of dengue transmission. In addi-
tion, based on the decomposition analysis where a strong 
seasonality was observed in the data (see Results), the 
seasonal component or seasonal factor (SAF) obtained 

https://cirebonkab.bps.go.id/publication.html
https://cirebonkab.bps.go.id/publication.html
https://eros.usgs.gov/
http://dataonline.bmkg.go.id/
http://dataonline.bmkg.go.id/
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from the decomposition analysis was included in the 
regression model to control the effect of seasonality in 
the model [39]. To assess the short-term effects of cli-
mate and NDVI on dengue incidence in children, a Pois-
son generalized linear model (GLM) model with log-link 
was applied. The natural logarithm of the human popula-
tion was added as an offset term. The most parsimonious 
model was chosen according to the Akaike information 
criterion (AIC) value; the model with the lowest AIC 
was selected as the best-fit model [40]. The presence of 
seasonality and autocorrelations of the residuals were 
checked by visually examining the sequence charts and 
partial autocorrelation function (PACF) plots over time 
lags. All statistical analyses were conducted using STATA 
v.15.1 (STATA Corp., College Station, TX, USA).

Mapping, spatial clustering and hotspot detection
In this study, we used the village (n = 424) as the spatial 
unit of analysis. All dengue cases were linked with vil-
lage ID and polygons in ArcGIS v.10.5 (Environmental 
Systems Research Institute, Inc., Redlands, CA, USA). A 
village-level boundary map for the Cirebon district was 
obtained from the National Bureau of Statistics (Sistem 
Informasi Layanan Statistik) (https ://www.bps.go.id/).

Using village-level population data as the denomina-
tor, the crude incidence of dengue in children at the vil-
lage level was calculated and mapped. Spatial smoothing 
was applied to reduce extreme variation between vil-
lages due to small populations and to help identify pos-
sible high-risk villages which that could not be observed 
using the raw data [41]. A queen-based spatial contiguity 
weight matrix (where the village polygon shares a com-
mon edge or vertex) was constructed. Empirical Bayes 
(EB) smoothing was performed using spatial empirical 
tools in the GeoDa v.1.8 software. The smoothed EB rate 
of dengue was calculated from the total number of cases 
in a village divided by the total number of people at risk 
within the village [42].

To assess the spatial autocorrelation of the EB rate of 
dengue in children across Cirebon during 2011–2017, a 
Moran’s I analysis was carried out. The values of Moran’s I 
range from − 1 to 1; positive values indicate positive spa-
tial autocorrelation, negative values indicate negative spa-
tial autocorrelation, while values near zero mean the data 
is randomly distributed [43]. Furthermore, a local indica-
tor spatial association (LISA) analysis was performed to 
define types of village into categories including high-high 
(HH) counties (later stated as high-risk counties) or low-
low (LL) counties (later stated as low-risk counties) [44]. 
The high-high counties indicate villages with high rates 
that are also adjacent to other high-rate villages. Whereas 
low-low villages have low rates and are close other low-
rate villages. Both Moran’s I and LISA analyses were also 

performed by using GeoDA v.1.8 software [45]. All maps 
were created by using ArcGIS v.10.5.1. An overview of 
the analytical processes is depicted in Fig. 2.

Results
Descriptive statistics
There was a total of 4597 laboratory confirmed den-
gue infections in children reported from January 2011 
to December 2017, which accounted for 80.39% of total 
notified confirmed dengue cases (n = 4597/5718) in 
Cirebon (Table 1, Additional file 2: Table S1). Of which, 
92.47% (n = 4251/4597) cases were classified as DHF 
(Additional file  2: Table  S2). The monthly number of 
dengue cases in children ranged from 0 to 210 cases 
(mean = 55.38, standard deviation, SD = 51.24); the high-
est number of cases reported was 210 cases in February 
2016. Most dengue cases were observed among children 
aged 6 to 19  years old (n = 3678/4597, 80.00%). Across 
genders, the proportion of dengue cases was relatively 
equal. During the rainy season (November to May), 
the number of notified dengue infections was two-fold 
higher than those reported during the dry season (June 
to October).

Temporal trends and seasonality
The incidence of dengue in children dramatically 
increased from 2011 to 2016 but later declined in 2017. 
In addition, our seasonal decomposition plot demon-
strated strong seasonality, with the highest peaks consist-
ently occurring in January/February (Fig.  3). The mean 
monthly incidence of dengue during the wet season was 
higher compared to the dry season (Fig. 4).

Temporal associations between climate, NDVI and dengue 
incidence
Factors driving the temporal variability of childhood 
dengue incidence were then investigated. Spearmanʼs 
correlation analysis demonstrated no strong correlation 
(Spearman’s rho |≥ |0.9|) between covariates (Addi-
tional file 2: Table S3). Thus, we included all covariates 
in the model selection process. Cross-correlation anal-
ysis indicated a positive significant correlation between 
dengue with rainfall (lag 1–2 months), temperature (lag 
4–6 months), humidity (lag 1–2 months) and NDVI (lag 
0) (Additional file 3: Figure S2). As we identified strong 
seasonality in the data, we incorporated the seasonality 
factor (SAF) in the regression model to adjust for sea-
sonal effects [39]. A total of 18 models were constructed 
for variable selection (Additional file  2: Table  S4). 
Table  2 shows the parameter estimates of the best-fit 
generalized linear model (GLM) (AIC = 2483.33). No 
multicollinearity issues were detected in the final model 
(mean variance inflation factor, VIF = 1.11). The final 

https://www.bps.go.id/
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model indicated that an increase in temperature at a 
lag 4 months, humidity in the present month and NDVI 
at a lag 1 month were associated with a 1.27-fold (95% 
CI: 1.22–1.31, P < 0.001), 1.05-fold (95% CI: 1.04–1.06, 
P < 0.001) and a 3.07-fold (95% CI: 1.94–4.86, P < 0.001) 
increase in dengue incidence rates in children, respec-
tively. Conversely, an increase in rainfall was signifi-
cantly associated with a slight decrease in childhood 
dengue incidence by 1% (P < 0.001) in the following 
2 months.

Spatial clustering and hotspots of dengue
In general, the distribution of dengue incidence in chil-
dren was spatially variable at the village level across Cire-
bon (Fig. 5), with an incidence ranging between 0–10.97 
per 1000 people. Villages  with high dengue incidence 
were mostly observed in the northern part of Cirebon 
including Plumbon, Kepuh, Kalideres, Kaliwedi and Bode 
Lor. In the southeast, high incidence villages were Waya-
nasa, Kanci, Panongan, Susukan Lebak and some villages 
in the kecamatan Gebang. Furthermore, the geographical 
distribution of childhood dengue infection by age group 
was also geographically heterogeneous at village-level 
across Cirebon (Additional file 4: Figure S3).

The results of the Moran’s I statistics of smoothed EB 
dengue rates in children are summarized in Table  3. In 
general, positively significant Moran’s I coefficients 
(P = 0.05) were observed during 2011–2017, except in 
the year 2012 (which was not statistically significant; 
P = 0.107). The value of I fluctuated over time, with the 
highest coefficient estimated in 2016 (I = 0.206, P = 0.001) 
and the lowest coefficient estimated in 2017 (I = 0.063, 
P = 0.001).

During the study period, the LISA analysis identified a 
total of 38 high-high (HH) villages for dengue. These vil-
lages were distributed across 11 kecamatans, including 
Sumber (1 village), Plered (5 villages), Plumbon (10 vil-
lages), Palimanan (5 villages), Depok (4 villages), Weru (4 

Fig. 2 Flowchart of data analysis

Table 1 Monthly number of notified confirmed dengue cases in 
children (N = 4597), Cirebon, 2011–2017

Abbreviation: SD, standard deviation

Characteristic Frequency Range Mean ± SE

Dengue cases 4597 0–210 55.38 ± 51.24

Age (years)

 Under 5 919 0–53 11.48 ± 11.67

 6–19 3678 0–167 44.31 ± 40.14

Gender

 Male 2340 0–120 28.53 ± 25.80

 Female 2257 0–106 27.52 ± 25.87

Season

 Wet (November–May) 3155 0–264 81.95 ± 68.50

 Dry (June–October) 1442 0–141 51.80 ± 37.80
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villages), Jamblang (2 villages), Pangurangan (1 village), 
Gempol (1 village), Gegesik (4 villages) and Klangenan (1 
village) (Additional file 2: Table S5).

Table  4 shows the annual spatial cluster characteris-
tics as identified by LISA. The number of high-risk vil-
lages appeared to increase gradually each year, with the 
highest number of high-risk villages observed in 2016 
(30 villages). The total population of children at risk dur-
ing 2016 was 51,405. The spatiotemporal turnover of 
high-risk villages for dengue in children during the study 
period is depicted in Fig. 6. The high-risk counties were 
predominantly found in the northern part of the dis-
trict, while the majority of low-low (LL) or low risk vil-
lages were situated in the southern part of Cirebon. The 
maps indicated a dynamic spread of high-risk counties 
from a small set of high-risk clusters in 2011 around the 
border between Cirebon district and Cirebon city toward 
the west from 2012 to 2016. Two pockets of high-risk 

Fig. 3 Seasonal decomposition plot of notified dengue in children 
in Cirebon

Fig. 4 Monthly dengue incidence in children by season, Cirebon

Table 2 Results of generalized linear models for the associations 
between dengue incidence in children and environmental 
factors

Abbreviations: IRR, incidence rate ratio; 95% CI, 95% confidence interval; SAF, 
seasonality factor; RH, relative humidity; NDVI, normalized difference vegetation 
index

Variable Lag (month) IRR (95% CI) P-value

SAF 0 1.60 (1.43–1.80) < 0.001

Tmean 4 1.27 (1.22–1.31) < 0.001

Precipitation 2 0.99 (0.99–0.99) < 0.001

RH 0 1.05 (1.04–1.06) < 0.001

NDVI 1 3.07 (1.94–4.86) < 0.001

Fig. 5 Crude dengue incidence in children (per 1000 population) at 
village-level in Cirebon District (2010–2017)

Table 3 Moran’s I of the smoothed empirical Bayes (EB) rates of 
dengue in children, Cirebon, 2011–2017

Year Moran’s I P-value

2011 0.058 0.027

2012 0.034 0.107

2013 0.167 0.001

2014 0.138 0.001

2015 0.199 0.001

2016 0.206 0.001

2017 0.063 0.005

Total 0.314 0.001
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villages in the north were estimated: one encompassing 
kecamatan Kedawung in the eastern border toward Cire-
bon city in the west and another encompassing villages in 
kecamatan Gegesik that border the Indramayu district. 
From 2015–2016, a large group of high-risk counties was 
identified in the north which also covered the kecama-
tan Gegesik. However, we only found small groups of 
high-risk villages in the south (belonging to kecamatan 
Gebang) in 2016–2017.

Discussion
Dengue fever is an important arboviral disease in Indo-
nesia and it is known as an infectious disease that often 
affects Indonesian children [46]. In this ecological study, 
we analysed the most recent dengue infection notifica-
tion records and specifically focused on describing the 
temporal patterns of childhood dengue infection and 
exploring climatic and environmental factors associated 

with its seasonality. In addition, we explored the spatial 
distribution of dengue incidence in children and investi-
gated high-risk villages across the Cirebon district from 
2011–2017.

The trend of notified dengue incidence among the 
childhood population dramatically increased in Cire-
bon from 2011–2016 with a large outbreak occurring in 
2015. This trend might be driven by a multifactorial pro-
cess that includes socio-demographic factors, urbaniza-
tion, environmental changes, human travel and trade 
that takes place in the area. The district is adjacent to the 
Cirebon metropolitan area where most of the region’s 
economic activities happen. The district also lies on the 
national main roads (e.g. ‘Jalur Pantai Utara’ or North-
ern Coast Mainroad) which connect main cities in the 
northern coast of the Java islands from Jakarta towards 
Surabaya. This coastal region is an important hub for 
industries and for the economies of West Java and Cen-
tral Java. Economic expansion might have led to rapid 
urbanization as well as environmental changes that 
could have facilitated the expansions of vectors and the 
importation of viruses, which in turn could have driven 
the temporal and spatial distribution of dengue inci-
dence in Cirebon district. The increasing trend in den-
gue incidence that our study shows suggests that steps to 
improve dengue surveillance systems in this area should 
be taken immediately.

Dengue in Cirebon is highly seasonal, with peaks in 
incidence taking place in January or February, which 
clearly coincides with the annual rainy season. This find-
ing is consistent with reports from other parts of Indo-
nesia [38, 47], which also demonstrated that the majority 
of dengue infection occurs during the rainy season from 
January to April. The present study confirmed that the 
incidence rate was higher during the wet season com-
pare to the dry season, highlighting that climate plays an 
important role in dengue transmission in this region.

To further clarify factors associated with the tempo-
ral pattern of dengue incidence, we assessed the rela-
tionship between rainfall, temperature, humidity and 
NDVI variability and monthly dengue incidence. Effects 
of rainfall and temperature variability on dengue inci-
dence have been extensively studied in many locations 
in Indonesia [38, 48, 49]; however, no study so far has 
paid much attention to their associations with den-
gue incidence in children, especially in Cirebon. In this 
study, we found positive correlations for temperature, 
humidity and NDVI with childhood dengue incidence. 
We found that an increase in temperature could dou-
ble dengue incidence in children in the following two to 
four months, while a one unit increase in humidity in the 
present month is likely to increase dengue incidence by 
5%. Indeed, these findings indicated the significant role 

Table 4 Characteristics of spatial clusters of dengue in children 
detected by LISA in Cirebon, 2011–2017

Year Type of cluster No. of counties Population 
at risk

Child population 
at risk

2011 HH 7 60,025 15,861

LL 21 109,881 41,692

LH 16 58,645 31,451

HL 4 40,395 5674

2012 HH 11 64,064 23,725

LL 27 138,883 48,905

LH 15 108,208 30,068

HL 7 36,820 9327

2013 HH 18 102,564 32,390

LL 34 154,251 53,150

LH 19 104,020 35,805

HL 8 37,196 14,055

2014 HH 17 98,454 33,798

LL 43 222,546 69,481

LH 24 105,767 36,644

HL 4 23,504 7139

2015 HH 24 146,771 47,449

LL 30 149,234 48,516

LH 14 76,654 23,753

HL 5 28,820 10,137

2016 HH 30 161,616 51,405

LL 46 202,027 70,134

LH 17 103,589 37,786

HL 9 53,761 20,414

2017 HH 16 102,271 38,874

LL 26 130,744 47,286

LH 11 60,789 20,183

HL 9 45,672 16,863
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of such factors in vector development. These findings are 
consistent with previous results [10, 38, 50]. For instance, 
Tosepu et  al. [38], working in Kendari city in south-
east Sulawesi, also found a positive correlation between 
temperature (at a lag 2  months) and dengue incidence. 
Temperature and humidity have been considered as 
important factors for mosquito biology, population 
dynamics, survival as well as capacity to transmit dengue 
virus [11, 51]. Aedes spp. require optimum temperatures 
ranging between 15–35  °C to fully develop and survive. 
Moreover, studies by Chen & Hsieh [52] in Taiwan and 
Sánchez-González et al. [53] in Mexico indicated that the 
highest risk of dengue transmission generally occurs at a 
temperature of 28  °C. There is compelling evidence that 
this optimal temperature reduced gonotrophic cycles 
for Aedes mosquitoes, prolonging of the mosquitoes’ life 
expectancy, shortening of the extrinsic incubation peri-
ods of arboviruses, and facilitating the dispersal of vec-
tors across broader geographical areas [13, 14, 51], which 
could potentially lead to a greater probability of dengue 
transmission. However, temperature and humidity are 
not the only climate factors influencing Ae. aegypti exist-
ence and dengue occurrence.

Interestingly, we found a negative association between 
rainfall and dengue incidence in the following two 
months, although the effect was relatively weak. Similar 
results has also been reported by a study in Guangzhou 
[54], but our finding was in disagreement with a study 
conducted in Yogyakarta [49] which found a positive 
correlation between rainfall and dengue incidence. It is 

known that rainfall can provide considerable amounts 
of waterbodies which allow mosquitoes to breed and 
complete their immature stage and thus could increase 
mosquito population in the environment. However, high 
rainfall intensity may also cause flash flooding that could 
flush out breeding sites and thus decrease the vector 
population, which in turn could limit the potential for 
dengue transmission [15].

Our study also demonstrated a strong association 
between vegetation greenness and monthly dengue inci-
dence, which also supports findings from other studies 
[19, 35, 36]. Our study demonstrated that the greater the 
estimated NDVI, the higher incidence rate of dengue in 
the following month. NDVI has been found to act as a 
biological index of environmental conditions influencing 
the population dynamics of Aedes mosquitoes [55–57]. 
The greener vegetation suggests that there were more 
favourable habitats for mosquitoes which help maintain 
vector populations in the environment [58]. Indeed, as 
shown in the satellite image (Fig. 1), residential areas are 
predominantly situated in peri-urban areas and are sur-
rounded by vegetated areas (e.g. rice fields, shrubs) which 
are known to be favourable habitats for mosquitoes such 
as Ae. albopictus. These environmental conditions could 
influence the dispersal and movement of vectors [18–
20]. In fact, children mostly spend their days in school 
in the morning and but at playgrounds in the afternoon, 
which coincides with the peak biting activity of mos-
quitoes. This active behaviour as well as their vulner-
able immune levels indeed puts children at a higher risk 

Fig. 6 Spatiotemporal clusters of dengue in children in Cirebon as identified by LISA, 2011–2017
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of becoming infected, especially during the wet season 
when their immunity profiles commonly reduce while at 
the same time breeding sites and Aedes populations are 
abundant, leading to a high humans-vector contact rate. 
Based on our evidence, we recommend that preventive 
efforts such as school-based health campaigns and envi-
ronmental manipulation to reduce breeding sites around 
the schools and parks should be strengthened, especially 
in the month or two prior to the beginning of wet season. 
Our identified links between peaks in dengue incidence 
and temperature, rainfall, humidity and NDVI ranging 
from one to four months lag could be explained by the 
mechanisms of dengue transmission that are ongoing. 
Our finding is consistent with the probable mechanism 
of dengue transmission. To illustrate, Ae. aegypti mosqui-
toes require two weeks to fully complete their life-cycle 
from eggs to adults. The females’ extrinsic incubation 
period (EIP) can last from 8 to 12 days depending on the 
temperature and virus type [59, 60] and, on average, the 
intrinsic incubation period for dengue ranges from one 
to two weeks. Breeding sites both inside and outside 
the households were abundant during both the dry and 
wet season. In the dry season people tend to store water 
inside which facilitates Ae. aegypti in laying their eggs. 
Once the rainy season begins, vegetation becomes dense 
and the large amount of uncontrolled water containers 
outside (e.g. used tyres, tins, bottles) allow Ae. albopictus 
to complete their cycle.

Spatial analysis allows the visualization of villages with 
the highest dengue incidence as well as exploration of its 
geographical pattern over time. In this study, we revealed 
that the dengue incidence in children was spatially clus-
tered, except in the year 2012. Furthermore, we identified 
that most high-risk villages were located in the north-
ern part of Cirebon and in close proximity to the main 
road networks that connect Cirebon with Majalengka 
and Indramayu. These two district areas are also known 
as dengue-prone areas. This finding corroborates studies 
elsewhere [36, 61, 62] which found strong relationships 
between road networks and high-risk areas of dengue. 
One explanation for this is that incidence may be asso-
ciated with the social and environmental features of this 
area. To illustrate, most dense and urbanized areas in 
Cirebon are found in the northern part of the district, 
which is surrounded by vegetated land. In addition, most 
inhabitants often store water in containers inside the 
house since water supply in this region is poorly distrib-
uted especially during the dry season. Such conditions 
increase the chances of oviposition of Ae. aegypti and 
house-to-house vector dispersal, which leads to increase 
the spillover of the virus resulting in higher dengue inci-
dence. Moreover, the presence of road networks allows 
intense human mobility and rapid urbanization that 

could facilitate DENV spread, contributing to a greater 
risk of dengue outbreaks. Factors such as human move-
ment, urbanization, landscape characteristics together 
with favourable climatic factors may greatly escalate the 
likelihood of contact between humans and vectors and 
thus increase risk of dengue transmission in this region.

The spatiotemporal maps of high-risk villages provided 
in this study indicate that local-level factors have driven 
the dynamics of dengue incidence in children from 
2011–2017. Factors including climatic, environmental, 
socioeconomic conditions as well as control measures 
could possibly change the spatial distribution of high-risk 
villages. However, specific factors underlying these spa-
tiotemporal changes are unclear. Therefore, local epide-
miological investigations are required to identify drivers 
at the village level.

There are some limitations in this study that require 
our findings to be carefully interpreted. First, we analysed 
passive surveillance dengue data, which may more likely 
underestimate the actual dengue incidence in children 
due to underreported cases. However, our findings still 
provide important information regarding temporal and 
spatial variability of dengue incidence in children that is 
beneficial for designing timely and targeted village-level 
prevention and control measures. Secondly, the tempo-
ral and spatial trends in dengue incidence in children as 
observed in this study might partly be driven by other 
confounding factors including individual-level (e.g. 
nutrition status, immunity, behaviour), household-level 
factors (e.g. socioeconomic, water storage behaviour, 
vector control practices) and environment at the vil-
lage level which were not included in this study. Future 
epidemiological studies should investigate the effect  of 
such socio-ecological factors and control efforts on the 
geographical and temporal distribution of dengue risk in 
children.

Conclusions
To our knowledge, this is the first ecological study inves-
tigating temporal and spatial patterns of dengue inci-
dence in children at the village-level in Indonesia. This 
study showed that dengue infection is common in the 
childhood population in Cirebon and the trend of inci-
dence is likely to increase over time. Regular outbreaks 
were strongly linked with local climate and environmen-
tal variability. In addition, this study identified clusters 
of high-risk villages in the north along the main road 
networks. The results of this study could be utilized 
to establish a dengue temporal and spatial early warn-
ing system, which potentially could support local health 
authorities to apply timely interventions as well as better 
planning and decision-making in order to minimize the 
impact of dengue outbreaks. Our study recommends that 
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strengthening of prevention and control measures for 
dengue in children should be rely on applying vector con-
trol and school-based health campaigns, especially in the 
identified high-risk villages.

Additional files

Additional file 1: Figure S1. Map of elevation of Cirebon district. Eleva-
tion data from Shuttle Radar Topography Mission (SRTM) with ~ 30 m spa-
tial resolution was retrieved from USGS EROS Archive (https ://eros.usgs.
gov/). About 90% of the area is lowland; the higher altitudes are located in 
the southwest of the district.

Additional file 2: Table S1. Annual reported number of confirmed 
dengue cases by age-group, Cirebon district, 2011–2017. Table S2. Num-
ber of DHF, DSS, DD and suspected dengue cases in children, Cirebon 
district, 2011–2017. Table S3. Spearmanʼs correlation between covariates. 
Table S4. Models of associations between climatic factors and NDVI and 
dengue incidence as identified by a generalized linear model. Table S5. 
High-risk villages (n = 38) for dengue in children identified by LISA analy-
sis, Cirebon district, 2011–2017.

Additional file 3: Figure S2. Cross-correlation analysis between dengue 
and rainfall, temperature humidity and NDVI, Cirebon, West Java, Indo-
nesia. Cross-correlation analysis indicated a positive significant correla-
tion between dengue with rainfall (lag 1–2 months), temperature (lag 
4–6 months), humidity (lag 1–2 months) and NDVI (lag 0).

Additional file 4: Figure S3. Crude incidence of dengue among U5s (A) 
and adolescents (5–19 years-old) (B) at village level, Cirebon, 2011–2017.
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